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Abstract
In this paper we study the ideal variable bandwidth kernel estimator introduced by McKay [7, 8] and the
plug-in practical version of variable bandwidth kernel estimator with two sequences of bandwidths as in
Giné and Sang [4]. The dominating terms of the variance of the true estimator in the variance decompo-
sition are separated from the other terms. Based on the exact formula of bias and these dominating terms,
we develop the optimal bandwidth selection of this variable kernel estimator.
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1. Introduction

Suppose that Xi, i ∈ N, are independent identically distributed (i.i.d.) observations with density
function f(t), t ∈ R. Let K to be a symmetric probability kernel satisfying some differentiabil-
ity properties. The classical kernel density estimator

f̂(t;hn) =
1

nhn

n∑
i=1

K

(
t−Xi

hn

)
, (1)

where hn is the bandwidth sequence with hn → 0, nhn → ∞, and its properties have been
well studied in the literature. The variance of (1) has order O(nhn)−1 and the bias has order
h2n if f(t) has bounded second order derivative. In this paper, we study the following variable
bandwidth kernel density estimator proposed by McKay [7, 8]:

f̄(t;hn) =
1

nhn

n∑
i=1

α(f(Xi))K(h−1n α(f(Xi))(t−Xi)), (2)

where α(s) is a smooth function of the form

α(s) := cp1/2(s/c2). (3)

The function p is at least four times differentiable and satisfies p(x) ≥ 1 for all x and p(x) = x
for all x ≥ t0 for some 1 ≤ t0 < ∞, and 0 < c < ∞ is a fixed number. (2) is a variable
bandwidth kernel density estimator since the bandwidth has form hn/α(f(Xi)) if we rewrite (2)
in the form of the classical one, (1). The study of variable bandwidth kernel density estimation
goes back to Abramson [1]. He proposed the following estimator

fA(t;hn) = n−1
n∑
i=1

h−1n γ(t,Xi)K(h−1n γ(t,Xi)(t−Xi)), (4)
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where, γ(t, s) = (f(s) ∨ f(t)/10)1/2. The bandwidth hn/γ(t,Xi) at each observation Xi is
inversely proportional to f1/2(Xi) if f(Xi) ≥ f(t)/10. Notice that (2) also has the square root
law since α(f(Xi)) = f1/2(Xi) if f(Xi) ≥ t0c

2 by the definition of the function p(x). The
estimator (2) or (4) has clipping procedure in α(s) or γ(t, s) since they make the true bandwidth
hn/α(f(Xi)) ≥ hn/c or hn/γ(t,Xi) ≥ 101/2hn/f(t)1/2. The clipping procedure prevent too
much contribution to the density estimation at t if the observation Xi is too far away from t.
Abramson showed that, this square root law improves the bias from the order of h2n to the order
of h4n for the estimator (4) while at the same time keeps the variance at the order of (nhn)−1 if
f(t) 6= 0 and f(x) has fourth order continuous derivative at t. However, this variable bandwidth
estimator (4) is not a density function of a true probability measure since the integral of fA(t;hn)
over t is not 1 -it would if γ depended only on s-.

Terrell and Scott [11] and McKay [8] showed that the following modification of Abramson
estimator without the ‘clipping filter’ (f(t)/10)1/2 on f1/2(Xi) studied in Hall and Marron [5],

fHM (t;hn) = n−1
n∑
i=1

h−1n f1/2(Xi)K(h−1n f1/2(Xi)(t−Xi)), (5)

which has integral 1 and hence is a true probability density, may have bias of order much larger
than h4n. Therefore the clipping is necessary for such bias reduction.

Hall, Hu and Marron (1995) then proposed the estimator

fHHM (t;hn) =
1

nhn

n∑
i=1

K

(
t−Xi

hn
f1/2(Xi)

)
f1/2(Xi)I(|t−Xi| < hnB) (6)

where B is a fixed constant; see also Novak [10] for a similar estimator. This estimator is non-
negative and achieves the desired bias reduction but, like Abramson’s, it does not integrate to 1.

