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Abstract
In this paper, we demonstrate that in most cases the spatial aggregate of spatial time series data

contains similar properties to the non-aggregate. In particular, we examine the space-time autore-
gressive model of temporal and spatial lag 1 (the STAR(11) model) and through a simulation study
see that even when the condition of poolability does not hold, the aggregate can usually be modeled
as a STAR(11) model with only slightly higher forecast error. The parameters of the aggregate
STAR(11) model are also derived and shown to be functions of the non-aggregate parameters. Fu-
ture work will be to generalize these results to other types of STARMA models.
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1. Introduction

For decades, time series analysis has been interested in comparing the quality of models and
forecasts using aggregate versus non-aggregate data. In forecasting regional unemployment
rates, is it beter to use prior regional rates or state rates? How does it impact the analysis if
disease counts are known at a state level versus a county level? How much information is
lost by using the aggregate data instead of the higher-dimensional non-aggregate data?

In this paper, we deal with spatial aggregation of spatial time series data, although
these results could apply to aggregation in other contexts. The space-time autoregressive
moving-average (STARMA) modeling approach introducted by Cliff and Ord (1975) and
extended by Pfeifer and Deutrch (1980) and Deutsch and Pfeifer (1981) provides a simple
understanding of vector time series that are spatially related and which follow the ARMA
framework common in time series analysis.

The primary aims of this paper are to discover the model form of the spatial aggregate
of a STAR(11) model and compare the forecast of the aggregate using either aggregate
or non-aggregate data. This will shed light onto problems of modeling and forecasting
spatially aggregated data, which is especially relevant when obtaining non-aggregate data
is costly or difficult.

1.1 The STAR(11) Model

We begin with the mean-stationary, mean-centered, non-aggregate STAR(11) time series as
defined by Pfeifer and Deutrch (1980) and Deutsch and Pfeifer (1981) for t = 1, 2, ..., T .
Each of the r variables correspond to locations which are arranged on a 2-dimensional
plane. At time t,

Zt = φz,0Zt−1 + φz,1WzZt−1 + at

= [φz,0Ir + φz,1Wz]Zt−1 + at

= BZt−1 + at, (1)

which is a special case of the VAR(1) model, with B = φz,0Ir + φz,1Wz . The parameters
φz,0 and φz,1 are scalars such that |φz,0| + |φz,1| < 1 to ensure stationarity (Pfeifer and
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Jay Deutsch, 1980). We think of φz,0 as the purely autoregressive parameter and φz,1 as the
spatial parameter, with each being the same for all locations.

In addition, the error vectors at are independent and distributed as N(0,Σ), where Σ
is any non-singular matrix, following the notation of Deutsch and Pfeifer (1981) which
allows for differences in the error variances as well as their contemporaneous correlation.
Thus, we have E[ata

′
t] = Σ, and E[ata

′
t+k] = 0 for k > 0. In addition, we define the time

lag-k covariance matrix of of our time series variable as Γz(k) = E[ZtZ
′
t+k] for k ≥ 0.

In this paper, we limit our scope to modeling spatial dependence between first neigh-
bors, defined as locations sharing a common border. Thus, Wz consists of elements
[Wz](i,j), which equal 1/ni when locations i and j share a common border, and 0 oth-
erwise. Here, ni denotes the number of bordering neighbors that location i has, row-
standardizing the matrix such that Wz1 = 1, where 1 is the column vector of all ones.
Thus each location within Zt is modeled in terms of the lagged values of its first neighbors
as well as of its own lagged value.

Then, a qxr aggregation matrix A can be used to construct a new set of q (< r) time
series, Yt as the spatial aggregate of Zt, such that Yt = AZt. We consider the case where
A is binary, with each element [A](i,j) taking the value 1 when Zj,t is included in the
aggregate Yi,t, and 0 otherwise. Thus, the elements of row i in A construct Yi,t as the sum
of designated elements of Zt. This aggregation procedure is applicable for data that are
meaningful when summed, such as sales data, the number of unemployed people, or the
number of reports of a disease or crime. Other forms of A could be adopted for different
types of data and purposes.

