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Abstract

A common way to estimate the mass of a galaxy is to observe the kinematics of objects orbiting it,
and then infer the mass by assuming a model for the gravitational potential and mass distribution.
We use a simulation approach to study biases that may occur when kinematic data are used in this
way. Data sets are simulated from two different velocity distributions and then each set is analysed,
either with complete velocity vectors (complete data) or without complete velocity vectors (incom-
plete data), using a Bayesian isotropic Hernquist (1990) model. We investigate three scenarios: (1)
the model and data come from the same probability distribution function (PDF), (2) the model and
data come from the same PDF and the data is incomplete, and (3) the model and data come from
different PDFs and the data is incomplete. No biases were found in scenarios 1 and 2, but a positive
bias was found in scenario 3. The cause of the bias in the latter scenario appears to be caused by the
isotropic Hernquist model incorrectly interpolating for the incomplete data.
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1. Introduction

Mass estimates and mass profiles of galaxies place important constraints on models and
theories in many fields of astronomy. Most notably, masses and mass profiles of galaxies
are important for testing both cosmological models and simulations that predict the spatial
distribution of dark matter in galaxies. The mass estimates also play a role in develop-
ing galactic evolution theories, star formation theories, and mass-luminosity relationships.
Measuring the mass and mass profile, however, is not easy.

Two notable ways to measure the mass of a galaxy are to measure 1) rotation curves, or
2) the velocity distribution of satellites orbiting the galaxy. The former is only applicable
to spiral galaxies, whereas the latter is applicable to elliptical galaxies. There is another
method, however, that uses the positions and velocities of tracers to estimate the mass of
the dark matter halo. Tracers orbit the host galaxy, and are objects such as dwarf galaxies,
globular clusters (GCs), halo stars, and planetary nebulae. We can measure the distance of
these objects, r, from the center of the Milky Way (Galaxy) via standard candles (i.e. ob-
jects with known intrinsic luminosities). The velocities of tracers in our line of sight can
be measured by observing the Doppler shift of known spectral lines in the object’s electro-
magnetic spectrum. The velocities of the tracers across the plane of the sky (also known
as the proper motion) are more difficult to measure, but measurements can be achieved
through parallax and/or many years of observation. Accordingly, not all tracers orbiting
the Milky Way have proper motion measurements. Both line of sight and proper motion
measurements are necessary to obtain the complete three-dimensional velocity vector of a
tracer and to convert the velocity into the galaxy-centered reference frame for analysis.

We explore the Bayesian method that uses kinematic data (r, v) of tracers to estimate
the mass and mass profile of a galaxy, which was first introduced by Little and Tremaine
(1987). We also propose a new method for estimating the mass of a galaxy with incomplete
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data. We search for biases that may occur when an incorrect model is assumed and when
the data is incomplete.

In the Bayesian method, one assumes a model for the gravitational potential of a galaxy,
and derives a probability distribution function for the satellites’ positions and velocities.
Bayesian inference is performed to obtain parameter estimates for the model, given the data
and prior assumptions. In order to investigate biases, we simulate data sets and perform an
analysis as if we were an observer at the center of the galaxy. The simulated data sets
represent tracers seen orbiting galaxies in nature, such as dwarf galaxies, globular clusters,
planetary nebulae, and halo stars.

For our work, we use the Hernquist (1990) model, which is both analytic and ubiquitous
in the literature. Although the model assumes spherical symmetry and no net rotation, and
a typical disc galaxy has rotation and a non-spherical shape, the model is still of interest for
estimating the large-scale mass distribution of the dark matter halo, which goes far beyond
the extent of the visible matter in a galaxy.

2. Models and Notation

We are interested in the cumulative mass profile of the Hernquist model, which is given by

7”2

Tra o

M (7" ) = Mtot
Mot 1s the total mass of the system and a is the scale radius, which determines the steepness
of the mass profile M (r).