In conclusion, it seems that the estimator (2) has all the advantages: it is a true density
function with square root law and smooth clipping procedure. But notice that this estimator and
all the other variable bandwidth kernel density estimators can not be applied in practice since
they all include the studied density function f . Therefore, we call them ideal estimators in the
literature. Hall and Marron [5] studied a true density estimator

f̂HM (t;h1,n, h2,n) =
1

nh2,n

n∑
i=1

K

(
t−Xi

h2,n
f̂1/2(Xi;h1,n)

)
f̂1/2(Xi;h1,n),

by plugging in the classical estimator (1) as the pilot estimator. Here, the bandwidth sequence
h2,n is the hn as in (5) and the bandwidth sequence h1,n is applied in the classical kernel density

estimator (1). They took Taylor expansion of K
(
t−Xi
h2,n

f̂1/2(Xi;h1,n)
)

at K
(
t−Xi
h2,n

f1/2(Xi)
)

and studied the asymptotics of the true estimator. By applying this Taylor decomposition,
McKay [8] studied convergence of plug-in true estimator of (2) in probability and pointwise.
Giné and Sang [3, 4] studied plug-in true estimators of (6) and (2) for one and multiple d-
dimensional observations. They proved that the discrepancy between the true estimator and the
true value converges uniformly over a data adaptive region at a rate O((log n/n)4/(8+d)) by ap-
plying empirical process techniques. The true estimator in Giné and Sang [4] has the following
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form

f̂(t;h1,n, h2,n) =
1

nh2,n

n∑
i=1

K

(
t−Xi

h2,n
α(f̂(Xi;h1,n))

)
α(f̂(Xi;h1,n)). (7)

And, they also studied the uniform convergence in almost sure sense of true estimators with bias
order h6n.

In section 2, we provide decomposition of some important terms which we use in later
sections. In section 3 of this paper, we study the decomposition of the variance of the true
estimator (7) and find the exact formula of the dominating terms in the variance decomposition.
Moreover, we provide a theoretical formula for the optimal bandwidth in section 4.

2. Preliminary decomposition

For convenience, we adopt the notations as in Giné and Sang [4] for the Taylor series expansion
of K

(
t−Xi
h2,n

α(f̂(Xi;h1,n))
)

at K
(
t−Xi
h2,n

α(f(Xi))
)

. We also give the statements without de-
tailed explanation. For details, readers are referred to Giné and Sang [4] . PC will denote the set
of all probability densities on R that are uniformly continuous and are bounded by C <∞, and
PC,k will denote the set of densities on R for which themselves and their partial derivatives of
order k or lower are bounded by C < ∞ and are uniformly continuous. Define δ(t) = δ(t, n)
by the equation

δ(t) =
α(f̂(t;h1,n))− α(f(t))

α(f(t))
.

Then
α(f̂(t;h1,n)) = α(f(t))(1 + δ(t)) (8)

and
|δ(t)| ≤ Bc−2|f̂(t;h1,n)− f(t)|

for a constantB that depends only on p. Although we study the asymptotics of the true estimator
pointwise, the uniform asymptotic behavior of the quantity δ(·) is needed in the latter analysis.
Define

D(t;h1,n) = f̂(t;h1,n)− Ef̂(t;h1,n) and b(t;h1,n) = Ef̂(t;h1,n)− f(t).

Note that for f ∈ PC,2,
sup
t∈R
|b(t;h1,n)| = O(h21,n), (9)

and by Giné and Guillou [2],

sup
t∈R
|D(t;h1,n)| = O

√ log h−11,n

nh1,n


for f ∈ PC . Denote

√
log h−1

1,n

nh1,n
+ h21,n := U(h1,n). Then we have,

sup
t∈R
|f̂(t;h1,n)− f(t)| = sup

t∈R
|D(t;h1,n) + b(t;h1,n)| = O (U(h1,n)) (10)
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and
sup
t∈R
|δ(t)| = O (U(h1,n)) (11)

for f ∈ PC,2. By the definition of δ(t), we also have,

δ(t) =
α′(f(t))[f̂(t;h1,n)− f(t)]

α(f(t))
+
α′′(η)[f̂(t;h1,n)− f(t)]2

2α(f(t))
(12)

where η = η(t, h1,n) ≥ 0 is between f̂(t;h1,n) and f(t). Notice that |α′′(η(t, h1,n))| ≤ c−3A
for some constant A which depends only on the clipping function p. Set

L1(t) = tK ′(t) and L(t) = K(t) + tK ′(t), t ∈ R.

