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Abstract 

      Competing risk data arise naturally in medical research, where a subject may 

experience an event and this event prevents the outcome of interest from happening. 

Conventional analytic methods often treat competing risk events as censored events, 

which could lead to biased results. Cause-specific models and Fine-Gray proportional 

subdistribution hazards models are two most commonly used methods for competing risk 

analysis.  While cause-specific models are easy to fit, they do not allow a direct 

interpretation in terms of marginal probabilities for the particular failure type. The 

increasingly popular Fine-Gray method offers more intuitive clinical interpretation of risk, 

but researchers have been slow to adopt this method that account for competing risks, 

largely due to the computational complexity and limitations of statistical packages. In this 

article, we analyze data from a cohort of older women in a national registry to evaluate 

breast cancer mortality. Different statistical methods are used to account for competing 

health risks. We also explore the computational efficiency of different statistical packages 

in Fine-Gray model estimation.    
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1. Introduction 

      Competing-risks data arise naturally in medical research, where outcomes can be 

classified in terms of failure from the disease of interest or other causes. In the presence 

of competing risks, conventional analytic methods such as Kaplan-Meier product-limit 

estimates and Cox‟s proportional hazards regression, focus on cause-specific events and 

do not account for the possibility that subjects can have several competing health risks, 

but can die from only one. In these analyses, deaths from other causes are often treated as 

censored observations. In other words, subjects who die from other causes are treated as 

if they had incomplete data (e.g., were alive but lost to follow up) and therefore still had 

the potential to die from the outcome of interest. In reality, if death occurs as a result of 

another illness, the probability of death due to the disease of interest is zero. Thus, when 

competing risks are ignored and treated as censored, the cumulative probability of failure 

from the disease of interest is overestimated. As a remedy, Kalbfleisch and Prentice
1
 

proposed the cumulative incidence function (CIF) which is also called  the 

subdistribution. CIF is intuitively appealing and more easily explained to non-statisticians. 

JSM 2014 - Section on Statistics in Epidemiology

3523



This marginal failure probability for a particular cause never reaches 1 because a certain 

portion of subjects will experience competing risk events. Fine and Gray
2
 later proposed 

the proportional subdistribution hazard regression, which models the hazard of the CIF 

directly and accounts for past competing risk events in the partial likelihood function by 

assigning weights to competing risk events based on the times between the CR event and 

the currently evaluated outcome of interest.  Nevertheless, clinical researchers have been 

slow to adopt this method that account for competing risks, largely due to the 

computational complexity and limitations of statistical packages. 

      Breast cancer in older women, especially those aged ≥75, is an increasingly important 

public health concern in the United States. Studies examining the risks of breast cancer 

on mortality in older women have primarily focused on populations who have already 

been diagnosed with the disease, and have not accounted for competing health risks,
3-11

 

resulting in findings that overestimate the adverse impact of breast cancer. This bias can 

be particularly large in studies of older women who have a high burden of other chronic 

illnesses. Therefore, the aims of our study were: (a) to predict CIFs for death due to 

breast cancer (BCD) and competing risks (CRD), (b) to review different methods 

available for competing risk analyses, (c) to compare the computational efficiency of 

statistical packages for Fine-Gray proportional subdistribution hazard regression. 

2. Method 

2.1 Participants 

      Our inception cohort includes 62,336 women from a US national registry, who were 

aged ≥ 67 and at risk for breast cancer in 1993. They were followed from 1994 through 

2005. Cancer information was merged with healthcare utilization and costs data for 

analysis purposes. We included women aged  ≥ 67 so that each woman would have been 

enrolled in the registry for at least 2 years, and therefore would have at least 2 years of 

health care utilization data to adequately assess chronic health conditions and illness 

burden.  

2.2 Outcomes and Analytic Variables of Interest 

      Our primary outcome is time to death (either by breast cancer or other causes).Overall 

survival was measured from the date of the inception cohort (i.e. 1/1/1994) until death or 

the end of follow-up period (12/31/2005), whichever came first. Death due to competing 

risks was defined as death due to causes other than breast cancer. Our censoring indicator 

variable had three levels: death due to breast cancer, death due to competing risks, and 

censored (survived for the entire follow-up period).  

