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Abstract 

In the presence of weak overall correlation, it may be useful to investigate if the correlation is 

significantly and substantially more pronounced over a subpopulation. Two different testing procedures 

are compared. Both are based on the rankings of the values of two variables from a data set with a large 

number n of observations. The first maintains its level against Gaussian copulas; the second adapts to 

general alternatives in the sense that that the number of parameters used in the test grows with n. An 

example illustrates how the test statistics may be used to discover pairs of genes whose expressions in rat 

hepatocyte cells are substantially more correlated over those cells that have been exposed to certain 

classes of chemicals.  

Keywords: Absolute rank differences; Beta distribution; Frank copula; Gaussian copula; Kendall’s tau; 

Mallows' model; Multistage ranking model; Permutations; Seriation. 

 

1. Introduction 
 

The goal of this paper is to offer new methods for discovering association between two variables that is 

supported only in a subpopulation.  For example, while higher counts of HDLs are generally associated 

with lower risk of myocardial infarction, researchers (Voight et al., 2012; Katz, 2014) have found 

subpopulations that do not adhere to this trend. In marketing, subpopulations of designated marketing 

areas (DMAs) in the US respond differentially to TV advertising campaigns, and the identification of 

DMAs that are sensitive to ad exposure enables efficient spending of ad dollars.    In preclinical screening 

of potential drugs, various subpopulations of chemicals elicit concomitant responses from sets of 

hepatocyte genes, which can be used to discover gene networks that breakdown classes of drugs, without 

having to pre-specify how the classes are formed. The new methods thus lead to a whole new approach to 

analysis of large data sets.  

When covariates are available, regression analysis classically attempts to identify a supporting 

subpopulation via interaction effects, but these may be difficult to interpret properly. In the presence of 

overall correlation, it may be useful to investigate directly if the correlation is significantly and 

substantially more pronounced over a subpopulation.  This becomes feasible when representatives of 

supporting subpopulations are embedded in large samples. The novel statistical tests described in this 

paper are designed to probe large samples to ascertain if there is such a subpopulation. 

The general setting is this: A large number n of observations are sampled from a bivariate continuous 

distribution.  The basic assumption is that the population consists of two subpopulations.  In one, the two 

variables are positively (or negatively) associated; in the other, the two variables are independent.  While 

some distributional assumptions are required even to define the notion of homogeneous association, the 

underlying intent is to make the tests robust to assumptions about the distributions governing both the null 

and alternative hypotheses. 

 

Notation for the rest of the paper is as follows:  Let X ~ F and Y ~ G have joint, continuous distribution H.  

For any sample {(xi, yi) | i = 1, … , n}, the empirical marginal distributions are defined by 
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The ranking  of the sample {xi | i = 1,…,n} is the function {xi | i = 1,…, n}→{1,…,n} defined by 
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The corresponding ranking of {yi | i = 1,…,n} is denoted by . Spearman’s footrule distance with a 

sample {(xi, yi) | i = 1,…, n} is defined through the sample rankings as 
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The Kendall distance associated with the sample is defined as 
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which also depends only on the rankings   and  of the sample {xi} and {yi}.  Mallows (1957) model for 

rankings takes the form 
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where the normalizing constant C() has a tractable form (Fligner and Verducci, 1986) known as a 

Poincare polynomial (Diaconis and Graham, 2000).  Distributional forms for the data are in terms of 

copulas: 

CH(F(X),G(Y)) = H(X,Y), 

which are distribution functions on the unit square, having uniform margins.  Two copulas play a 

fundamental role in motivating the tests: the Gaussian copula and the Frank Copula. If (X,Y) has a 

bivariate normal distribution H with correlation , then its corresponding copula is 
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 where  is the standard normal CDF. The bivariate distributions    and    are indexed solely by the 

underlying correlation .  The Frank copula (Frank, 1979; Genest, 1987) has the form 
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The next two sections describe two new tests for detecting subpopulations that support association: the 

Components of Spearman’s Footrule (CSF) test and the Components of Kendall’s Tau (CKT) test. The 

CSF test is scaled according to a Gaussian copula and the CKT test is scaled according to a Frank copula.  