We then have the following Taylor Series expansion

K

(
t−Xi

h2,n
α(f̂(Xi;h1,n))

)
= K

(
t−Xi

h2,n
α(f(Xi))

)
+L1

(
t−Xi

h2,n
α(f(Xi))

)
δ(Xi) + δ2(t,Xi), (13)

where
δ2(t,Xi) = 1/2K ′′(ξ)(t−Xi)

2h−22,nα
2(f(Xi))δ

2(Xi), (14)

ξ being a (random) number between t−Xi
h2,n

α(f(Xi)) and t−Xi
h2,n

α(f(Xi)) + t−Xi
h2,n

α(f(Xi))δ(Xi).
By the analysis in Giné and Sang [4],

sup
t,x∈R

|δ2(t, x)| = O
(
‖f̂(·;h1,n)− f(·)‖2∞

)
= O(U2(h1,n)) if f ∈ PC,2. (15)

Therefore,

f̂(t;h1,n, h2,n) = f̄(t;h2,n)

+(nh2,n)−1
n∑
i=1

L

(
t−Xi

h2,n
α(f(Xi))

)
α(f(Xi))δ(Xi)

+(nh2,n)−1
n∑
i=1

α(f(Xi))δ2(t,Xi)

+(nh2,n)−1
n∑
i=1

L1

(
t−Xi

h2,n
α(f(Xi))

)
δ2(Xi)α(f(Xi))

+(nh2,n)−1
n∑
i=1

α(f(Xi))δ(Xi)δ2(t,Xi).
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3. Variance of the true estimator

To easy the notation, we denote Kt(x) = K
(
t−x
h2,n

α(f(x))
)

, Lt(x) = L
(
t−x
h2,n

α(f(x))
)

,

Lt,1(x) = L1

(
t−x
h2,n

α(f(x))
)

, M(x) = Lt(x)α′(f(x)) = L
(
t−x
h2,n

α(f(x))
)
α′(f(x)) and

Mi = M(Xi).

Theorem 1 Let X1, ..., Xn be a random sample of size n with density function f(t), t ∈ R,
and f̂(t;h1,n, h2,n) defined as in (7) is an estimator of f(t). Assume that the kernel K on R is
a non-negative symmetric function with support contained in [−T, T ], T < ∞, integrates to 1
and has bounded fourth order derivatives. The function α(x) in the estimator f̂(t;h1,n, h2,n) is
defined in (3) for a nondecreasing clipping function p(s) [p(s) ≥ 1 for all s and p(s) = s for all
s ≥ c ≥ 1] with five bounded and uniformly continuous derivatives, and constant c > 0. Then,

V ar(f̂(t;h1,n, h2,n)) = (V1 + V2 + V3)(nh2,n)−1(1 + o(1))

where

V1 = (h2,n)−1E
(
K2
t (X1)α

2(f(X1))
)

= α(f(t))f(t)(1 + o(1)),

V2 =
2

h1,nh2,n
E
[
Kt(X2)α(f(X2))M1K

(
X1 −X2

h1,n

)]
,

and

V3 =
1

h21,nh2,n
E
[
M1M2K

(
X1 −X3

h1,n

)
K

(
X2 −X3

h1,n

)]
. (16)

Proof.
Note that,

V ar(f̂(t;h1,n, h2,n)) = Ef̂2(t;h1,n, h2,n)− (Ef̂(t;h1,n, h2,n))2

of the true estimator (7), we start by calculating Ef̂2(t;h1,n, h2,n). It is obvious that

Ef̂2(t;h1,n, h2,n)

=
1

nh22,n
E
(
K2

(
t−X1

h2,n
α(f̂(X1;h1,n))

)
α2(f̂(X1;h1,n))

)
(17)

+
n− 1

nh22,n
E
(
K

(
t−X1

h2,n
α(f̂(X1;h1,n))

)
×α(f̂(X1;h1,n))K

(
t−X2

h2,n
α(f̂(X2;h1,n))

)
α(f̂(X2;h1,n))

)
. (18)
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The decompositions of α(f̂(X1;h1,n)) in (8) and K
(
t−X1
h2,n

α(f̂(X1;h1,n))
)

in (13) then
give:

(17) = (nh22,n)−1E
(
K2
t (X1)α

2(f(X1))(1 + δ(X1))
2
)

(19)

+ (nh22,n)−1E
(
L2
t,1(X1)α

2(f(X1))δ
2(X1)(1 + δ(X1))

2
)

(20)

