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Abstract 
Phase IV clinical trials are designed to monitor the long-term toxic effects of drugs in 
cancer survivors. Evaluations to study the long-term effects of the cancer treatment are 
often made in cross-sectional surveys. In addition to finding prognostic factors for log-
term survival outcome, estimating the cumulative incidence rates of adverse outcomes is 
also desired. Such data pose many issues: incomplete data, competing risks and selection 
bias. For example, one such study was designed to study the effect of anthracyclines 
exposure, received as part of treatment for childhood cancer, to cardiotoxicity.1 In this 
paper, we resort to imputing the missing current status using regression method, under 
some parametric assumptions, and then combining with methods previously described in 
Rai et al.2 to estimate the cumulative incidence rates in an illness-death/failure model. A 
comprehensive simulation study suggests that the results obtained using the imputation 
approach is significantly more efficient than those obtained without imputation. We 
further apply the proposed approach to the data reported in Rai et al.2 and compare the 
results reported there to our approach that utilizes imputation.  
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1. Introduction 

Recent advance for treatment of childhood cancer through clinical studies has 
benefited patients and has significantly improved their long term survival. However, in 
addition to monitoring improved survival the focus of phase IV clinical trials is also to 
monitor for long-term side effects of primary treatment of cancer. For example, 
anthracyclines remain a critical component of the treatment for many pediatric 
malignancies because of their favorable therapeutic benefits1,3-4. However, it is well-
known that one of the long-term complications of the treatment with anthracyclines is the 
increased risk of cardiotoxicity. There are different types of drug toxicity, such as 
cytotoxicity, carcinogenicity, mutagenicity, teratogenicity and cardiotoxicity. Just as 
drugs come in many varieties and with varying beneficial effects, there are various ways 
in which they can cause potentially life threatening toxicities. It is not just the drug itself 
that causes the toxicity, but a breakdown product which remains active and has unwanted 
effects. There are even more complex situations, such as in the case of thalidomide, 
where the drug taken is broken down by the body into two components, one of which acts 
to reduce morning sickness for pregnant women, while the other causes malformation of 
the fetus. 

Cardiotoxicity is the occurrence of heart electrophysiology dysfunction or/and 
muscle damage. The heart becomes weaker and is not as efficient in pumping and 
therefore circulating blood. There are many measures of electrophysiology dysfunction 
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or/and muscle damage, including shortening fraction, afterload, QTc interval, ejection 
fraction. It is not economic and feasible to evaluate patients very frequently to estimate 
the onset time of cardiotoxicity, and hence estimate the incidence rates. Usually patients 
are followed longitudinally in the clinics, but not all follow a routine pattern. Therefore, it 
is convenient to design cross-sectional surveys for estimating the effect of long-term side 
effect of treatments and its predictors. We only know the current status of the patient with 
onset prior to current status but not the actual onset times of these events. These types of 
incomplete data are referred to as interval censored data since the actual onset time of the 
events are unknown2-3 and our interest is in estimating the onset rate or the cumulative 
incidence rate.  

Nonparametric procedures for analyzing interval censored failure time data have 
been extensively studied and discussed in the literature.5-9 Another issue in the cross-
section survey study is that results need to be generalized to the specific population. 
There can be competing toxic effects from the same drug. Sun9 provides an extensive 
survey of non-parametric methods of estimation using EM algorithm in studies involving 
interval censored data. In this paper, we have the same interest, as Rai, et al.2, in 
estimating the cumulative incidence rates in a parametric setting but focus on improving 
the accuracy by imputing the missing observations using multivariable regression 
method.   

In application, most investigators exclude observations with missing values, 
incomplete cases. While using only complete cases has its simplicity, one may lose the 
important information in the incomplete cases and ignore the possible systematic 
difference between the complete and incomplete cases. Hence, the resulting inference 
may not be applicable to the population of all cases, especially with a smaller number of 
complete cases. It is well known that imputation is a widely used method for handling 
missing data. Little and Rubin10 provide an excellent overview of the methods for 
conducting analyses with missing data. For further information on multiple imputations 
in particular, see Rubin.11-12 Rubin, Stern, and Vehovar13 give a simple example about 
discrete data. King et al.14 review many of the practical costs and benefits of multiple 
imputations. For routine imputation of missing data, Schafer15 presents a method for the 
multivariate normal distribution. Liu16 uses the t  distribution, and Van Buuren, 
Boshuizen, and Knook17 use interlocking regressions. Abayomi, Gelman, and Levy18 
discuss problems for fitting imputation models. Furthermore, Troxel, Ma, and Heitjan19 
present a method to study the sensitivity of inferences to missing-data assumptions. 