1.2 Literature Review on Time Series Aggregation

Many have explored the result of aggregating a vector time series into a univariate aggregate
(Wei and Abraham, 1981; Kohn, 1982; Pino et al., 1987; Hendry and Hubrich, 2006, 2011),
and into a multivariate aggregate Lutkepohl (1984, 1987, 2009). The work of Lutkepohl
(1987) provided a wealth of information on forecasting linear transformations of VARMA
time series using a general qxr aggregation matrix. He showed that the aggregate also
follows a VARMA model and gives bounds for its AR and MA orders. These bounds are
considerably wide, so his results provide little guidance for our model.

Much of the relevent work in Kohn (1982) and Lutkepohl (1987) focused on the concept
of poolability. The poolability condition for a r-dimensional non-aggregate VAR(1) time
series and its q-dimensional aggregate VAR(1) is AB = DA, where B is the rxr parameter
matrix of the non-aggregate VAR(1) and D is the qxq parameter matrix of the aggregate
VAR(1). Implied in this condition is that the aggregate of a poolable time series follows
the same AR order as the non-aggregate. The main result of the poolability condition is
that the forecasts of the aggregate using past aggregate information are equivalent to those
obtained using non-aggregate information.

Kohn (1982) and more recently Hendry and Hubrich (2006) and Hendry and Hubrich
(2011) developed a test to determine poolability in practice for the case of a univariate
aggregate (q = 1). The aggregate model was fit by the aggregate information and a set
of lagged non-aggregates. The test for poolability was thus a test for the significance of
the non-aggregate terms added in this model (testing to see if the aggregate information
is sufficient to model the aggregate). Bun (2004) provided a similar test and asymptotic
results for time series of seemingly unrelated regression equations. Kohn mentioned but
never explored testing for poolability in the case of a multivariate aggregate.

Two papers have tested the best method of forecasting aggregates from spatially-
dependent time series following STAR(11) models through simulations. The driving ques-
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tion is whether it is best to forecast the aggregate directly or aggregate the forecast using
non-aggregate information. Giacomini and Granger (2004) compared four methods for
forecasting the univariate aggregate: (1) from a univarate ARMA model of the aggregate,
(2) from separate ARMA models of each non-aggregate, (3) from a VAR(1) model of the
non-aggregates, and (4) from a STAR(11) model of the non-aggregates. They demonstrated
that in scenarios when the poolability condition held for the data generating process, it was
best to forecast the univariate aggregate directly (1), as it was parsimonious and efficient. In
all other cases, the non-aggregate STAR(11) method (4) outperformed the other methods,
as it capture the spatial-correlation and was also parsimonious.

Lastly, Arbia et al. (2010) extended Giacomini and Granger’s study by considering a
multivariate aggregate of a STAR(11) model. They compared the multivariate forecasts us-
ing three methods: (1) from separate ARMA models of each aggregate, (2) from a VAR(1)
model of the aggregate, and (3) from a STAR(11) model of the aggregate. Again, the ag-
gregate STAR(11) model (3) had the best-performing forecasts. No justification is made
for using a STAR(11) model to fit the multivariate aggregate of a STAR(11) model. They
do state that the univariate aggregate is approximately AR(1) if the the column sums of the
weighting matrix Wz are similar. This is just a restatement of the poolability condition in
the STAR(11) case, and it suggests approximate poolability.

In summary, these reviewed papers provide the condition of poolability using the non-
aggregate and aggregate parameter matrices and the aggregation matrix, whereby the mul-
tivariate aggregate of a poolable VAR(1) model is known to follow a VAR(1) model and
has forecasts equivalent to the non-aggregate model. Many results focus on the univariate
aggregate, and few have explored the special properties offered by the STAR(11) model.
More importantly, no poolability test for the multivariate aggregate exists in literature.