+ (nh22,n)−1E
(
δ22(t,X1)α

2(f(X1))(1 + δ(X1))
2
)

+ 2(nh22,n)−1E
(
Kt(X1)α

2(f(X1))(1 + δ(X1))
2Lt,1(X1)δ(X1)

)
(21)

+ 2(nh22,n)−1E
(
Lt,1(X1)δ(X1)δ2(t,X1)α

2(f(X1))(1 + δ(X1))
2
)

+ 2(nh22,n)−1E
(
Kt(X1)δ2(t,X1)α

2(f(X1))(1 + δ(X1))
2
)
. (22)

By Proposition 1 of Nakarmi and Sang [9], we have (19) = V1(1+o(1))
nh2,n

= α(f(t))f(t)
nh2,n

(1 + o(1)).
Notice that each term in (20)-(22) has δ(·) or δ2(·). Then, they all have order o(n−1) if we
take h1,n = O(n−1/5) and h2,n = O(n−1/9) by the boundedness of K, L1, α(f) (due to the
boundedness of f ) and (11) and (15). For example,

(21) = O

(
U(h1,n)

nh22,n

)
= o(n−1).

Again, by applying the decompositions of α(f̂(X1;h1,n)) in (8) and K
(
t−Xi
h2,n

α(f̂(Xi;h1,n))
)

in (13), and noting that the expectation terms with coefficients − 1
nh22,n

and the terms with co-

efficients n
nh22,n

= 1
h22,n

along with quantities δ2(·)δ(·), δ2(·)δ(·) or δ2(·)δ2(·) are negligible

(comparing with O(nh2,n)−1) by the boundedness of K, L1, α(f) and (11) and (15), we get

(18) = (n− 1)(nh22,n)−1E [Kt(X1)Kt(X2)α(f(X1))α(f(X2))] (23)

+ h−22,nE [Lt(X1)Lt(X2)δ(X1)δ(X2)α(f(X1))α(f(X2))] (24)

+ 2h−22,nE [Kt(X1)α(f(X1))Lt(X2)δ(X2)α(f(X2))] (25)

+ 2h−22,nE
[
Kt(X1)α(f(X1))Lt,1(X2)δ

2(X2)α(f(X2))
]

(26)

+ 2h−22,nE [Kt(X1)α(f(X1))δ2(t,X2)α(f(X2))] + o((nh2,n)−1). (27)

On the other hand, by the boundedness of K, L1, α(f) and (11) and (15), the terms of the form
1

h2,n
E(·)E(·) have order o( 1

nh2,n
) if they include quantities δ2(·)δ(·), δ2(·)δ(·) or δ2(·)δ2(·).

Therefore,

(
E(f̂(t;h1,n, h2,n))

)2
= h−22,n {E [Kt(X1)α(f(X1))]}2 (28)

+ h−22,n [E (Lt(X1)δ(X1)α(f(X1)))]
2 (29)

+ 2h−22,nE[Kt(X1)α(f(X1)]E[Lt(X1)δ(X1)α(f(X1))] (30)

+ 2h−22,nE[Kt(X1)α(f(X1)]E[Lt,1(X1)δ
2(X1)α(f(X1))] (31)

+ 2h−22,nE[Kt(X1)α(f(X1))]E[δ2(t,X1)α(f(X1))] + o(nh2,n)−1. (32)
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By the above analysis, we shall study the difference between the terms (19), (23)-(27) and (28)-
(32).
The difference between (23) and (28)
The difference between (23) and (28) is n−1

[
E
(
(h2,n)−1Kt(X1)α(f(X1))

)]2
,which has order

O(n−1) by the bias formula of the ideal estimator.
The difference between (24) and (29)
Since L has bounded support and α(f(X)) is is bounded and bounded away from zero,

E|M1| ≤
∫
L

(
t− x
h2,n

α(f(x))

)
|α′(f(x))|f(x)dx = O(h2,n). (33)

Recall the decomposition of δ(t) in (12). (9), (10) and (33) give

h−12,nE (M1b(X1;h1,n)) = O(h21,n),

h−12,nE
(
M1[f̂(X1;h1,n)− f(t)]

)
= O(U(h1,n))

and
h−12,nE

(
M1α

′′(η)[f̂(X1;h1,n)− f(t)]2
)

= O(U2(h1,n)).