This paper is organized as follows. In Section 2, we give a motivational example 
to introduce the problem. In Section 3, we give a brief description of the procedure 
introduced in Rai, et al.2 and construct corresponding likelihood function. The data from 
the motivation example is analyzed by imputing the missing values and compared with 
the results obtained without imputation in Section 4. The results of an extensive 
simulation experiment to study the performance of the imputation approach are 
summarized in Section 5. Section 6 is devoted to conclusions and miscellaneous remarks. 
Appendix can be found in Section 7. 

 
2. Motivation Example 

Study participants were recruited from the population of a long-term follow-up clinic that 
monitors childhood cancer survivors on an annual basis.  Enrollment targeted five 
diagnostic groups treated with cardiotoxic antineoplastic agents: acute leukemia, a group 
receiving low cumulative dosages of anthracycline (100 mg/m2); mediastinal lymphoma, 
a group with potential cardiovascular injury from anthracyclines and/or thoracic 
irradiation; sarcoma, a group receiving relatively high cumulative dosages of 
anthracyclines (300 to 500 mg/m2); and neuroblastoma, a group with cardiac immaturity 
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at anthracycline administration. A control survivor group was also recruited (acute 
lymphoblastic leukemia, Wilms’ tumor, and germ cell tumors) that was not exposed to 
anthracyclines or thoracic irradiation. Survivors with a history of congenital heart 
disease, chronic systemic illness requiring ongoing medical treatment, trisomy 21, and 
anemia (hematocrit < 28%) were excluded from participation. Consecutive patients 
meeting the eligibility criteria were identified and invited to participate. Enrollment was 
closed for the specific diagnostic groups after reaching the protocol-specified targeted 
accrual yielding a convenience cohort of study participants.  Survivors were designated 
At Risk (AR) or No Risk (NR) based on treatment with potentially cardiotoxic agents.  

The study methods involved a one-time clinical cardiac assessment by the 
primary oncologist to evaluate for signs of heart failure and assignment to the New York 
Heart Association class. Noninvasive cardiac testing was performed within 24 hours of 
the clinical assessment and included 12-lead ECG and echocardiography.    

Cardiotoxicity is the occurrence of heart electrophysiology dysfunction or/and 
muscle damage. The heart becomes weaker and is not as efficient in pumping and 
therefore circulating blood. There are many measures of electrophysiology dysfunction 
or/and muscle damage, including shortening fraction, afterload, QTc interval, ejection 
fraction.1, 4, 20 When these cardiac measures are out of the normal range, patients are 
declared to have cardiotoxicity. Following Hudson et al.1, we consider two outcome 
measures, fractional shortening (FS) and afterload (AF). The main measure is defined as 
FS= (LVEdD-LVEsD)/LVEdD, where LVEdD is the left ventricular end-diastolic 
diameter, LVEsD is the left ventricular end-systolic diameter. The other measure AF can 
be described as the pressure that the chamber of the heart has to generate in order to eject 
blood out of the chamber. The study was planned to enroll almost equal number of 
patients from each group to detect a medium effect size21 increase in mean AF (or 
decrease in mean FS) at  =0.05 and  =0.20, without adjusting for multiple outcomes 
or multiple comparisons.  

A short summary about the cohort is summarized in Table 1. Further description 
is available in Hudson et al.1. The scatter plot between AF and FS displayed in Figure 1 
does not show any clear missing pattern; the missing values of AF are in the entire range 
of values of FS. Also note that the missing values of AF are almost same proportions in 
the NR and AR groups.  