We use a Galactocentric coordinate system, which is a non-rotating, inertial reference
frame in the center of the Galaxy. From this point of view, the velocity vector v for a
satellite can be split up into two components: 1) the radial velocity, in the line of sight of
an observer sitting at the center of the Galaxy, and 2) the tangential velocity, which is the
velocity projected onto the plane of the sky. These components are orthogonal to each other
and give the total speed of a tracer by

v=1/v2+0v? (2

where v, and v; are the radial and tangential velocity components respectively.

The velocity distribution of satellites orbiting a galaxy may be isotropic or anisotropic,
depending on the orbits of the tracers. If there is a bias towards elliptical orbits, then
the system is radially anisotropic, and if there is a bias towards circular orbits, then it is
tangentially anisotropic. The anisotropy parameter 3 describes the degree of anisotropy in

the system by the equation

2
Ot

where o2 and o7 are the radial and tangetial velocity variances (Binney and Tremaine
2008). The three extremes for 5 are

1. B — —oo, tangential anisotropy - only circular orbits
2. 8 =0, isotropic velocity distribution

3. 8 =1, perfectly radial anisotropy - plunging orbits
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Osipkov (1979) and Merritt (1985) independently introduced an anisotropic radius param-
eter, 4, to allow 3 to vary with r, such that

2

B(r) “)

= m
As r, — 00, eq. 4 goes to the isotropic case (5 = 0). Hereafter, the velocity anisotropy
described by eq. 4 will be referred to as OM-type.

Assuming a velocity anisotropy of the satellite population, and given the kinematic
information of the satellites, it is possible to learn about the gravitational potential of the
whole galaxy, and thus its mass. Little and Tremaine (1987) were the first to apply Bayesian
inference to this problem, and showed how to obtain the likelihood from a physical model
so that it can be used in Bayes’ theorem.

In astrophysics, the distribution function (DF) is the probability of a satellite having
a particular position 7 and velocity v in an infinitesimal phase space d°rd®v (Binney and
Tremaine 2008). The DF is a probability density function (PDF) and integrates to one,

/ f(r,v)drd3v = 1. (5)

The DF can be derived from the mass density profile p(r) and the gravitational potential
®(r) of a model. For example, the Hernquist model has a mass density profile given by

aMtOt
= " 6
plr) 27r(r 4+ a)3 ©)
and a gravitational potential
Mo
®(r) =— 7
(r=—2 ™

where the gravitational constant G has been set to 1. If the mass density profile and the
relative gravitational potential, U(r), are an analytic potential-density pair, then the mass
density can be written in terms of the relative potential, p(\W'), which can then be used in an
Abel transform to solve for the DF (see Binney and Tremaine 2008, for more details),

V2 e d
16 =15 == 5 )" ®)
where £ is the relative energy (per unit mass) of the satellite, given by

2

E(rv) = =5 +¥(r). ©)

When many satellites orbit the galaxy, the product of the DFs gives the probability of
finding all of the satellites with their positions and velocities (assuming independence),

n
p(10) =[] f(ri, vil6). (10)
i=1
Eq. 10 is the likelihood in the numerator of Bayes’ rule:
n
p(Bly) o [] f(ri,vil0)p (6). (11)
i=1
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In the case of the Hernquist model, ¥ () = —®(r), and for an isotropic velocity distri-
bution the DF becomes,

Mtot

)= 8\@7T3a3v§’ (1—-¢2)

5/2 [3 arcsin(q) + qm (1 - 2‘]2) (8(]4 - 8(]2 — 3)]

(12)
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g= ]2 gy =) et (13)
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Hernquist (1990) also derived the DF for their model when the system has OM-type
anisotropy. The DF for a system with an anisotropic velocity distribution is no longer a
function of £ alone— it becomes a function of both £ and the specific angular momentum
L = rv;. For notational simplicity, the Hernquist OM-type DF is written in terms of a new
variable () that takes into account the specific angular momentum:

where ¢ and v,, are given by,

L2
- — 14
Q 22 (14)
The OM-type Hernquist DF is then,

M  a

=)+ — L G(1 -2 (15)
(@)= f(@) 3 (mavy)? T3Q( q)
where f(§) refers to equation 12, with ¢ replaced by ¢:
a@)

] =1/ —. 16
q i (16)

Asrg — 00, Q — &, and f(Q) — f(g). In other words, as r, — oo, the OM-type DF
becomes the isotropic DF given by eq. 12.