In this paper, we extend these studies in several ways. First, we provide poolability
results for the STAR(11) model, including aggregate parameter derivations. We also ex-
amine the validity of fitting the aggregate with a STAR(11) model when poolability does
not hold. Second, we carry out simulation comparisons of approximate poolability for the
spatial aggregate of a STAR(11) model under varying instances of the error covariance, the
non-aggregate parameters, and the aggregation scheme. We look to see when it reason-
able to model the aggregate with a STAR(11) model and how that model’s one-step ahead
forecasts compare to those from the non-aggregate model. Finally, we conclude with a
summary of our results and direction for future work.

2. The Spatial Aggregate of a STAR(11) Model

2.1 Poolability for the STAR(11) Model

The poolability condition for VAR(1) model is AB = DA, where B and D are the param-
eter matrices in the non-aggregate and aggregate models respectively. For the STAR(11)
model which is a special case of the VAR(1), the poolability condition is the same, where
B = φz,0Ir + φz,1Wz and D = φy,0Iq + φy,1Wy. We now prove results for poolability
in the STAR(11) model.

Theorem 1 Given a STAR(11) model as in (1), the following are true

(i) The poolability condition is equivalent to AWz = ψ1A + ψ2WyA, where ψ1 =
(φy,0 − φz,0)/φz,1 and ψ2 = φy,1/φz,1.

(ii) Under poolability, the aggregate variable is a STAR(11) model.

(iii) Under poolability, the aggregated error and one-step ahead forecasts of the non-
aggregate model are equivalent to those of the aggregate model.
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Proof 1 As a proof of these results,

(i) The poolability conditions implies that:

0 = AB−DA

= A[φz,0Ir + φz,1Wz]− [φy,0Iq + φy,1Wy]A

= φz,0A + φz,1AWz − φy,0A− φy,1AWy

= φz,1[AWz −
φy,0 − φz,0

φz,1
A− φy,1

φz,1
AWy]

= φz,1[AWz − ψ1A− ψ2WyA],

where ψ1 = (φy,0 − φz,0)/φz,1 and ψ2 = φy,1/φz,1.

Thus, AWz = ψ1A + ψ2WyA.

(ii) Using (1) and Theorem 1 Part (i),

Yt = AZt

= φz,0AZt−1 + φz,1AWzZt−1 + Aat

= φz,0Yt−1 + φz,1[ψ1A + ψ2WyA]Zt−1 + et

= φz,0Yt−1 + φz,1(φy,0 − φz,0)/φz,1AZt−1 + φz,1φy,1/φz,1WyAZt−1 + et

= φz,0Yt−1 + (φy,0 − φz,0)Yt−1 + φy,1WyYt−1 + et

= φy,0Yt−1 + φy,1WyYt−1 + et, (2)

where et = Aat is independent and distributed asN(0,AΣA
′
). Also, as a result,

E[ete
′
t+k] = E[Aata

′
t+kA

′
] = AE[ata

′
t+k]A

′
= 0, for k > 0. Thus, (2) is a

STAR(11) model.

(iii) This follows as the consequence of the error term at in the non-aggregate model
and the error term et in the aggregate model is related by et = Aat under poola-
bility. �

We recognize that for most configurations of Wz , Wy, and A there will not exist values
of ψ1 and ψ2 that satisfy the poolability condition in Part (i) of Theorem 1. One exception
is when there are r = 4 non-aggregate locations arranged on a 2x2 grid aggregated into
q = 2 aggregate locations. In this case,