Using actual measures of these dependent variables FS and AF, the threshold 
values were used to classify patients as abnormal if (FS< 0.28) or (AF> 74 g/cm2). 
Threshold values for FS and AF were determined based on published normative data25-26; 
these are well accepted norms.  Let AFS and AAF denote the indicators of these 
abnormalities. The 278 patients participated in the study, representing 22% of the clinic 
population of 1,268 patients; 223 were designated AR and 55 were designated NR based 
on treatment. Data on each individual also included demographics, date of cancer 
diagnosis, time since treatment completion, disease related variables (such as type, 
histology, and stage of cancer), treatment related variables (such as chemotherapy drugs, 
doses and irradiation). In the AR group, noninvasive assessment identified subclinical 
dysfunction with FS in 37 (13.6%) of 272 and AF in 33 (13.9%) of 238; prolonged QTc 
interval in 11 (4.0%) of 273. These are the estimates of prevalence of cardiac 
abnormalities. Among others, one main objective of the study is to estimate cumulative 
incidence rates of AFS and AAF.  

In this study echocardiography was performed as a research measure and not in 
response to clinical symptoms. Individuals with previously established cardiac disease 
were excluded from participation.  As formally assessed by New York Heart Association 
class, none of the study participants reported clinical symptoms of cardiac dysfunction at 
enrollment. The imaging quality in echocardiography is dependent on obtaining a clear 
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acoustic window from which ventricular volumes are estimated based on geometric 
assumptions.  Operator experience and variations in thoracic structures can contribute to 
difficulties in obtaining technically satisfactory data in a given study.  These factors 
randomly contributed to missing data among study participants.  AF is not a standardly 
used assessment in clinical practice, thus, despite training of ultrasonographers for this 
study, this factor may have contributed to a higher prevalence of missing AF 
measurements compared to FS. Thus, we feel that there is no selection bias related to 
those with and without abnormal FS and AF identified as part of the study. The missing 
values of AF are displayed in Figure 1, which does not show any pattern.  

 
Table 1. Characteristics of 278 Patients Enrolled Onto the Noninvasive Cardiac 

Study 

 
At-Risk Group 

 (n=223) 
No-Risk Group 

 (n=55) 
Total 

 (n=278) 
Demographics N % N % N % 
Sex       

 Male 108 51.6 31 56.4 139 50 

 Female 115 48.4 24 43.6 139 50 

Treatment group       

 Anthracycline 157 70.4 0 0 157 56.5 

 Anthracycline + Radiation 60 26.9 0 0 60 21.6 

 Radiation 6 2.7 0 0 6 2.1 

 None 0 0 55 100 55 19.8 

Race/ethnicity       

 White 183 82.1 44 8.0 227 81.7 

 Black 30 13.5 11 2.0 41 14.7 

 Other 10 4.4 0 0 10 3.6 

Diagnosis       

 Leukemia 67 30.0 10 18.2 77 27.7 

 Sarcomas 60 26.9 14 25.4 74 26.6 

 Lymphoma 54 34.2 2 3.6 56 20.1 

 Embryonal tumors 42 18.8 29 52.7 71 25.6 

Age at Cancer Diagnosis, Yrs    

 N 223 55 278 

 Mean 7.37 5.77 7.05 

 Median 5.46 3.11 4.68 

 Range 0.01-23.56 0.29-20.06 0.01-23.56 

Afterload    

 N 191 47 238 

 Mean 57.50 45.73 55.18 

 Median 55.43 42.18 51.88 

 Range 15.38-147.32 25.66-95.02 15.38-147.32 

Fractional Shortening    

 N 218 54 272 

 Mean 0.33 0.36 0.34 

 Median 0.33 0.36 0.34 

Range 0.20-0.57 0.24-0.49 0.20-0.57 
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A crude approach to estimating the incidence rates and obtaining confidence 
intervals is to apply the Kaplan-Meier estimator with the assumption of the follow-up as 
the onset time. Then, incidence rate of each type of toxicity is estimated. Some of these 
toxicity measures are missing. In this paper, we impute the missing measurements using 
regression method first and then use a parametric approach to estimate incidence rates of 
specific toxicity. For the cardiotoxicity data in the motivation example, there are 40 
missing AF values out of 278 (14%), and 6 (2%) of which missing both AF and FS. The 
34 missing AF values are imputed using a multivariable regression about FS and other 
covariates, such as age and race. The estimates of cumulative incidence rates were 
derived based on the data after imputation and then compared with those derived in Rai, 
et al.2 without imputation.  

 
Figure 1: Scatter plot between AF and FS within AR and NR group of patients. Complete 
data (leveled c) displays strong correlation between AF and FS. Missing values of AF are 
in almost entire range of FS values (leveled m). 