The CSF test is computationally fast, and the CKT test adapts to a large variety of alternatives.  The 

following two sections cover their performance under simulations. Concluding remarks are in last section. 
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2. Components of Spearman’s Footrule (CSF) 
 

While Spearman’s footrule (Diaconis and Graham, 1977) measures the overall disarray in a sample, the 

distribution of individual absolute rank differences  
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proves to be very useful in detecting subsamples with distinctly less disarray than would be expected 

under homogeneous association.  Because the rankings depend on the whole sample, the {di} are not 

independent.  Nevertheless, we loosely define their empirical distribution as 
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As a step toward determining asymptotic forms for this distribution, we offer the following lemmas:  
 

Lemma 1.  For any sample {(Xi, Yi) | i = 1,…,n} from a joint distribution H, let (X,Y) be a newly sampled 

observation.  Then, for rankings  and  for the extended sample, the asymptotic distribution of  

 

 

       

 

is the underlying copula CH[F(X),G(Y)] of H.                                                       

 

Lemma 2.  The asymptotic distribution of rank differences under independence is Beta(1,2). 
 

These lemmas lead to the following  
 

Proposition 1.  Under a Gaussian() copula,  Sn converges to a Beta(1, ) distribution. 

Simulations with n = 1000 affirm the proposition and produce a smooth curve for .  See Figure 1. 

  

Figure 1:  Left panel shows the close agreement of Sn with Beta(1, ) when sampling n = 1000 

observations from a Gaussian( = .2) copula.  The right panel illustrates the curve for 0 <  < .5. 
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The null hypothesis is that (X,Y) have a Gaussian copula.  The alternative is that (X,Y) come from a 

mixture of two subpopulations in which under one they are independent, and under the other they are 

positively associated.  To test for negative association, simply replace Y by –Y.  No particular form is 

assumed for the positively associated subpopulation, but it is informative to examine the case where this 

compo  nent is Gaussian.  Figure 2 illustrates Sn and its histogram under such a mixture. 

 

  

Figure 2:  (Standardized) Distribution of Rank Differences Under Mixture of Gaussian (.6) and 

Independent Copulas with overall correlation .3 compared to Beta(1,2.65) 

Because the differences in distributions under the null and alternative are small, large samples are 

required to distinguish the two.  As noted from the histogram in Figure 2, most of the distinguishing 

information is contained at the low end of the distribution.  This makes sense because a subpopulation 

supporting positive association should have a surplus of points where the ranks of X and Y closely agree.  

Thus a test statistic based absolute ranked differences should emphasize the lower order statistics.  Such 

statistics come under the heading of L-statistics. It is possible to tailor a test toward alternative features of 

interest such as proportionate size of the subpopulation and the strength of association within it. Exact 

distributions of partial or weighted sums of absolute rank differences are quite complicated due to 

dependencies (Sen, et al. 2011), even under the null hypothesis of independence.  A very simple general 

purpose test statistic is  
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Using the observed overall correlation r in place of , the null distribution of TS may be simulated under 

the Gaussian copula or approximated as a Binomial test statistic using the probability from the Beta(1,)  

as in Proposition 1.  In the later case, ignoring weak dependencies, the .05 level test has power of 80% of 

detecting a Gaussian subpopulation of 25% with r =.8 for n = 1000. 
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3. Components of Kendall’s Tau (CKT) 

 
Although the CSF test is both simple and computationally efficient, it has a conceptual shortcoming 

arising from the use of Spearman’s footrule distance to characterize association in a subpopulation.  The 

issue is that the components of the footrule distance in the subpopulation depend on the encompassing 

population; that is, when the sample is a full population, with associated subpopulation , the component 

set from the footrule from  

};)()({};{  iyxid iii   

depends heavily on the rankings  and  determined by the full population. In contrast, the component set 

from Kendall’s distance depends only on the relative rankings within , which may be constructed from 

just on the original values in .  That is, 
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Thus the subpopulation discordances (components of Kendall’s distance) do not depend upon the 

embedding population, whereas the subpopulation disarray (components of Spearman’s footrule distance) 

do.  This invariance has a number of beneficial properties, such as allowing the CKT test to retain power 

in situations where the ranges of the {Xi} and {Yi} values in the subpopulation are more restricted than 

those in the full population. 