Wz =


0 1/2 1/2 0

1/2 0 0 1/2
1/2 0 0 1/2
0 1/2 1/2 0

,

A =

[
1 1 0 0
0 0 1 1

]
,

Wy =

[
0 1
1 0

]
, and thus,

AWz =

[
1/2 1/2 1/2 1/2
1/2 1/2 1/2 1/2

]
=

[
1/2 1/2 0 0
0 0 1/2 1/2

]
+[

0 0 1/2 1/2
1/2 1/2 0 0

]
= 1/2A + 1/2WyA, for ψ1 = 1/2 and ψ1 = 1/2. Thus,

φy,0 = φz,0 + 1/2φz,1 and φy,1 = 1/2φz,1 according to Theorem 1 Part (i).
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2.2 Parameters of the Poolable Aggregate STAR(11) Model

As mentioned previously, poolability holds when AWz − ψ1A− ψ2WyA = 0. One way
to solve for ψ1 and ψ2 (and thus to derive φy,0 and φy,1) is to minimize the difference in
C = AB −DA = φz,1[AWz − ψ1A − ψ2WyA], such that it equals 0. We can do this
through least squares estimation.

Theorem 2 Given a poolable STAR(11) model in (1), the parameters of the aggregate

STAR(11) model are φy,0 = φz,0 + tr(A
′
AWz)

tr(A′A)
φz,1 and φy,1 =

tr(A
′
W
′
yAWz)

tr(A′W′
yWyA)

φz,1.

Proof 2 The equation AWz = ψ1A + ψ2WyA + C/φz,1 has C/φz,1 as its error and is
given by

vec(AWz) = ψ1vec(A) + ψ2vec(WyA) + vec(C/φz,1)

=
[
vec(A) vec(WyA)

] [ψ1

ψ2

]
+ vec(C/φz,1).

Then, the ordinary least squares solution is[
ψ1

ψ2

]
=

[
vec(A)

′
vec(A) vec(A)

′
vec(WyA)

vec(WyA)
′
vec(A) vec(WyA)

′
vec(WyA)

]−1 [
vec(A)

′
vec(AWz)

vec(WyA)
′
vec(AWz)

]
=

[
tr(A

′
A) tr(A

′
WyA)

tr(A
′
W
′
yA) tr(A

′
W
′
yWyA)

]−1 [
tr(A

′
AWz)

tr(A
′
W
′
yAWz)

]
=

[
tr(A

′
A) 0

0 tr(A
′
W
′
yWyA)

]−1 [
tr(A

′
AWz)

tr(A
′
W
′
yAWz)

]

=

 tr(A
′
AWz)

tr(A′A)

tr(A
′
W
′
yAWz)

tr(A′W′
yWyA)

 .
This is due to tr(A

′
WyA) = tr(AA

′
Wy) =

∑
i,j(AA

′
)(i,j) ◦ (Wy)(i,j) = 0, since

(AA
′
)(i,j) = 0 for i 6= j and (Wy)(i,j) = 0 for i = j, and similarly for tr(A

′
W
′
yA). By

Part (i) of Theorem 1, φy,0 = φz,0 + ψ1φz,1 and φy,1 = ψ2φz,1. �

See that all components of these derivations are determined by the non-aggregate
model and the aggregation scheme, and don’t depend on Σ. In addition, the example
of poolability at the end of Section 2.1 can be demonstrated to follow Theorem 2. Here,

ψ1 = tr(A
′
AWz)

tr(A′A)
= 2

4 = 1
2 and ψ2 =

tr(A
′
W
′
yAWz)

tr(A′W′
yWyA)

= 2
4 = 1

2 . This agrees with the values

of ψ1 and ψ2 in the example earlier.