 
3.  Cardio-Measures Abnormality and Imputation Model 

In Hudson et al.,1 the subjects who died or had cardiac failure during the treatment or 
during the follow-up after completion of therapy were excluded; however, this 
information is available from the medical record abstraction. Hence, we present the 
general theory here for a cross-sectional data with indicators of cardiac abnormality and 
death/cardiac failure, and time since the treatment to the survey or the death/cardiac 
failure, as depicted in Figure 2. We also assume cardiac abnormality is the precursor for 
cardiac failure. 
3.1  Abnormality Model 
Let stochastic process )}({ tX identify the state occupied by a patient at time t . For 

simplicity, we suppose that n  patients in state 1  at time 0t are those who are 
identified with different disease groups and are planned for treatment, where we have 
assumed that no patient has cardiac abnormality at time 0t . Let the random variable 
T  denote the observation time (survey, death/cardiac failure) from the study evaluation 
and U  the time of AFS or AAF from the study evaluation. Thus, at any time t , 

2)( ,1)(  tXtX  and 3)( tX  indicate the patient alive with normal cardiac 
measure, alive with abnormal cardiac measure and died or had cardiac failure with or 
without cardiac abnormality, respectively. We also assume that the development of 
abnormality is an irreversible event without the treatment for cardiotoxicity, and therefore 
transitions from state 2  to state 1 do not occur, as illustrated in Figure 2. According to 
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practice in this study, the patients are chosen for survey independent of their health status, 
which ensures that the survey results can be regarded as independent of the times of the 
events of interest. The intensities )|( and )( , )( 321 uttu  , shown in Figure 2, are 

corresponding transitions rates, where t  is the observation time and u  is the time of AAF 
or AFS. 

The survival function and the cardiac abnormality prevalence function are 
derived in Rai et al. 2 as follows 

,
)(

)|()()(
)(   and   )|()()()()( 0 31

0 31 tS

duutQuQu
tduutQuQutQtS

t

t 
 


  

where  

})(exp{)(
0
t

ii dvvtQ   

for 1i and 2 , and  

}.)|(exp{)|( 33 
t

u
dvuvutQ 

 
are pseudo-survival functions corresponding to the intensities )( , )( 21 tu  )|( and 3 ut
and )()()( 21 tQtQtQ   is the probability that the time to the first event— alive with 

abnormal value or death with normal value — exceeds t .  

We are interested in estimating ,)()(
0 11 
t

duut   the cumulative incidence 

function (CIF), but focus on the comparison between CIFs based on the original data and 
imputation data. 

Table 2 identifies the various types of observations which occur in this illness-
death/failure model and the corresponding contribution to the likelihood, denoted as 

)(1 tL  to )(4 tL , which are functionals of intensities and pseudo-survival functions. Rai et 

al.2 derive the explicit form of )(1 tL  to )(4 tL for both constant and piecewise 
Exponential model and the likelihood functions, which are summarized in appendix.  
3.2  Imputation Model 
Let the cardiac measure, such as FS or AF, be denoted by Y. Assume that TYYY ),( 21  

be a 1n  response vector with )1( 11 nY  observed and  )1( 22 nY  missed, and 
TXXX ),( 21  be corresponding pn matrix comprised of covariates including other 

cardiac measures (other response variables). A multivariable regression model 
  xy  is fitted based on the complete data  1Y and 1X , and the least squared 

estimator ̂  of )1( p  is derived; then the missing information in 2Y  is imputed as

̂ˆ
22 XY  , assuming no covariate information missing.  It is natural to use the 

imputation data TYY )ˆ,( 21 instead of only  1Y and is anticipated that the imputed 

information in 2̂Y will improve the related results in statistical analysis. 
 

4.  Application: Cancer Survivor Study 
In this section we obtain the imputed data for the cardiotoxicity example and then 

apply the theory for the Exponential model described in appendix to evaluate the effect of 
anthracyclines on cardiotoxicity. Furthermore, the results obtained using the imputation 
approach are then compared with those obtained without imputation and reported in Rai 
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et al.2, under the assumption of  no deaths/cardiac failures. The Simplest model is the 
Parametric-1, which is one parameter Exponential model. Since there are very few events 
before 5 years and after 10 years, we also fit two piecewise Exponential models based on 
two incidence rates one up-to year five and the second for year 5 and above, and three 
incidence rates one up-to year 5, second between years 5 and 10 and the last one for year 
10 and above, denoted as Parametric-2 and Parametric-3 for models with two and three 
incidence rates (see Figure 3).  