We first apply the decomposition (12) of δ(t), and use the above analysis. Then, by applying the
results from section 3.1 and 3.2 of Giné and Sang [4], we get the following,

(29) =
[
h−12,nE (M1D(X1;h1,n)) + h−12,nE (M1b(X1;h1,n))

]2
+O(U3(h1,n))

=
[
h−12,nE (M1b(X1;h1,n))

]2
+O

(
U3(h1,n) + h1,nn

−1 + n−2h−21,n

)
. (34)

On the other hand, by a similar analysis,

(24) = h−22,nE (M1M2[D(X1;h1,n) + b(X1;h1,n)][D(X2;h1,n) + b(X2;h1,n)]) +O(U3(h1,n))

:= Q1 +Q2 +Q3 +O(U3(h1,n)),

where

Q1 = h−22,nE(M1M2D(X1;h1,n)D(X2;h1,n))

Q2 = h−22,nE(M1M2D(X1;h1,n)b(X2;h1,n))

Q3 = h−22,nE(M1M2b(X1;h1,n)b(X2;h1,n)) = h−22,n[E(M1b(X1;h1,n))]2.
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We also denote Ni =
∫
K
(
Xi−u
h1,n

)
f(u)du, i = 1, 2. Then

Q1 =
1

n2h21,nh
2
2,n

E [M1M2(K(0)−N1)(K(0)−N2)] (35)

+
1

n2h21,nh
2
2,n

E
[
M1M2

(
K

(
X1 −X2

h1,n

)
−N1

)(
K

(
X2 −X1

h1,n

)
−N2

)]
(36)

+
2(n− 2)

n2h21,nh
2
2,n

E
[
M1M2

(
K

(
X1 −X2

h1,n

)
−N1

)(
K

(
X2 −X3

h1,n

)
−N2

)]
(37)

+
n− 2

n2h21,nh
2
2,n

E
[
M1M2

(
K

(
X1 −X3

h1,n

)
−N1

)(
K

(
X2 −X3

h1,n

)
−N2

)]
(38)

+
(n− 2)(n− 3)

n2h21,nh
2
2,n

E
[
M1M2

(
K

(
X1 −X3

h1,n

)
−N1

)(
K

(
X2 −X4

h1,n

)
−N2

)]
(39)

+
2

n2h21,nh
2
2,n

E
[
M1M2 (K(0)−N1)

(
K

(
X2 −X1

h1,n

)
−N2

)]
(40)

+
2(n− 2)

n2h21,nh
2
2,n

E
[
M1M2 (K(0)−N1)

(
K

(
X2 −X3

h1,n

)
−N2

)]
. (41)

It is easy to see that, (35), (36), (40)= O(n−2h−21,n) by applying (33).
Since

E
(
K

(
X2 −X3

h1,n

)
|X2

)
=

∫
K

(
X2 − u
h1,n

)
f(u)du = N2, (42)

(37)= 0. Similarly, (39) = (41) = 0.
From (3.37) of Giné and Sang [4], we have V3 = O(1). Also it is easy to see that E(M1N1) =

O(h1,nh2,n). Hence

(38) =
n− 2

n2h21,nh
2
2,n

E
[
M1M2K

(
X1 −X3

h1,n

)
K

(
X2 −X3

h1,n

)]
− n− 2

n2h21,nh
2
2,n

[E(M1N1)]
2 =

V3
nh2,n

+O(n−1)
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and Q1 = V3
nh2,n

+O(n−1).

Q2 =
2

h22,n
E (M1M2D(X1;h1,n)b(X2;h1,n))

=
2

nh21,nh
2
2,n

E
(
M1M2

[
K

(
X1 −X2

h1,n

)
−N1

] [∫
K

(
X2 − v
h1,n

)
(f(v)− f(X2))dv

])
(43)

+
2(n− 2)

nh21,nh
2
2,n

E
(
M1M2

[
K

(
X1 −X3

h1,n

)
−N1

] [∫
K

(
X2 − v
h1,n

)
(f(v)− f(X2))dv

])
(44)

+
2

nh21,nh
2
2,n

E
(
M1M2 [K(0)−N1]

[∫
K

(
X2 − v
h1,n

)
(f(v)− f(X2))dv

])
. (45)

Under the condition that f(x) has bounded second order continuous derivative,∫
K

(
X2 − v
h1,n

)
(f(v)− f(X2))dv = O(h31,n).

Thus, by the boundedness of K and N1 and (33),

(43) = O(h1,nn
−1) = (45).