3. Methods

3.1 Simulated Data

We use two types of simulated data sets in our exploratory analysis. The data sets consist of
tracer particles that have the basic kinematic elements (7, v,, v;). All data sets come from
the Hernquist (1990) model, but the first type of data have an isotropic velocity distribution
(eq. 12) and the second type have an OM-type velocity distribution (eq. 15). The data
sets we explore for scientific purposes have 25 tracers each, whereas the data sets used
to test code have 100 tracers each. There are 500 independent data sets of each type, so
that the Bayesian analysis can be repeated 500 times for each data-model combination. By
repeating the analysis many times on the same type of data, it is possible to discover biases
that may occur when the model assumed is different from the true model the data follow.
In this preliminary study, we do not introduce observational uncertainties. We analyse the
following three scenarios, under the assumption of an isotropic Hernquist model:

1. Isotropic data sets of 100 tracers each with complete velocity vectors
2. Isotropic data sets of 25 tracers each with incomplete velocity vectors (no vy)

3. OM-type data sets of 25 tracers each with incomplete velocity vectors (no vy)
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The first scenario is mainly for testing our method and code. We expect that when the
model and the data share the same DF, then on average the posterior probability will return
the true parameter values. Furthermore, we expect the credible regions for the M (r) profile
will not be over- or underconfident.

The second scenario introduces incomplete data into the analysis, treating all the un-
known v; values as parameters in the model. Because the model and data still share the
same DF, we expect that the posterior probabilities will return the correct parameter values
on average, but that the variance in the results will be larger. We might also expect that the
unknown v;’s can be estimated from the resulting Markov chain.

The third scenario not only has incomplete data, but also assumes an incorrect model.
This scenario represents the most realistic situation of the three cases.

3.2 Sampling and Convergence of the Posterior Distribution

When sampling eq. 2, we apply a Metropolis algorithm (Metropolis and Ulam 1949; Metropo-
lis et al. 1953) to obtain a Markov chain whose stationary distribution is proportional to the
Bayesian posterior probability. In scenarios 2 and 3, when the v;’s are treated as parame-
ters in the model, we also employ a Gibbs sampler (Geman and Geman 1984). The priors
on the parameters are uninformative; p(M;,;) and p(a) are uniform in space, and the priors
on the v; parameters are uniform in v?. The latter prior is chosen because v; is a two-
dimensional vector on the plane of the sky. We also assume that all tracers are bound to the
galaxy, i.e. £ > 0. Thus, the maximum tangential velocity allowed in the isotropic model
is

Vtmaz = V29U (1) — 02, (17)

which defines the upper bound in the prior for v;.

For each set of data, we create three parallel Markov chains that have initial values far
apart in parameter space. We assess convergence of the three chains with the convergence
diagnostic R, as suggested by Gelman and Rubin (1992). The code we use to calculate
R is available in the R Software Statistical Computing Language in the CODA package
(Plummer et al. 2006), and we use the SNOW package (Tierney et al. (2013)) for parallel
computing.

4. Results

Scenario 1

The distribution of the mean parameter values from the 500 Markov chains in scenario 1 are
shown in Fig. 1. The true parameter values are shown with a red dashed line, and the mean
of each parameter estimate is shown as a black dot. As expected, on average the parameter
estimates for M;,: and a returned the true parameter value. The standard deviation (SD) of
each estimate from a Markov chain is comparable to the SD of all the estimates from all
the chains (shown in the legend of Fig. 1).