Table 2: Likelihood Contributions for Anthracycline Cardiac Toxicity Study 
Observation Type Outcome Likelihood Contribution 

Death with No Cardiac 
Abnormality 

1)(,  tXtT )()()( 21 tQttL   

Alive with No Cardiac 
Abnormality 

1)(,  tXtT )()(2 tQtL   

Death/Cardiac Failure 
with Cardiac Abnormality 2)(,  tXtT 

t
duutQutuQutL

0 3313 )|()|()()()( 

Alive with Cardiac 
Abnormality 

2)(,  tXtT 
t

duutQuQutL
0 314 )|()()()(   

  
Figure 2: An abnormal cardiac measure-death/cardiac Failure model involving three 
states. State 1 corresponds to patients who are alive with normal value. Patients who are 
alive with abnormal value are in state 2. State 3 is an absorbing state and corresponds to 
death or Cardiac Failure. 
 

In the cardiotoxicity example, there are 34 measurements missing for AF and 6 
were missing in both measurements, but no covariate information missing. Hence, we 
employ the multivariable regression method to estimate the 34 missing measurements in 
AF based on the values of FS and corresponding covariates, like age at diagnosis, race, 
gender, BMI, QTC, diagnosis group and risk group (AR/NR) 22-23 . Based on 4 diagnosis 
groups, Leukemia (n=77), Sarcoma (n=74), Lymphoma (n=56) and Embryonal (n=71), 
we define three dummy variables as follows: 






Otherwise,0

Leukemia1
Diag1    






Otherwise,0

  Sarcoma1
Diag2   and 






Otherwise.0

Lymphoma1
Diag3  

Before conducting the regression analysis,   the Shapiro-Wilk test of normality 
was applied to original AF and FS measurements and a few commonly used 
transformations for making the underlying distributions of AF and FS more normal. 
Log(AF) was better behaved normally distributed (p=0.701) than original AF (p<0.001). 
On the other hand, Log(FS), Logit(FS) and FS were not normally distributed with p 

1 2 

 

3 

)(2 t )|(3 ut

  
)(1 u

Dead/ Cardiac Failure 

Alive with 
No Cardiac Abnormality 

Alive with 
Cardiac Abnormality 
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values <0.001, 0.007 and 0.026, respectively. This suggests fitting the regression model 
using logarithm transformation of AF and original FS. The significant predictors with 
coefficients, their p-values and 2R  in the model are presented in Table 3a. That is, 

 
,BMI 010.02Diag 098.0Risk 081.0-Age 008.0891.3437.5)log(  FSAF

 
where Risk=1 for patient in AR group and 0 in NR group. Based on the regression model, 
the values of FS and the covariates, the 34 missing AF values are imputed. Thus, after 
imputing the missing values the total sample size is 172.  

Then, the methods described in Appendix were applied to the imputed data sets 
for each group, AR and NR, and both groups combined. Then, based on the likelihood 
ratio test, the corresponding p-value for group effect for the variable AF is 0.015. On the 
other hand, the p-value without imputation is 0.0202. It is obvious that the results with 
imputation are a little more sensitive for the group effect in AF compared to that without 
imputation. Note that without using the threshold model and no imputation the group 
effects was only marginally significant (p=0.065)1-2, which led to better understanding of 
this data and developing these methods. A summary of the results is given in Table 3b. 

The cumulative incidence function (CIF) was derived for exponential and 
piecewise exponential models for the imputed data and were compared to those based on 
the original data (without imputation). The standard error (SE) of the estimates of CIF 
were computed using bootstrap approach (bootstrap size B=5000) for each case. The 
cumulative incidences and standard errors are presented in Table 4 for AF.  The relative 

gain in efficiency due to imputation was obtained as 100
ˆ

ˆˆ
2

22





N

YNRE



, where Y̂  

and N̂  are the standard errors of cumulative incidences corresponding to imputed and 

non-imputed data.  We also present the cumulative incidences in Figure 4 (left panel for 
Parametric-1, the middle one for Parametric-2 and right panel for Parametric-3) for AF. 
From Table 4, it is clear that the RE is greater than 20%, which implies that the 
imputation approach is consistently more efficient. It is also seen that the standard error 
with imputation approach is consistently smaller than those without imputation, which 
indicates that the confidence intervals of CIF after imputing the missing values are 
narrower than those without imputation, that is, the estimate based on the imputation data 
is more accurate compared to that based on the original data.  