(44) = 0 since

E
(
K

(
X1 −X3

h1,n

)
|X1

)
=

∫
K

(
X2 − u
h1,n

)
f(u)du = N1.

Therefore, Q2 = O(h1,nn
−1). Notice that the first quantity in (34) is same as Q3. Hence

(24)− (29) = V3(nh2,n)−1 +O(n−1).

The difference between (26) and (31)
Next we denote A(x) = Kt(x)α(f(x)) and Lt,2(x) = Lt,1(x)α

′2(f(x))
α(f(x)) . Then (10) and the

decomposition of δ(t) in (12) give

(26) =2h−22,nE
[
A(X1)Lt,2(X2)(D(X2;h1,n) + b(X2;h1,n))2

]
+O(U3(h1,n))

=2h−22,nE
[
A(X1)Lt,2(X2)D

2(X2;h1,n)
]

(46)

+4h−22,nE [A(X1)Lt,2(X2)D(X2;h1,n)b(X2;h1,n)] (47)

+2h−22,nE
[
A(X1)Lt,2(X2)b

2(X2;h1,n)
]

+O(U3(h1,n)) (48)

(46) =
2

n2h21,nh
2
2,n

E

[
A(X1)Lt,2(X2)

n∑
i=1

[
K

(
X2 −Xi

h1,n

)
−N2

]2]
(49)

+
4

n2h21,nh
2
2,n

E

A(X1)Lt,2(X2)
∑

1≤i<j≤n

[
K

(
X2 −Xi

h1,n

)
−N2

] [
K

(
X2 −Xj

h1,n

)
−N2

]
(50)
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By independence and a similar argument as in (33), we have

(49) =
2

n2h21,nh
2
2,n

E
[
A(X1)Lt,2(X2) [K(0)−N2]

2
]

+
2

n2h21,nh
2
2,n

E

[
A(X1)Lt,2(X2)

[
K

(
X2 −X1

h1,n

)
−N2

]2]

+
2(n− 2)

n2h21,nh
2
2,n

E

[
A(X1)Lt,2(X2)

[
K

(
X2 −X3

h1,n

)
−N2

]2]
(51)

=O(nh1,n)−2 + (51)

and

(50) =
4

n2h21,nh
2
2,n

E
[
A(X1)Lt,2(X2)

[
K

(
X2 −X1

h1,n

)
−N2

]
[K(0)−N2]

]
+

4(n− 2)

n2h21,nh
2
2,n

E
[
A(X1)Lt,2(X2)

[
K

(
X2 −X1

h1,n

)
−N2

] [
K

(
X2 −X3

h1,n

)
−N2

]]
(52)

+
4(n− 2)

n2h21,nh
2
2,n

E
[
A(X1)Lt,2(X2) [K(0)−N2]

[
K

(
X2 −X3

h1,n

)
−N2

]]
(53)

=O(nh1,n)−2.

The last two terms (52) and (53) are zeroes by the argument (42). Now we decompose the term
(31). Again, by (10) and the decomposition of δ(t) in (12),

(31) =2h−22,nE[A(X1)]E
[
Lt,2(X2)(D(X2;h1,n) + b(X2;h1,n))2

]
+O(U3(h1,n))

=2h−22,nE[A(X1)]E
[
Lt,2(X2)D

2(X2;h1,n)
]

(54)

+4h−22,nE[A(X1)]E [Lt,2(X2)(D(X2;h1,n)b(X2;h1,n))] (55)

+2h−22,nE[A(X1)]E
[
Lt,2(X2)b

2(X2;h1,n)
]

+O(U3(h1,n)). (56)

(54) =
2

n2h21,nh
2
2,n

EA(X1)E

[
Lt,2(X2)

n∑
i=1

[
K

(
X2 −Xi

h1,n

)
−N2

]2]
(57)

+
4

n2h21,nh
2
2,n

EA(X1)E

Lt,2(X2)
∑

1≤i<j≤n

[
K

(
X2 −Xi

h1,n

)
−N2

] [
K

(
X2 −Xj

h1,n

)
−N2

]
(58)
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By a similar argument as in (33), we have

(57) =
2

n2h21,nh
2
2,n

E[A(X1)]E
[
Lt,2(X2) [K(0)−N2]

2
]

+
2

n2h21,nh
2
2,n

E[A(X1)]E

[
Lt,2(X2)