2.3 The Aggregate Model without Poolability

In the case where the poolability condition in Section 2.1 does not hold, the assumption of
the STAR(11) model for the aggregate may no longer be valid. Without poolability, fitting
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the aggregate as a STAR(11) model results in

Yt = ABZt−1 + Aat

= DAZt−1 + (AB−DA)Zt−1 + Aat

= DYt−1 + CZt−1 + Aat

= DYt−1 + vt

= [φy,0Iq + φy,1Wy]Yt−1 + vt

= φy,0Yt−1 + φy,1WyYt−1 + vt. (3)

The error term is now vt = CZt−1 +Aat, where C = AB−DA = φz,1[AWz−ψ1A−
ψ2WyA]. The term CZt−1 represents additional error or misspecification due to the loss
of informtion in only using the lagged aggregate. SoE[vtv

′
t] = CΓz(0)C

′
+AΣA

′
= H,

andE[vtv
′
t+k] = CΓz(k)C

′
+AΣ(B

′
)k−1C

′ 6= 0, for k > 0. Here, Γz(k) = E[ZtZ
′
t+k]

for k ≥ 0.
This is an obvious case of serial autocorrelation in the error term. However, as would

be the case when C is small and close to 0, the error term then may be close to white
noise. We propose that in many cases C ≈ 0 by the minimizing methods of Theorem 2,
which results in the adequacy of the STAR(11) model in (3). This would be considered
approximate poolability.

2.4 Testing Approximate Poolability in the STAR(11) Model

To test this about vt, the multivariate Portmanteau test is used. The statistic is

P (m) = T 2
m∑
k=1

(T − k)−1tr(Γ̂
′
v(k)Γ̂−1v (0)Γ̂v(k)Γ̂−1v (0)), (4)

where Γ̂v(k) = 1
T

∑T
t=k+1 v̂tv̂

′
t−k (see Ljung and Box (1978); Lutkepohl (2009)). The

statistic can be compared with its known distribution, a chi-squared with r2(m−1) degrees
of freedom. If the null hypothesis of error white noise is not rejected, the model in (3) is a
STAR(11) model and is deemed adequate for modeling the multivariate aggregate.

To evaluate the fit and forecast of the aggregate model, it can be compared with the
aggregate of the non-aggregate model. In practice, both (1) and (3) can be fit by feasible
generalized least squares (FGLS). By this method, the error covariance matrices Σ and H
are estimated from the residuals of an ordinary least squares (OLS) fit and then used to
estimate the model parameters.

To measure the forecast accuracy, a series of one-step ahead forecast errors from both
models will be compared using an out-of-sample test set of size T ∗. The estimated residuals
for the out-of-sample time points will be used to compute the mean squared forecast error
(MSFE). The MSFE of the aggregated forecasts of the non-aggregate model is

MSFE(z) =
1

T ∗

T+T ∗∑
t=T+1

â
′
tA
′
Aât, (5)

while the MSFE direct from the aggregate model is

MSFE(y) =
1

T ∗

T+T ∗∑
t=T+1

v̂
′
tv̂t. (6)
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3. Multivariate Aggregate Simulation

In order to determine under what conditions (3) is a STAR(11) and the aggregate model
and the non-aggregate model have comparable forecast error, we designed a simulation
experiment in which we varied the non-aggregate error covariance matrix, non-aggregate
parameters, and level of aggregation.

3.1 Simulation Details

First, we considered the locational arrangement where the r = 16 locations were arranged
on a 4x4 lattice grid. The locations are numbered going left to right then top to bottom.
Having 16 locations allows for a balance of corner, edge, and middle locations, minimizing
the impact of edge effects. For a discussion of edge effects see Anselin (1988) or Griffith
(1988).

Second, we consider three cases of the error covariance matrix:

• Independent errors with equal variance, σ2 = 1 (IND.)

• Moderate correlation of error with varying variances, such that the errors for first
neighbors had a correlation of 0.5, those of second neighbors was 0.3, and all others
had a correlation of 0.1; with the errors for locations 1 through 16 in having variances
16 through 1, respectively (MOD.)