 
Figure 3: Piecewise Incidence Rate  
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5.  Simulation Study 
A limited simulation experiment was conducted to study the performance of using 
imputation for AF in Anthracycline Cardiac Toxicity data here. Firstly, we compute the 
CIFs and their standard errors for AF based on the original data, including complete 
observations only (n=238). Then we randomly select to delete 10%, 15% or 20% from 
the 238 observations and calculate the CIFs and their standard errors based on the data 
after deletion. Finally, we impute these deleted observations as if we do not know these 
values, using the multivariable regression method, and compute the CIFs and standard 
errors based on imputation data. All estimates are derived using bootstrap method for 

B=5000. The relative efficiencies are also calculated as follows: 100
ˆ

ˆˆ
2
2

2
1

2
2

1 






RE  

and 100
ˆ

ˆˆ
2
3

2
2

2
3

2 






RE , 1̂ , 2̂  and 3̂  are the standard errors of cumulative 

incidences corresponding to the method based on the complete data, with imputing and 
without imputation after deletion. All results are provided in Table 5. It is seen that all 

%21 RE  and all 2RE  are between 10% and 20%. The small values of 1RE   imply 
that we can almost make-up all missing information using imputation method compared 
to the complete data set, and  the relative larger values of 2RE  indicate that there will be 
a big loss if we do not impute the missing values.   
 

6.  Discussion 
In this paper, we employed a well-established methodology in illness-death/Failure 
model2 and imputed the missing observations for a phase IV clinical trial study as an 
example. Although, we assumed a very simple parametric model, it is straightforward to 
expand to other parametric or semi-parametric models. From a clinician’s point of view 
the simple approaches such as log rank test and KM survival curves24 are most commonly 
used and understood. Using the similar logic, our approach is simple and still robust as 
displayed by the data analyses and simulation for estimating fixed-term cumulative 
incidence function without imputation2 or with imputation proposed here.  

When studying the long-term effects of treatment, there can be multiple 
unwanted events identified at the time of observation. Some of these events can be 
competing and others are not correlated. This leads to multivariate time-to-event data. 
One simple approach is to study the incidence of first event and then incidence of specific 
event. In our example, cardiotoxicity measures included abnormal AF and FS but there 
are some other measures to evaluate cardiotoxicity. For some reason, not all patients had 
both measures and the models based on bi-variate time-to-event outcomes would include 
only those patients who have data on both outcomes and this would reduce the sample 
size and potentially ignore important information. Based on this consideration, the 
multivariable regression method was used to impute the missing observations and to 
apply the parametric method to the imputed data and compare the results with those 
obtained without imputation. We further studied the properties of our method in a limited 
simulation study involving the same data based on the procedure advocated by Efron and 
Tibshirani (1986)30.  

As stated before, the problem of evaluating possible toxic effects of cancer 
therapies in a Phase IV trial setting is an important problem. Among the many issues in 
such studies, missing data is a key aspect that can influence the inferences.  It is also 
important to understand the nature of impact of missing data on the analysis and the 
interpretation of the study data. Also note that imputation increases the sample size, and 
thus increases statistical power to detect the same effect size. But if the model 
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assumptions are not correct, the inference may not be valid. Thus, it is recommended to 
report the p-values with and without imputation. However, with higher absolute 
correlations between two outcome measures (the primary outcome measure, AF, with 
higher missing and the secondary outcome measure, FS, with little or no missing), 
produced efficient results, a rigorous simulation study with different amount of 
correlations between two outcome measures, amount of missing and model uncertainty is 
underway to consider this aspect and will be reported elsewhere; this is along the lines 
our work for a randomized clinical study28. 