[
K

(
X2 −X1

h1,n

)
−N2

]2]

+
2(n− 2)

n2h21,nh
2
2,n

E[A(X1)]E

[
Lt,2(X2)

[
K

(
X2 −X3

h1,n

)
−N2

]2]
(59)

=O(n−2h−21,n) + (59)

and

(58) =
4

n2h21,nh
2
2,n

E[A(X1)]E
[
Lt,2(X2)

[
K

(
X2 −X1

h1,n

)
−N2

]
[K(0)−N2]

]
+

4(n− 2)

n2h21,nh
2
2,n

E[A(X1)]E
[
Lt,2(X2)

[
K

(
X2 −X1

h1,n

)
−N2

] [
K

(
X2 −X3

h1,n

)
−N2

]]
(60)

+
4(n− 2)

n2h21,nh
2
2,n

E[A(X1)]E
[
Lt,2(X2) [K(0)−N2]

[
K

(
X2 −X3

h1,n

)
−N2

]]
(61)

=O(n−2h−21,n).

The last two terms (60) and (61) are zeroes by the argument (42). By similar explanation as Q2,
(55) = O(h1,nn

−1) = (47). Also notice that (48)=(56) and (51)=(59). Therefore, we get,

(26)− (31) = o
(
n−1

)
.

The difference between (27) and (32)
To study the difference between (27) and (32), by Proposition 2 of Giné and Sang [4], for the
ideal estimator (2), we have

||f̄(t;h2,n)− E(f̄(t;h2,n))||∞ =

√
log n

nh2,n
.

Therefore,

||Kt(X2)α(f(X2))− E (Kt(X2)α(X2)) ||∞ = h2,n

√
log n

nh2,n
.
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Hence, we have the following for the difference between (27) and (32).

(27)− (32) =2h−22,nE [Kt(X2)α(f(X2))α(f(X1))δ2(t,X1)]

−2h−22,nE [Kt(X2)α(f(X2))]E [α(f(X1))δ2(t,X1)]

=2h−22,nE{E [Kt(X2)α(f(X2))α(f(X1))δ2(t,X1)|X2]}
−2h−22,nE [Kt(X2)α(f(X2))]E{E [α(f(X1))δ2(t,X1)|X2]}
=2h−22,nE{(Kt(X2)α(f(X2))− E [Kt(X2)α(f(X2))])E [α(f(X1))δ2(t,X1)|X2]}

≤ 2

h2,n

√
log n

nh2,n
sup
t,x∈R

|δ2(t, x)|

=

√
log n

nh32,n
O

(h21,n +

√
log n

nh1,n

)2
 = o(n−1).

The difference between (25) and (30)
We shall apply the decomposition of δ(t) as in (12). The difference between (25) and (30) with
the second part of (12) has order o(n−1) as the analysis in the difference between (27) and (32).
Therefore

(25)− (30) =2h−22,nE [Kt(X2)α(f(X2))M1(D(X1;h1,n) + b(X1;h1,n))]

−2h−22,nE [Kt(X2)α(X2)]E [M1(D(X1;h1,n) + b(X1;h1,n))] + o(n−1)

=2h−22,nE [Kt(X2)α(f(X2))M1D(X1;h1,n)]

−2h−22,nE [Kt(X2)α(X2)]E [M1D(X1;h1,n)] + o(n−1)

=
2

nh1,nh22,n
E
[
Kt(X2)α(f(X2))M1

(
K

(
X1 −X2

h1,n

)
−N1

)]
(62)

− 2

nh1,nh22,n
E [Kt(X2)α(X2)]E

[
M1

(
K

(
X1 −X2

h1,n

)
−N1

)]
+ o(n−1)

(63)

=
2

nh1,nh22,n
E
[
Kt(X2)α(f(X2))M1K

(
X1 −X2

h1,n

)]
(64)

− 2

nh1,nh22,n
E [Kt(X2)α(f(X2))]E(M1N1) + o(n−1). (65)

We have the equality (62) by the independence. The term (63) is zero.
Since K,Lα′ and f are bounded functions and K(v) has bounded support, we have

|V2| =
2

h1,nh2,n

∣∣∣∣E [Kt(X2)α(f(X2))

∫
Lt(u)α′(f(u))K

(
u−X2

h1,n

)
f(u)du

]∣∣∣∣
=

2

h2,n

∣∣∣∣E [Kt(X2)α(f(X2))