      To identify comorbid health conditions and number of hospitalizations, we used the 

woman‟s claims from all of her hospitalizations and physician and outpatient visits 

during the two years prior to 1/1/1993. The Charlson Comorbidity Index (CCI)
12

 and the 

Elixhauser conditions
13-16

 are commonly used methods to measure illness burden from 

existing chronic conditions. Elixhauser conditions include some that overlap with the 

Charlson conditions and others that may represent more acute illness. We combined the 

Charlson chronic conditions and the Elixhauser conditions to create a new set of 

comorbid conditions, which were identified based on ICD-9-CM codes. 
13,14,17-20

 

      We used an algorithm developed by Dr. McCarthy
6,15,21

 to determine screening 

mammography use during the two-year period prior to 1/1/1993 based on physician and 
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outpatient claims. Because previous studies indicated that CPT codes on claims poorly 

discriminate screening and diagnostic mammograms, we used claims with procedure 

codes for screening (76092) or bilateral diagnostic (70691) mammogram. 
15,22,23

Women 

were classified according to their patterns of use during the two-year period as non-users 

(no mammograms) and users (only one mammogram or two mammograms at least 10 

months apart). 

2.3 Statistical Analysis 

      Descriptive analysis was conducted to summarize the characteristics of our sample. 

SAS 9.3 (Windows 32–bit), Stata/SE 11.1 (Windows 64 - bit) and R – 2.14.1 (Windows 

64-bit) were used for the analyses presented below. 

Model Selection:  to develop the parsimonious competing risk model, which would yield 

the best predictive probability of death due to breast cancer for groups of older women 

especially in the context of age and illness burden, we first conducted unadjusted analysis 

for comorbidity conditions with prevalence ≥1% and variables with p-values <0.2 was 

retained; then we compared Akaike Information Criterions (AICs)
24

 from all-subset 

selection and added back additional comorbidity variables into the model based on 

clinical judgment. 

Logistic Regression (LR): a binary variable was created to indicate whether a woman 

died from breast cancer by grouping women who died from competing risks into 

censored observations.  Standard logistic regression models were fit with predictors 

selected from model selection, where were used to gauge the reasonable magnitude of 

covariate effects. SAS 9.3 was used for this model. 

Cause-Specific Hazard Model (CS): each of the cause-specific hazards (i.e. the hazards 

for BCD and CRD) was modeled separately using Cox proportional regression. For the 

hazard of death due to breast cancer, death from competing risks was treated as censored 

and the censoring indicator variable had two levels: death due to breast cancer and 

censored. For the hazard of death due to competing risks, death from breast cancer was 

treated as censored and the censoring indicator variable had two levels: death due to 

competing risks and censored. SAS 9.3 was used for this model. 

Fine-Gray Model (FG): the proportional subdistribution hazard model proposed by Fine-

Gray
2,25

 directly aims at modeling differences in the cumulative incidence function (CIF) 

of an event of interest. Let T be the time at which the first event of any type occurs in an 

individual and ε be the event type related to that time, subdistribution hazard λ (t, X)
26

 is 

defined as the probability of having the event type ε between t and t +    (   is a minimal 

time interval) given the subject has survived from any other events till time t with a 

covariate pattern of X:    

λ (t, X) =        
 

  
Pr[t ≤ T ≤ t +   , ε = 1| T ≥ t  ( T ≤ t ∩ ε ≠ 1), X]     (1) 

with X denoting a row vector of covariates and ε = 1 being the event of interest . 

      Following Fine and Gray, the proportional subdistribution hazard model assumes the 

effects of covariates on the subdistribution hazard are stable over time 

  λ (t, X) = λ0(t)exp(Xβ)             (2) 
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where λ 0(t) is a completely unspecified baseline hazard function. 