The notion of homogeneous association based on Kendall’s distance differs from that based the 

Spearman’s footrule used for the CSF test. In this case the natural null hypothesis should be a distribution 

depending only on Kendall’s distance.  Furthermore it should have the greatest entropy for a given value 

of Kendall’s tau because this formulation would attribute as much variability as possible to the null 

distribution, making it a conservative (least favorable) test (Lehmann and Romano, 2006).  To construct a 

distribution has this structure, simply sample from an arbitrary copula, and then reorder the Y-values 

according to a permutation (Y) sampled independently from a Mallows model centered at the ranking 

(X) of the X values. Quite remarkably, any such process asymptotically leads to a Frank copula.  

Proposition 2, based on Starr (2009), gives a precise statement.   

 Proposition 2.  Let {(Xi,Yi)  | i=1,…,n} be independent samples from a distribution H with continuous 

marginals F and G, and associated copula C with continuous partial derivatives. Let X) be the ranking 

of X=[X1,…, Xn] and (Y) be the ranking of Y=[Y1,…, Yn]. Assume that for all n sufficiently large, the 

conditional distribution of (Y) given X) is Mallows, with center at X) and scale nIf      and 

there exists ≠such that      

 (      )    , 

then C is the Frank copula   . 

Proof.  First, it is necessary to establish radial symmetry of a copula that has (Y) given X) being a 

Mallows distribution. The pseudo-observations for each pair (Xi,Yi) are defined as functions of the pair 

and the empirical margins: 

(  ̂   ̂)  
 

   
(  ̂(  )  ̂ (  )) . 

 

These are functions of the rankings X) and (Y): 
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By the symmetry of the Mallows model, the joint distribution of the pseudo-observations 

( ̂    ̂)   ( ̂    ̂) is identical to the joint distribution of (    ̂     ̂)   (    ̂     ̂) .  

Consider empirical distributions based on these observations (Genest and Nešlehová, 2014): 
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Since H has continuous marginals and C has continuous partial derivatives, then Fermanian et al. (2004) 

established that  ̂  is a consistent estimator of the copula C, and likewise  ̂  is a consistent estimator of 

the survival copula  ̅: 

 ̅(   )         (       ) 

 

Hence,    ̅, which implies that the copula C is radially symmetric (Nelsen 2006, pg. 37).  Now, since 

C is radially symmetric, an asymptotically equivalent definition of the empirical copula is: 
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 on each random point (
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)  [   ] .  This empirical copula is expressed 

by a point process (Starr, 2009):  For    , 
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for each bounded Borel set     .   

By assumption, the regularity conditions on the Mallows scale are satisfied as    : 
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Under these conditions, the primary result of Starr (2009) is applied: As    , the random measures 

  (   ) weakly converge to the measure   , defined by: 
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Simply converting the trigonometric functions to exponential form and simplifying yields:  
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By recognition, the limiting measure is that of the (Frank) Copula   : 
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Recall,  ̃  is a consistent estimator of the underlying copula C, and converges weakly to   , so we 

conclude that     . ⌂  

Pursuing this result further allows for inspection of the adequacy of the asymptotic result for finite 

samples.  A function () for matching the Mallows  parameter to the Frank() may be obtained by 

equating expressions for  and from these models.  For any Archimedian copula, there is a relatively 

simple formula  = 4E[C(U,V)]-1 (MacKay and Genest, 1986); for the Frank copula, a specialized form  

(Nelsen, 2006, p. 171; Genest, 1987) is 
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where  the scaled integral D() is known as the Debye-1 function, available in the “gsl” (Gnu Scientific 