 

Table 3a: Coefficients and P-values in Regression Model 
Variable Estimator SE p-value 

Intercept 5.437 0.110 <0.001 

FS -3.891 0.274 <0.001 

Age at Diagnosis 0.008 0.003 0.005 

Risk Group -0.081 0.038 0.033 

Diag2 0.098 0.035 0.006 

BMI -0.010 0.003 <0.001 
2R  0.586 

 
Table 3b. AF p-values for Group Effect using Likelihood Ratio Test 

Procedure Without Imputation With Imputation 

Logistic 0.065 0.046 

Interval Censored-1 0.055 0.034 

Interval Censored-2 0.041 0.023 

Parameter-1  0.020 0.017 

Parameter-2 0.012 0.010 

Parameter-3 0.078 0.081 

 
Figure 4: Cumulative Incidence Comparison for AF. (Solid line: CIFs Based on Original 
Data, Dotted Line: CIFs Based on Imputation Data; Parametric-1: single constant 
incidence rate; Parametric-2: mixture of two constant incidence rates; Parameter-3: 
mixture of three constant incidence rates). 
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The study involved all the patients visiting the clinic in a pre-specified time 
frame (such as 1 year of accrual) and represents a somewhat unbiased survey of patients. 
Since the outcome measure may depend on disease type, an almost equal allocation was 
used to enroll patients. It has been reported in Hudson et al. 1 that the prevalence depends 
on disease type; hence it will be another research direction to adjust the sampling 
allocation and variability due to sampling and modeling for generalizing the results for 
the entire patient population.25 

Another limitation of this study is that this is a cross-sectional survey to estimate 
the long-term effect of cardiotoxicity of the primary treatment of cancer.  Dodge (2003)29 
defined cross-sectional survey “A method of data collection whereby a battery of 
questions is asked of participation at one single point or in a relatively small interval of 
time. Inferences about a population must be anchored to the time period in which the 
sample was taken. Data from cross-sectional surveys are typically unable to be used to 
prove the existence of cause-and-effect relationships.”  Even though this is based on 
enrolling consecutive eligible patients in a very homogeneous environment (St. Jude 
Children’s Hospital treats patients without charge to patients), effect of this limitation is 
minimized but cannot be reduced to zero. Generalization of the results to a general 
population should be done with caution.   
 

7.  Appendix 
Due to the actual time of onset of abnormality, U , is not known, the observed quantity 
for each patient includes the observation time, T , and two indicators of status,   and , 

at the time of survey, where   is an indicator of patient alive with no cardiac failure or 
dead/cardiac failure, and   is an indicator of patient with a normal or abnormal value. 

Let it be the observation time (death, cardiac failure or survey) for the thi  subject. That 

is, 

          




, at time failure cardiac no and alive unit  if,0
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The simplified forms of intensities ii t  )(  for 2or  1i  and 33 )|(  ut  
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3)|( uteutQ   and tetQ )( 21)(   . We derive 

the corresponding likelihood contributions from )(1 tL  to )(4 tL  for the four observation 
types in Table 2 and then the log-likelihood function as follows 
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indicators corresponding to observation type 1 to type 4 in Table 2. Then the maximum 
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likelihood estimators 321
ˆ and ˆ ,ˆ   of 321  and  ,   are derived from the following 

equations2. 
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It is further extended to the model to allow the intensity 1  with piecewise 

constant2. Assume two intervals: less than ct  years and above ct  (including ct ) years 

(say, 5ct ) and let these two rates be 11  and 12 .  Then the log-likelihood function is 

derived as 
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where } t:{ i1 ctiS   and } t:{ i2 ctiS  . Hence, the estimates of 11  and 12  can 

be derived easily from following score equations 
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For a general model with piecewise constants in parameter 1 , the log-likelihood function 
is  
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3)|( uteutQ    and ).()()( 21 tQtQtQ   Based on the log-likelihood equation, the 

maximum likelihood estimates of 321211  and ,,   can be computed from the score 

equations using numerical method. It is similar to derive the likelihood function for 
exponential model if 1 has three or more pieces.  
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Table 4: Cumulative Incidence Function and Standard Error for AF 

Method Parametric-1  Parametric-2 Parametric-3 

Sample 
Size 

Imputation Imputation Imputation 
No Yes No Yes No Yes 

Year CIF SE CIF SE CIF SE CIF SE CIF SE CIF SE 
1 0.016 0.003 0.014 0.002 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