• Large positive correlation of errors (ρ = 0.9) between all locations with equal vari-
ance, σ2 = 1 (HIGH)

Third, we had the two STAR(11) parameters ranged from 0.1 to 0.8 by increments
of 0.45 in cases satisfying |φz,0| + |φz,1| < 1 for purposes of stationarity, resulting in 6
combinations of (φz,0, φz,1): (0.10,0.10), (0.45,0.10), (0.80,0.10), (0.10,0.45), (0.45,0.45),
and (0.10,0.80).

Finally, we conducted the same simulation experiment as above with q = 8, 4, 2, and
1. In each, the first r/q locations will be aggregated together to form aggregate location 1,
the second r/q locations will form aggregate location 2, and so on. It should be noted that
in none of these cases does poolability hold as in Theorem 1. That is, for these Wz , A, and
Wy there is no combination of ψ1 and ψ2 that makes the poolability condition true.

The simulation was performed for N = 250 times under each of the 36 combinations
of Σ and A mentioned above and for all 6 parameter combinations. Within each, the
STAR(11) time series of length 301 was simulated according to the model in (1), and then
the first observation was discarded, so T + T ∗ = 300. The first T = 200 observations
were used to fit the model, and the final T ∗ = 100 were preserved as an out-of-sample
forecast set. The non-aggregate model (1) and aggregate model (3) were fit with OLS,
and their residuals were used to estimate the model parameters via FGLS. Iin addition, the
aggregate STAR(11) residuals were tested using the Portmanteau test in (4) to see if they
were white noise. Finally, using the FGLS parameter estimates, the mean squared forecast
error (MSFE) of the one-step ahead forecast errors from both models were calculated as in
(5) and (6). The results are given below.

3.2 Simulation Results

In Table 1, we examine the three main questions: 1) How often the residuals of the ag-
gregate STAR(11) model white noise? 2) How often does the aggregate STAR(11) model
provide better forecasts of the aggregate than the non-aggregate STAR(11) model? and 3)
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What percent increase in MSFE is caused by forecasting the aggregate with the aggregate
STAR(11) model over the non-aggregate STAR(11) model?

From Table 1, we see that in most cases, the STAR(11) fit of the aggregate is adequate a
majority (80 to 90%) of the time. In addition, the aggregate model produced better forecast
results than the higher dimensional non-aggregate model around 30 to 45% of the time for
most configurations. Lastly, the mean percent increase in MSFE caused by using the lower
dimension aggregate model over the non-aggregate model was under or around 1% most
of the time.

However, several things happened as the non-aggregate spatial parameter (φz,1) in-
creased, especially to 0.8. First, the proportion of times the aggregate residuals were white
noise decreased when aggregating adjacent pairs of locations together (q = 8). Also oc-
curing were steep decreases in the proportion of times the aggregate model produced better
forecasts. This resulted in a larger increase in MSFE for using the aggregate model, on
the order of 3 to over 5%. This is primarily due to the measure of misspecification error
(C) being a function of φz,1. The more the non-aggregate locations are dependent on one
another, the more evident the misspecification due to aggregation is.

Next we turn our attention to the parameter estimation in these cases. Table 2 provides
the estimates of φy,0, while Table 3 gives those of φy,1. It should be noted that φy,1 is
not estimated in the case where q = 1 due to there being only one aggregate location and
thus no spatial component. The primary phenomenon we see is that as the level of aggre-
gation increases (more non-aggregate locations summed together), the more the aggregate
autoregressive parameter increases and the aggregate spatial parameter decreases. Similar
to Theorem 2, φy,0 is greater than φz,0 by a proportion of φz,1, and φy,1 is less than φz,1
by a proportion of φz,1. Thus, spatial aggregation transfers some of the spatial dependence
into purely autoregressive dependence.

4. Conclusion

We have shown through simulation that in most cases of a realistic example of spatially
aggregating a STAR(11) model, the aggregate also follows a STAR(11) model. This occurs
even if the poolability condition does not hold exactly. In addition, the forecasts from the
approximately poolable aggregate models are only slightly poorer on average than those
from the non-aggregate model. The exception occurs for non-aggregate locations that have
a high level of spatial dependence.