Library) package of R.  For the Mallows model,  
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Equating  and  leads to the relationship 
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Empirical evidence for the applicability of Proposition 2 comes in two stages: 1) The distribution of 

Kendall’s Distance under Frank() and under Mallow() both converge to the same normal 

distribution; 2) As n gets large the product density of the sample under Frank() converges to an 

increasing function of the Kendall’s Distance between X) and (Y) of the sample. 
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Figure 3. Scale relationships. Left: Kendall’s  vs. the Frank scale ; center: Kendall’s  vs. the Mallows 

scale  for n; right:  vs.n for each n. 

 

Figure 4 illustrates results from the following confirmatory experiment:  

-Generate 200 sets of 1000 points from a Frank copula 

-Compute the Kendall distance D and the Frank density d for each set 

-Plot d vs D on a log-log scale 

Asymptotic Normality of Kendall’s 
Distance Under arbitrary Frank Copula

Example:
= 3

n = 1000

Moments of Kendall’s Distance for Frank 
Copulae and Mallows Models 

Points are based on
simulated samples of 
size n = 1000 from 
each distribution

  

Figure 4.   Association between X and Y in a Frank copula approaches a Mallows model for the ranking 

(Y) of a large sample centered at (X). Left panel: approximate normality of Kendall’s Distance D under 

a Frank copula; Center panel: agreement of asymptotic normal forms of D under Frank and Mallows 

models; Right panel: log-log plot of Kendall’s Distance vs. Frank density. 

Note also that the Frank copula is radially symmetric [C(u,v) = u+v-1+ C(1-u,1-v)], which is a necessary 

condition for the density of a sample to depend only on its Kendall distance. 

With the assurance that there are copulas with the conditional distribution of (Y) given X) well 

approximated by a Mallows model, this becomes the null hypothesis: 
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H0: (Y) ₀ X) ~ Mallows() for some   > 0. 

The general alternative against which we would like a test to be sensitive is that there is a subpopulation 

with high association with the remainder having (little or) no association. The test for heterogeneity 

should maintain power over a wide variety of alternative distributions for the subpopulation supporting 

strong association.  With these considerations, the alternative hypothesis is formulated as 

HA: (F(X), G(Y)) ~ M where M is a mixture of two distributions: H1 on which (F(X), G(Y)) are 

independent and H2 on which (F(X), G(Y))  have  > 0. 

To test against such a general alternative, an adaptive model encompassing the Mallows model is 

adopted, with the number of free parameters in the model increasing with sample size. This components 

of Kendall’s tau (CKT) test proceeds in four steps 

1. Fit a Mallows model centered at (X) to (Y) and compute the likelihood. 

2. Reorder the data points {(Xi,Yi) | i=1,…,n} so that Kendall’s tau coefficient is decreasing . See Yu 

et al. (2011). Call the reordering . 

3. Smoothly fit a multistage ranking model to the relative rankings of [Y (1) ,…, Y (k) ] to [X (1) ,…, 

X(k) ] at each stage k.  See Sampath & Verducci (2013). Compute the likelihood under this 

(encompassing) model. 

4. Use the (Generalized) Likelihood Ratio statistic to test H0.  

Comments on the four steps: 

1. Since Kendall’s tau distance is invariant to reordering of observations, this is the same as 

fitting a Mallows model, centered at ranking (X), to the ranking(Y),  where  is the 

taupath reordering.  

 

2. The idea of reordering is to put the points displaying the highest amount of association earlier 

in the sequence in order to identify the subpopulation with highest empirical association. The 

reordering is not unique.  Yu et al. (2011) discuss various algorithms. 

 

 

3. The multistage ranking model decomposes the number of discordances [up to (n choose 2)] 

between ranking(Y) and ranking(X)
 
, as a sum of n-1 variables {Vk} with ranges {0,…,k} ,      

k = 1,…,n-1.  The model has likelihood  

 

                                                                                               

which reduces to the likelihood of Mallows model when all component parameters are equal. 