2 0.032 0.005 0.028 0.005 

3 0.047 0.008 0.042 0.007 

4 0.063 0.010 0.057 0.009 

5 0.079 0.013 0.071 0.011 

6 0.095 0.016 0.085 0.014 0.030 0.005 0.026 0.004 0.041 0.007 0.038 0.006 

7 0.110 0.018 0.099 0.016 0.059 0.010 0.052 0.009 0.083 0.014 0.075 0.012 

8 0.126 0.021 0.113 0.018 0.089 0.015 0.078 0.013 0.124 0.020 0.113 0.018 

9 0.142 0.023 0.127 0.020 0.119 0.020 0.104 0.017 0.166 0.027 0.150 0.024 

10 0.158 0.026 0.141 0.023 0.149 0.025 0.130 0.021 0.207 0.034 0.187 0.030 

11 0.174 0.029 0.155 0.025 0.178 0.030 0.156 0.026 0.207 0.034 0.187 0.030 

12 0.189 0.031 0.170 0.027 0.208 0.035 0.182 0.030 0.207 0.034 0.187 0.030 

13 0.205 0.034 0.184 0.029 0.238 0.040 0.208 0.034 0.207 0.034 0.187 0.030 

14 0.221 0.037 0.198 0.032 0.267 0.045 0.234 0.038 0.207 0.034 0.187 0.030 

15 0.237 0.039 0.212 0.034 0.297 0.050 0.260 0.043 0.207 0.034 0.187 0.030 

20 0.316 0.052 0.283 0.045 0.446 0.075 0.389 0.064 0.207 0.034 0.187 0.030 

Relative 
Efficiency 25.28RE   27.59RE  21.64RE   

 
Table 5: Simulation Results for Cumulative Incidence Function and Standard Error 

for AF Using Exponential Model 

Missing % 0% 10% 15% 20% 

Imputation NA Yes No Yes No Yes No 

Year CIF SE CIF SE CIF SE CIF SE CIF SE CIF SE CIF SE 
1 0.016 0.003 0.015 0.003 0.016 0.003 0.015 0.003 0.016 0.003 0.015 0.003 0.016 0.003 

2 0.032 0.005 0.030 0.005 0.032 0.006 0.030 0.005 0.032 0.006 0.029 0.005 0.032 0.006 

3 0.047 0.008 0.046 0.008 0.047 0.008 0.045 0.008 0.048 0.009 0.044 0.008 0.048 0.009 

4 0.063 0.011 0.061 0.010 0.063 0.011 0.060 0.011 0.064 0.012 0.059 0.011 0.064 0.012 

5 0.079 0.013 0.076 0.013 0.079 0.014 0.075 0.013 0.079 0.014 0.074 0.013 0.080 0.015 

6 0.095 0.016 0.091 0.016 0.095 0.017 0.090 0.016 0.095 0.017 0.088 0.016 0.096 0.018 

7 0.110 0.018 0.106 0.018 0.111 0.019 0.105 0.019 0.111 0.020 0.103 0.019 0.112 0.021 

8 0.126 0.021 0.122 0.021 0.126 0.022 0.120 0.021 0.127 0.023 0.118 0.021 0.128 0.024 

9 0.142 0.024 0.137 0.024 0.142 0.025 0.135 0.024 0.143 0.026 0.133 0.024 0.144 0.026 

10 0.158 0.026 0.152 0.026 0.158 0.028 0.150 0.027 0.159 0.029 0.147 0.026 0.159 0.029 

11 0.173 0.029 0.167 0.029 0.174 0.030 0.165 0.030 0.175 0.032 0.162 0.029 0.175 0.032 

12 0.189 0.032 0.182 0.031 0.189 0.033 0.180 0.032 0.191 0.035 0.177 0.032 0.191 0.035 

13 0.205 0.034 0.198 0.034 0.205 0.036 0.195 0.035 0.206 0.037 0.191 0.034 0.207 0.038 

14 0.221 0.037 0.213 0.037 0.221 0.039 0.210 0.038 0.222 0.040 0.206 0.037 0.223 0.041 

15 0.236 0.039 0.228 0.039 0.237 0.041 0.225 0.040 0.238 0.043 0.221 0.040 0.239 0.044 

20 0.315 0.053 0.304 0.052 0.316 0.055 0.300 0.054 0.317 0.058 0.295 0.053 0.319 0.059 

Relative 
Efficiency 

NA RE1=1.57 RE2=9.77 RE1=1.84 RE2=13.63 RE1=1.65 RE2=13.73 
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