      The estimation of this proportional subdistribution hazard model is based on modified 

risk sets, where patients who experience a competing risk event are left „forever„ in the 

risk set with decreasing weights to account for declining observability.
26

 At each time 

point tj, the risk set Rj is defined as:
26

 

Rj = [i; ti ≥ t   (ti ≤ tj   εi ≠ 1)]          (3) 

Here ti denotes the time at which the first event of any type occurs for an individual i. The 

risk set Rj includes all the subjects who haven‟t had any events (i.e. ti ≥ t) and subjects 

who have had an event other than the event of interest (i.e. ti ≤ tj   εi ≠ 1) before tj. 

      Parameter estimates of the model are estimated by maximizing the partial likelihood
26

 

below 

L(β) = ∏
        

∑        
         

   
           (4) 

where r is the number of all time points ( t1< t2 < ... < tr) for  the event of interest , and xj 

is the covariate row vector of the subject experiencing  this event at tj.  

      Subjects without any event prior to tj participate fully in the partial likelihood with the 

weight wji=1; for subjects with competing events prior to tj, their weights
2,26

 are defined 

as 

Wji= 
 ̂    

 ̂    (     ) 
               (5) 

with  ̂(t) denoting the Kaplan–Meier product-limit estimator of the survival function of 

the censoring distribution, i.e., the cumulative incidence probability of still being 

followed-up at t.  

      Given a patient‟s demographic and comorbidity conditions (X), the empirical 

cumulative probability of having the outcome of interest (i.e. the mortality from breast 

cancer or competing risks         ̂
 )

26
 was estimated as  

        ̂
=1-exp{        ̂   ̂    }        (6) 

 ̂0(t) denotes the baseline cumulative subdistribution hazard at the time point of interest, 

relating to an individual with a zero covariate vector.
26

 It is a single value from a vector, 

whose size equals to the number of time points of interest.  ̂ is a vector for the Fine-Gray 

model coefficients. All these quantities can be obtained by fitting this model in 

commonly used statistical packages. SAS macro „pshreg‟,
26

  Stata command „stcrreg‟
27

 

and R package „cmprsk‟
28

 were used for this model. 

3. Results 

3.1 Sample Characteristics 
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      62,336 subjects with complete data were included in our analysis (Table 1). Over 

forty percent of women were aged 75 or above. 5.7% of the women died from breast 

cancer; whereas, 41.6% of them died from other competing risks. Subjects who were 

alive during the entire follow-up were all censored at the end of follow-up. Diabetes, 

cardiac dysrhythmias and chronic obstructive pulmonary diseases (COPD) were the three 

most common chronic conditions in our sample. Over twenty percent of the women had 

hospitalizations during the two years prior to 1993.  

3.2 Comparison of Models 

      For death from breast cancer (Figure 1), age and screening status are the most 

significant predictors in all three models. CS model yields a larger hazard ratio (HR) than 

FG model does when the effect of a predictor is strong; whereas, HRs from CS and FG 

are similar for predictors with moderate effects. As a naïve way to gauge if the effects of 

covariates are in reasonable magnitude for CS and FG models, LR tend to generate larger 

odds ratios (ORs) than the corresponding HRs from FG model, with the largest standard 

error (SE) among the three models for each single predictor. For death from competing 

risks (Figure 2), age remained the most significant in all three models and the effects for 

most predictors get stronger for this outcome compared to death from breast cancer. 

Consistently, CS model tends to have bigger HR compared to FG for strong predictors.   

3.3 CIF Prediction 

       We were able to predict CIFs for any patient profiles at any time point during the 

follow-up by plugging in the covariate values, parameter estimates and corresponding 

baseline cumulative subdistribution hazard into formula (6). For example (Figure 3), 

patients aged between 67 and 74 who had mammography screening during the past 2 

years and do not have any comorbidity (the screeners) will always have lower predicted 

CIFs compared to patients of the same age group and comorbidity conditions who did not 

had mammography during the past 2 years (the non-screeners). At five year, the predicted 

mortality from breast cancer almost doubles for the non-screeners compared to the 

screeners (Table 2). For patient profiles with any combination of age group, screening 

status and comorbidities, the 5-year predicted mortality ranges from 0.21% to 5.96% for 

BCD and 2.43% to 99.32% for CRD.  