 

4. The conditions needed to justify an asymptotic chi-square distribution for this statistic do not 

hold in this setting.  Currently, we simulate the distribution under the Frank copula to get an 

appropriate reference.  We are working to find a more precise characterization of the LR in 

this setting. 

 
The null distribution of this likelihood ratio appears to be close to normal, with its mean decreasing with 

the common correlation, and standard deviation constant. See Figure 5. Note that, for n =1000, the 

kkVecL 
 

 )(
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variance of 2*LLR ≈ 2500 is clearly less than its 2 * mean(2*LLR) theoretical value for a chi square 

distribution, which is in the range (3100, 3800) when Є (.10, .30). 

 

Figure 5: Simulation of Log Likelihood Ratio (LLR) Statistic for CKT test under Frank Copulas.  Left 

Panel:Histogram of 500 simulations of size n = 1000. Right Panel: decreasing pattern of mean and 

constancy of standard deviation for LLR under Frank Copulas at different levels of for n = 1000. 

Instead of fixed n and varying , Figure 6 depicts the relationship between LLR and n with fixed   

 

Figure 6: First two moments of LLR are linear in sample size:  = n – 50;  = 7 + .02n; cv →.02. 

The overall relationship between the moments of LLR and the parameters  and n is not yet known, but 

using a practical additive approximation in the range .1 <  < .30 and 500 < n < 3000, the basic 

asymptotic -level CKT test has the form: Reject H0 if  









 1
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)ˆ79720(
z
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where ̂  is Kendall’s correlation coefficient and z1- is the (1 - )
th
 quantile of the standard normal.  
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4. Simulations for Robustness and Power. 

First, performance of the tests is checked by maintenance of levels under various Gaussian and Frank 

copulas; subsequently power is examined.  The CSF test is based on the number of absolute rank 

differences less than .2. Figure 7 shows the null distributions of p-values for the CSF test applied to 

samples of size n = 1000 generated 100,000 times under the Gaussian() models. These distributions start 

to become stochastically smaller than uniform for Otherwise the test is conservative in the range 

0 <  < .45 and 0 <  < .05   as illustrated by the observed number of type 1 errors at the  = .05 level. 

  

Figure 7:  CSF results from 100,000 simulation experiments of size n =1000 for values of in a 

Gaussian copula: Left panel—Distribution of p-values for 7 values of the null correlation; Right panel—

observed probabilities of Type 1 error for a nominal  = .05 test.  The test is conservative for values of    

  < .45.  

 

Under similar Gaussian copulas, the adjustment of the mean of the log-likelihood for the estimated overall 

 makes the CKT test behave conservatively for large values of , but gives highly significant values for r 

values near 0.  See Figure 8, in which, due to computational limitations, lowess-smoothed curves describe 

the p-distribution based on only 100 simulations.   In the presence of very low overall correlation, it is 

advisable to use the CSF test as a screen for the CKT, which will protect the CKT from finding uneven 

levels of  association when  association is homogeneous.  Again, this tendency toward excess false 

positives happens only when the overall  association is close to 0.  In this case a special test (Sampath 

and Verducci, 2013) is available for the null hypothesis of independence.  
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Figure 8:  CKT results from 200 simulation experiments of size n = 1000 for values of in a Gaussian 

copula:  Left panel—Distribution of p-values for 7 values of the null correlation; Right panel— observed 

probabilities of Type 1 error for a nominal  = .05 test.  The test is conservative for values of  > .16. 

Under a Frank copula, the CSF test behaves properly near independence, but loses its level when gets 

large.  See Figure 9. 

 

Figure 9: Performance of CSF under Frank Copula.  As depicted for 10,000 simulations of n = 1000 

samples from each Frank copula, the test behaves reasonably for small values of , but distorts to produce 

excess false positives when gets  large. 