Also of interest was the discovery that the parameters of the aggregate STAR(11)
model are nearly functions of the parameters in the non-aggregate model. For positive
non-aggregate parameters, aggregation results in higher aggregate autoregressive param-
eters and lower aggregate spatial parameter. As a result, spatial aggregation can cause
autoregressiveness in non-aggregate locations with little or no autoregressiveness. And for
locations to display very little spatial correlation could be the result of very heavy spatial
aggregation.

In future work, we will seek to broaden these results for more general setups of non-
aggregate arrangement and form of aggregation. In addition it would be of benefit to ex-
tend these results to other forms of STARMA models. Lastly, we see potential in exam-
ining spatial aggregation among generalized STARMA (GSTARMA) models, developed
by Borovkova et al. (2008), which have parameters that can vary by location. This could
reduce the misspecification error caused by aggregation and the restricted nature of the
weighting matrices.
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A) % White Noise B) % Agg. Lower C) % Error Diff.

IND. MOD. HIGH IND. MOD. HIGH IND. MOD. HIGH

(0.10, 0.10)
q = 8 85.6 86.0 86.0 36.8 32.8 48.4 0.10 0.12 0.11
q = 4 89.6 88.8 84.0 36.0 37.6 46.0 0.18 0.17 0.28
q = 2 88.8 86.0 93.6 36.4 37.6 44.4 0.45 0.34 0.39
q = 1 90.4 88.4 92.8 38.0 36.8 44.8 0.38 0.43 0.38

(0.45, 0.10)
q = 8 83.6 85.6 84.4 33.2 36.0 46.4 0.11 0.14 0.11
q = 4 88.4 90.0 84.4 39.2 39.6 42.4 0.17 0.20 0.24
q = 2 89.2 84.8 94.4 36.4 35.2 42.4 0.50 0.41 0.41
q = 1 89.2 88.4 93.6 38.8 40.8 43.2 0.41 0.49 0.40

(0.80, 0.10)
q = 8 84.0 82.4 85.2 27.6 34.4 41.2 0.26 0.20 0.15
q = 4 88.4 87.6 83.6 33.2 36.8 40.8 0.34 0.29 0.37
q = 2 88.8 86.0 94.0 35.6 35.6 39.6 0.74 0.62 0.73
q = 1 88.8 88.8 90.8 38.8 39.6 38.8 0.65 0.71 0.72

(0.10, 0.45)
q = 8 76.4 64.0 75.2 6.0 14.4 36.4 1.39 0.85 0.18
q = 4 88.4 88.4 84.4 15.6 32.0 44.4 1.13 0.43 0.24
q = 2 89.6 84.8 93.6 20.4 35.2 42.0 1.45 0.57 0.40
q = 1 89.2 88.4 93.2 31.6 36.0 43.2 1.17 0.61 0.38

(0.45, 0.45)
q = 8 69.6 47.2 67.2 4.4 13.6 35.6 1.95 1.30 0.21
q = 4 87.2 88.0 83.6 12.8 29.6 44.8 1.41 0.55 0.31
q = 2 89.6 84.4 94.4 18.8 33.2 41.2 1.85 0.80 0.65
q = 1 89.2 89.6 90.8 26.4 36.0 42.8 1.55 0.87 0.64

(0.10, 0.80)
q = 8 37.2 5.2 31.2 0.0 2.8 24.0 5.61 3.22 0.48
q = 4 86.8 86.4 83.6 4.0 22.0 44.4 3.55 1.08 0.35
q = 2 89.6 82.8 94.4 6.4 28.4 41.6 3.99 1.21 0.68
q = 1 89.6 89.2 90.4 17.6 32.8 44.4 3.40 1.16 0.64

Table 1: Percentage of: A) Times Error in Aggregate Model is White Noise; B) Times
Aggregate Model has Lower MSFE; C) Increase in MSFE in Aggregate Model
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A) Mean B) Std. Dev.