We also check the M (r) credible intervals at different r values, and find that they
are completely reliable (see Eadie 2013, for more details). An M (r) credible region is
calculated from the stationary distribution of one of the Markov chains and is presented
in Fig. 2. The true M (r) profile is shown in red, and three credible regions are shown in
different shades of teal.
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Figure 1: Distribution of the estimates of M,y and a from scenario 1. M, is in units of
2.325 x 10° M, and a is in units of kpc.
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Figure 2: An example of M (r) credible regions from scenario 1. The mass profile is
scaled by the true parameter value of the total mass, M;,; = 3. The red line is the true
M (r) profile, and the shaded regions show the 50, 75, and 95% credible regions.
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Scenario 2

In scenario 2 we treat the v; values of the data as unknown, and sample them as parameters
in the model via a Gibbs sampler. The distribution of the parameter estimates obtained in
500 independent analyses are shown in Fig. 3. In constrast to scenario 1, there are only 25
tracers in each data set. The decrease in data points causes the standard deviation of the
parameter estimates to increase, as shown in the legends of Fig. 3

Fig. 4 shows an M (r) credible region plot from one data set. Note that the width of the
credible regions has increased compared to Fig. 2 as a result of the unknown v;’s and the
smaller data sets. The true M (r) curve fell within the 50% credible regions no less than
47% of the time, and fell within the 75% and 95% credible regions no less than 72% and
93% of the time.

Scenario 3

The final scenario considers data that is not only incomplete, but also follows a different DF
from that of the assumed model. When incomplete anisotropic data is assumed to follow as
isotropic model, we find a positive bias in both parameter estimates, as shown in Fig. 5. An
example M (r) credible region from scenario 3 is presented in Fig. 6. The true cumulative
mass profile (red curve) falls within the 75% credible region for all 7, but does not follow
the overall shape predicted by the isotropic model. In particular, the predicted profile rises
more steeply than the true profile, and reaches a higher overall total mass.

In scenario 3, the M (r) credible regions are overconfident on average, as shown in
Table 1. For example, over the 500 analyses in scenario 3, the true M (r) profile falls
within the 50% credible region only 32.6% of the time at » = 4kpc. The overconfidence in
M (r) credible regions is true for all values of 7, with the overconfidence becoming worse
at larger 7. The innermost regions (r < 0.20kpc) are described reasonably well by the
isotropic model, but as 7 increases, the credible regions become quite overconfident. At
r = 80kpc, the true cumulative mass profile falls within the 95% credible region only 78%
of the time.

The reason for a biased mass estimate in scenario 3 is most likely caused by the as-
sumptions made by the isotropic model. The isotropic model assumes that there is an even
mixture of orbit types at all r values. However, in OM-type anisotropy the orbits become
radially biased at larger r, effectively lowering the tracers’ v; values. Without knowing
tangential velocities or the true anisotropy of the system, the isotropic model estimates a
high v; parameter at large . This behavior is shown in Fig. 7, where the true v; values of
the tracers are orange diamonds, and the estimates of v; and their 95% credible intervals are
shown as blue dots with error bars. The light blue curve is the maximum allowed v; for a
bound particle, calculated using the isotropic model parameter estimates from the analysis
and eq. 17. The orange curve is the maximum allowed v; for a bound particle given the
true model parameters and the OM-type Hernquist model. In both models, the height of
the curves are determined mainly by the total mass parameter M;.;. At large r, the accept-
able tangential velocities in the OM-type Hernquist model are much lower than those in
the isotropic model. Thus, when an isotropic model is assumed, v; parameter values that
would normally cause tracers to be unbound in an OM-type model are accepted, driving up
the parameter estimate for the total mass.
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Figure 3: Distribution of parameter estimates for 500 data sets in scenario 2. The true
parameter values are shown as red dashed lines, and the mean of the parameter estimates
are black dots. Mj,; is in units of 2.325 x 109M@, and a is in units of kpc.
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Figure 4: Example credible regions for one data set in screnario 2.
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Figure 5: The distribution of parameter estimates from 500 analyses in scenario 3. My, is
in units of 2.325 x 109 M, and a is in units of kpc.
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Figure 6: Example M (r) credible regions for scenario 3. The dashed line at M (r) /Mo =
1 corresponds to the true total mass, and the vertical grey line is the true scale radius a.
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Figure 7: Tangential velocity estimates as a function of radius for one data set in scenario 3.
The light blue curve shows the maximum speed for a bound particle given the parameter
estimates from the posterior, while the orange curve shows the maximum speed given by
the true anisotropic model. The blue dots are the estimates of v; and the error bars represent
95% credible intervals. The orange diamonds are the true tangential velocities.