3.4 Performance of Statistical Packages 

      It could be computationally intensive to fit a Fine-Gray model using statistical 

packages, depending on the size of a dataset and the number of tied events (Table 2). For 

death due to breast cancer, the „cmprsk‟ package in R had the shortest run-time for fitting 

the Fine-Gray model. The Stata „stcrreg‟ command took the longest time among the three. 

When R and SAS were used to fit the Fine-Gray model for death from competing risks,  

the run time to get all the Fine-Gray parameter estimates were almost three times longer 

than that for breast cancer death, due to the fact that the sample had a much higher 

prevalence for CRD and many ties from the same censored time.  In terms of CIF 

prediction, we were able to get the predicted CIFs for any patient profiles quickly using 

formula (6) on all three platforms and they gave the exact same prediction results for up 

to 4 decimal places. In addition, the packages in SAS and Stata offered straightforward 

ways to calculate standard errors (SEs) using the Delta method and confidence intervals 

(CIs) for predicted CIFs, whereas the current „cmprsk‟ package in R did not have a built-

in command for SEs of CIFs. 
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4. Discussions 

      Since the prevalence of CRD is much higher in our sample than the prevalence of 

BCD, it is important for us to address competing risks in our analysis. CS and FG are 

commonly used for competing risk analyses, but they answer different scientific 

questions. CS models target each event type in turn by fitting a Cox proportional hazard 

model for each event type and censoring all the other event types. These models provide 

effect estimates of predictors on the cause-specific hazard, which could be useful if we 

are interested in investigating factors that may affect the instantaneous failure rate from a 

specific cause. However, interpretations of HRs from CS models are not straightforward 

since we always have to assume that competing risks events do not exist or they are the 

same as censored events, which is unrealistic in most settings. Though CIFs for an event 

of interest can be estimated by a complete analysis of all event types using CSs and some 

calculation, FG models offer a more direct way to understand the effect of predictors on 

CIFs. In the presence of competing risks, CIF offers more intuitive clinical interpretation 

of risk, especially for the purpose of prediction. However, subdistribution hazard ratios 

(SHRs) from FG models also need to be interpreted with caution due to the retention of 

people who already had competing risk events in the modified risk sets. Therefore, given 

the different focuses and assumptions of the two models, we recommend they always be 

presented complementarily in competing risk analysis. 

      The calculation of FG weights depends on the censoring mechanism. In our case, 

censoring results only from administrative loss-to-follow up. Under this condition, the 

potential censoring time is always observed, even on individuals who died prior to the 

time of analysis. Therefore these data are referred to as “censoring complete” by Fine and 

Gray
2
. They pointed out in their paper that the asymptotic results for censoring-complete 

data estimation and prediction follow from the complete data derivations, which are 

inherited from the ordinary Cox model.
2
  Bakoyannis and Touloumi

25
  also proposed 

instead of using the Fine-Gray method for censoring-complete data, the standard Cox 

proportional hazard model can be used after replacing the failure time of subjects who 

failed from a competing causes by the administrative censoring time and treat them as 

censored. We did find that the SHRs from FG and HRs from standard Cox regression 

using the data with modified survival date were exactly the same. In addition, the 

computation time was significantly reduced by using the standard Cox model. 

Unfortunately, for general censoring at random situations, the time for which a patient 

who has failed from a competing event remains in the modified risk sets for the outcome 

of interest is unknown. In this situation, standard Fine-Gray methods have to be used for 

competing-risk analysis. 

      Despite of the complexity of Fine-Gray methods, today FG models can be fitted using 

any standard statistical software which has the capacity to fit a regular Cox proportional 

model.
26

 This could be achieved by modifying an input dataset using the counting process 

representation, which is to separate follow-up periods of patients with competing events 

into several sub-periods with declining weights, as suggested by Fine and Gray,
2
 

Geskus,
29

 Kohl and Heinze.
26

  The three packages we tested perform differently in terms 

of efficiency. Given the significantly reduced run time for FGs, the packages in SAS and 

R are recommended for model estimation. However, it could be extremely time-

consuming to predict 95% confidence intervals of CIFs by using the “BASELINE” 

statement in SAS‟s PROC PHREG, depending on the size of the input dataset and the 

number of ties. Fortunately STATA offers a post-estimation command “NLCOM”, which 

could be used to quickly compute point estimates, standard errors, and confidence 
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intervals for CIFs. In addition, the newly released SAS 9.4 has incorporated FG models 

in its PHREG procedure, which would make this method much easier to be implemented 

in future medical research. 