Several factors affect the power curves of both the CSF and CKT tests: sample size (n is fixed at 500 or 

1000); proportionate size of the subpopulation (fixed at 40%); strength of association in the 

subpopulation (  {.7, .8, .9}); and, most importantly, the form of the subpopulation. Against the null 

hypothesis of a Gaussian copula, the alternative is a mixture of copulas, where the variables are assumed 
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to be independent in the complement of the subpopulation.  Against the null hypothesis of a Frank copula, 

the subpopulation is selected at random and its conditional distribution is forced into a stronger Mallows 

model. This allows the population margins to remain uniform while possibly restricting the range of the 

subpopulation. 

Figure 10 shows the distribution of p-values of both CSF and CKT tests against 40% Gaussian with       

.12 ≤    ≤  .13.  For this range of overall correlation the CKT test holds its level and is conservative for 

overall correlation which is the case here.  Nevertheless, it achieves perfect power when the 

subpopulation  ≥ .125, even though its power quickly diminishes to 10% for   = .12 in the 

subpopulation.  It also performs better than CSF in this range. 

 

Figure 10:  P-values against Alternative Mixture of Gaussian copulas with sample size n = 1000 and 

subpopulation proportion = 40%.  Dashed horizontal line at  = .05 indicates the power of a level .05 test. 

Under the Mallows alternative, n = 1000 points are generated from a uniform distribution, 400 points are 

then sampled from a quantile range of x values and the y values resorted according to a random draw 

from a Mallows(()) model. Values of  used are .4, .5, and .6.  Figure 11 shows the distributions of p-

values from the  = .05 level CSF and CKT tests over 100 simulations.  The left panel corresponds to the 

subpopulation being sampled from the full range, while the right panel corresponds to samples between 

the 20
th
 and 80

th
 percentiles of x-values.  The CKT test performs much better than the CSF test against 

these alternatives.  The CKT has essentially perfect detection when the subpopulation spans the whole 

range, and at least 70% power in the 20-80 percentile range.  The CSF has no power in either scenario. 
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Figure 11:  Distribution of p-values for Mallows alternatives, based on 100 simulations of sample size    

n = 1000. Left Panel: Associated subgroup spans the full range of x-values.  Right Panel: span is 

restricted to the 20-to-80
th
 percentiles region of x-values in the larger population. 

5. Concluding Remarks 

 
The ability to detect subpopulations that drive association has the potential of changing the way statistics 

are used to unveil structures in “Big Data.” Instead of employing extensive model searching with complex 

interaction, now relatively model-free methods are available to ascertain with precision is there is any 

simple mixture that better explains monotone association between variables.  The CSF and CKT tests 

achieve this, either working together to screen and confirm or separately to find different forms of the 

subpopulation that most strongly supports the association. 

These tests, however, are formally restricted to different forms of the meaning of “homogeneous 

association.”  Strict legitimacy of the CSF test depends on the assumption of a Gaussian copula 

underlying the null distribution, whereas the CKT test depends on the assumption of a Frank copula 

underlying the null distribution.  Although there is some evidence of limited robustness, much more work 

should be done to explore the behavior of these tests under general conditions.  For example, both the 

Gaussian and Frank copulas are radially symmetric; it is unclear how sensitive the tests would be to 

asymmetric notions of homogeneous association.   

The computationally efficiency of  the CSF test is important because the sample size n needs to be in the 

thousands before there is much hope of reliably detecting these subtle but important differences.  In 

contrast with the CSF test, the justification of CKT is a bit more compelling, based on intrinsic 

association within the subpopulation.  We have been using CSF at a liberal  = .05 level as a screening 

devise to reduce the number of pairs of variables to be tested at a more stringent level.  Both tests have 

been employed in the previous section to discover putative gene networks in the liver and the set of 

chemicals to which each respond.  

Detecting heterogeneity of association is a difficult task.  Such detection is practical only when the overall 

association is not too strong, the association in the subpopulation is strong, and the sample size is large.  

Nevertheless, such scenarios abound.  We believe that these new methods will make Statistics ever more 

relevant in making good sense from Big Data. 
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