IND. MOD. HIGH IND. MOD. HIGH

(0.10, 0.10)
q = 8 0.129 0.130 0.129 0.025 0.027 0.025
q = 4 0.164 0.168 0.165 0.038 0.035 0.035
q = 2 0.179 0.180 0.172 0.051 0.047 0.050
q = 1 0.194 0.195 0.191 0.068 0.069 0.069

(0.45, 0.10)
q = 8 0.476 0.480 0.476 0.022 0.025 0.023
q = 4 0.510 0.516 0.511 0.032 0.032 0.030
q = 2 0.523 0.526 0.517 0.042 0.041 0.044
q = 1 0.537 0.541 0.533 0.056 0.059 0.059

(0.80, 0.10)
q = 8 0.825 0.829 0.824 0.015 0.017 0.015
q = 4 0.856 0.863 0.858 0.020 0.020 0.020
q = 2 0.866 0.870 0.866 0.025 0.025 0.028
q = 1 0.880 0.882 0.882 0.034 0.036 0.037

(0.10, 0.45)
q = 8 0.255 0.267 0.255 0.024 0.026 0.025
q = 4 0.412 0.434 0.413 0.033 0.033 0.032
q = 2 0.475 0.489 0.469 0.044 0.042 0.046
q = 1 0.536 0.546 0.533 0.055 0.059 0.059

(0.45, 0.45)
q = 8 0.614 0.627 0.613 0.020 0.025 0.021
q = 4 0.765 0.783 0.767 0.023 0.024 0.024
q = 2 0.824 0.834 0.822 0.028 0.027 0.032
q = 1 0.881 0.885 0.882 0.034 0.035 0.037

(0.10, 0.80)
q = 8 0.391 0.413 0.390 0.023 0.026 0.023
q = 4 0.670 0.700 0.672 0.026 0.027 0.026
q = 2 0.779 0.795 0.777 0.031 0.029 0.035
q = 1 0.880 0.886 0.882 0.034 0.035 0.037

Table 2: Estimates of Aggregate Autoregressive Parameter φy,0: A) Mean; B) Standard
Deviation
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A) Mean B) Std. Dev.

IND. MOD. HIGH IND. MOD. HIGH

(0.10, 0.10)
q = 8 0.062 0.066 0.059 0.039 0.033 0.039
q = 4 0.029 0.025 0.029 0.049 0.040 0.051
q = 2 0.013 0.015 0.019 0.048 0.037 0.049

(0.45, 0.10)
q = 8 0.061 0.064 0.059 0.034 0.029 0.036
q = 4 0.029 0.024 0.028 0.040 0.035 0.045
q = 2 0.012 0.013 0.016 0.040 0.032 0.041

(0.80, 0.10)
q = 8 0.060 0.062 0.061 0.023 0.018 0.023
q = 4 0.028 0.023 0.029 0.026 0.022 0.025
q = 2 0.013 0.011 0.015 0.027 0.022 0.026

(0.10, 0.45)
q = 8 0.280 0.292 0.278 0.035 0.031 0.037
q = 4 0.127 0.113 0.127 0.043 0.037 0.046
q = 2 0.060 0.055 0.064 0.042 0.033 0.043

(0.45, 0.45)
q = 8 0.273 0.271 0.273 0.026 0.025 0.029
q = 4 0.121 0.107 0.120 0.030 0.026 0.032
q = 2 0.057 0.051 0.058 0.030 0.023 0.029

(0.10, 0.80)
q = 8 0.494 0.485 0.493 0.028 0.018 0.031
q = 4 0.216 0.191 0.217 0.032 0.029 0.033
q = 2 0.100 0.091 0.103 0.033 0.025 0.032

Table 3: Estimates of Aggregate Spatial Parameter φy,1: A) Mean; B) Standard Deviation
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