      Although the Fine-Gray method for competing risk analysis has gained popularity 

over the past few years, it is important to verify the assumption of proportional 

subdistribution hazards before implementing Cox-type models. The Schoenfeld-type 

residuals could be computed to test the proportionality. In the presence of the non-

proportionality of subdistribution hazards, time-dependent effects of covariates and 

computing weighted estimates that are connected to the odds of concordance as defined 

by Schemper et al.
30

 could be considered to accommodate the non-proportionality.
26

 If the 

number of ties in event times is large, the Efron method for handling ties is 

recommended.
31

 In addition, the application of Firth-correction
32

 for monotone pseudo-

likelihood in small datasets and the choice of different weights such as the inverse 

probability of censoring weight (IPCW)
33

 and average subdistribution hazard ratio weight 

(ASHR)
30

 may also be useful in time-averaged and population-averaged analysis
26

. 

5. Concluding Remarks 

      Commonly used methods and statistical packages to address competing risks in 

medical research have been compared and discussed with real data. In the presence of 

competing risks, cause-specific analysis focuses on the effects of predictors on the 

instantaneous failure rate from a specific cause, whereas, CIF offers more intuitive 

clinical interpretation of risk, especially for the purpose of prediction. However, results 

from both methods need to be interpreted with caution due to the grouping of competing 

risk events into censoring for CS and the retention of the competing risk events in the 

partial likelihood function for FG. To have a clearer picture of the data, simultaneous 

investigation of both methods is recommended. Competing risk analysis are now 

available in common statistical packages, which should greatly reduce the computation 

difficulty and improve the implementation of this analysis in medical research. 
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Table 1. Frequency distribution of patient characteristics (n=62,336) 

Patient Characteristics Percent (%) 

Age (years)                                 

67-74 54.9 

75-79 23.1 

80-84 13.5 

≥85 8.2 

Race  

White 87.4 

Black 6.0 

Hispanic 2.1 

Others 4.5 

Status at the end of follow-up 
 

Death from breast cancer 5.7 

Death from competing risks 41.6 

Censored 52.6 

Chronic conditions 
 

Peptic ulcer disease 1.2 

Myocardial Infarction 1.2 

Rheumatologic disease 1.5 

Diabetes with sequela 1.6 

Peripheral vascular disease 1.7 

Other cancer or metastatistic solid tumor  2.0 

Heart valve disorders 2.4 

Cerebrovascular disease 3.2 

Chronic heart failure(CHF) 3.5 

Thyroid disorders 5.0 

Chronic obstructive pulmonary disease (COPD) 5.6 

Cardiac dysrhythmias 7.4 

Diabetes 7.9 

Hospitalization in previous 24 months 20.3 
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Figure 1.  Comparison of parameter estimates and SEs from logistic regression (LR), 

cause-specific model (CS) and Fine-Gray model (FG) for death from breast cancer.  
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Figure 2.  Comparison of parameter estimates and SEs from logistic regression (LR), 

cause-specific model (CS) and Fine-Gray model (FG) for death from competing 

risks.  
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Figure 3. Predicted CIFs for patients with different screening profiles. 

 

Table 2. Comparison of run time (hh:mm:ss) for Fine-Gray model using different 

packages 

Outcomes SAS* Stata† R‡ 

BCD 00:47:50 12:44:12 00:19:41 

CRD 03:04:00 17:07:46 01:05:48 

*SAS 9.3 for Windows 32–bit was used. 

†Stata/SE 11.1 for Windows 64-bit was used. 

‡R – 2.14.1 for Windows 64-bit was used. 
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