∫
Lt(X2 + h1,nv)α′(f(X2 + h1,nv))K(v)f(X2 + h1,nv)dv

]∣∣∣∣
≤ C

h2,n
E [Kt(X2)α(f(X2))] = O (1) (66)
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and (64) = O(nh2,n)−1. On the other hand,

E [Kt(X2)α(f(X2))] = O(h2,n)

and

E(M1N1) =

∫
Lt(u)α′(f(u))f(u)

∫
K

(
u− v
h1,n

)
f(v)dvdu

=h1,n

∫
Lt(u)α′(f(u))f(u)

∫
K(w)f(u− h1,nw)dwdu

=O(h1,nh2,n)

since the function α(f) in Lt is bounded below and above. Therefore in (65),

2

nh1,nh22,n
E [Kt(X2)α(f(X2))]E(M1N1) = O(n−1). (67)

Hence (66) and (67) give us

(25)− (30) = V2(nh2,n)−1 +O(n−1).

Thus,
V ar(f̂(t;h1,n, h2,n)) = (V1 + V2 + V3)(nh2,n)−1(1 + o(1)).

4. Optimal bandwidth selection

Denote zn =
(
w − h1,nv

h2,n

)
α(f(h1,nv + t − h2,nw)). Then limn→∞ zn = wα(f(t)) since

h1,n/h2,n → 0. In the following we change variables twice, then take limit by applying the
compact support of K and the boundedness below and above of the function α.

V2 =
2

h1,nh2,n
E
[
Kt(X2)α(f(X2))

∫
M(u)K

(
u−X2

h1,n

)
f(u)du

]
= 2

∫
K (wα(f(t− h2,nw)))α(f(t− h2,nw))f(t− h2,nw)

×
∫ T

−T
L(zn)α′(f(h1,nv + t− h2,nw))K(v)f(h1,nv + t− h2,nw)dvdw

n→∞−−−→ 2

∫
K(wα(f(t)))α(f(t))f(t)

∫ T

−T
L (wα(f(t)))

× α′(f(t))K(v)f(t)dvdw

= 2α′(f(t))f2(t)

∫
K(y)L(y)dy

= α′(f(t))f2(t)µ0 := V ′2 .
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For the quantity V3, let x3 = x1 − h1,ns, x1 = x2 − h1,nw and x2 = t − h2,nz be the change
of variables. Again, since h1,n/h2,n → 0, L has compact support and the function α is bounded
below and above,

(16) =
1

h21,nh2,n

∫ ∫ ∫
Lt(x1)α

′(f(x1))f(x1)Lt(x2)α
′(f(x2))f(x2)

×K
(
x1 − x3
h1,n

)
K

(
x2 − x3
h1,n

)
f(x3)dx3dx1dx2

=

∫ ∫ ∫
L

((
z +

wh1,n
h2,n

)
α(f(t− h2,nz − h1,nw))

)
α′(f(t− h2,nz − h1,nw))

× f(t− h2,nz − h1,nw)L(zα(f(t− h2,nz))K(w + s)α′(f(t− h2,nz))f(t− h2,nz)
× f(t− h2,nz − h1,nw − h1,ns)K(s)dwdzds

n→∞−−−→ f3(t)α′2(f(t))

∫ ∫ ∫
L2(zα(f(t)))K(s)K(w + s)dwdzds

= f3(t)α′2(f(t))

∫
L2(zα(f(t)))dz

= f3(t)
α′2(f(t))

α(f(t))

∫
L2(y)dy := V ′3 .

Theorem 2 Suppose f is a density in C4(R) and p is a clipping function in C5(R). Then the
integrated mean squared error on Dr is

R(h1,n, h2,n)|Dr =

∫
Dr

(
τ4D4(1/f)

24

)2

h82,ndt+

∫
Dr

V1 + V2 + V3
nh2,n

dt+ o(h82,n). (68)

Furthermore, the optimal bandwidth h2,n is given by

h∗(2,n) =

[
576(V1 + V ′2 + V ′3)

nτ24 (D4(1/f))2

]1/9
.

Proof. The bias in the integrated MSE (68) is from Corollary 1 in Giné and Sang [4]. The
variance is dominated by V1+V2+V3

nh2,n
. They are from the analysis of (19), the differences between

(23)-(27) and (28)-(32) respectively.
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