r (kpe) | within 50% | within 75% | within 95%
0.01 46.6 70.8 93.0
0.03 46.4 70.6 92.4
0.07 45.6 70.0 92.2
0.20 42.2 67.8 91.6
0.54 37.4 61.8 90.0
1.47 31.8 55.2 83.0
4.00 32.6 52.2 78.4
10.86 32.6 50.6 78.4
29.47 32.6 52.0 78.0
80.00 32.6 52.0 78.0

Table 1: Reliability of the credible regions in scenario 3 at different r values. The numbers
in the second to fourth columns show the percentage of times that the true M (r) profile fell
within the corresponding credible region.
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5. Discussion

The analyses carried out for scenario 1 were mainly for testing purposes, and they demon-
strated that the parameter estimates for M;,: and a can be well estimated when the data and
the model have the same DF. The test also showed that the credible regions for M (r) in the
isotropic Hernquist model are reliable when the data comes from the same distribution.

We found in both scenarios 2 and 3 that the lower number of particles and the incom-
plete data caused the credible regions for M (r) to widen significantly, and that the distri-
bution of parameter estimates will have a larger variance. While the estimates in scenario 2
remained unbiased, the estimates in scenario 3 showed a positive bias. Furthermore, the
M (r) credible regions in scenario 3 became somewhat unreliable at large 7.

The analyses performed here do not represent a realistic scenario for a number of rea-
sons. For one, our analyses looked at incomplete data or complete data— not both simulta-
neously. When using tracer objects to estimate the mass of the Milky Way, at least half of
the tracers do have tangential velocity measurements. This information is invaluable to the
analysis and we expect that it would help reduce biases such as those seen in scenario 3.
Second, we did not include any measurement errors or observational uncertainties in the
analysis. In astronomy, the technical capabilities of telescopes and optical equipment is be-
lieved to be very well understood, and thus measurement errors are good indicators of data
quality. Therefore, they could be included in the analysis via a hierarchical model and used
to weight the data. Third, recent evidence suggests that the dark matter halo may not have
spherical symmetry, and instead may be triaxial in shape (e.g. Law et al. 2009). Fourth, all
of the simulated tracers in our analysis are bound to the system. In nature, we don’t always
know if satellites and tracers are bound to the Milky Way. The dwarf galaxy Leo I was a
contentious object in this regard for many years, and only after its proper motion was mea-
sured and taken into account has the issue been somewhat settled (it’s likely to be bound,
see Boylan-Kolchin et al. 2013). The boundedness of some other dwarf galaxies that are
often used as tracers are still in question, however, such as the Magellanic Clouds (Besla
et al. 2007). It would be useful to investigate the effects of bound and unbound tracers with
more simulations, to see how strongly they affect the parameter estimates.

From Fig. 7 it is clear that the v; estimates are not well constrained, as the estimates
of v; tend to go to an average value between v; = 0 and vy, for all . However, the v;
estimates provide insight into the reasons for biases in the My, and a parameter estimates.

The results from scenario 3 seem to imply that the isotropic Hernquist model might
not do well with a real astrophysical problem if the velocity distribution of the system is
anisotropic. However, for the Milky Way we do have tangential velocity measurements
for some satellites, which provides some constraint on the velocity anisotropy of the tracer
population. By incorporating both complete and incomplete data simultaneously, the bi-
ases may reduce or increase. Thus, the next step is to analyse simulated complete and
incomplete data simultaneously, and perform tests similar to those outlined here.

6. Conclusion

We have explored the reliability of the Bayesian method to uncover the true cumulative
mass profiles of simulated data in three different situations, assuming the Hernquist model
and an isotropic velocity distribution of tracer particles. The method is reliable when the
simulated data and the model share the same DF, even when the data are incomplete. The
parameter estimates are biased, however, when the simulated data and the model have
different DFs, and the data are incomplete. The assumptions about the unknown tangential
velocities made by the isotropic Hernquist model appear to be the cause of these biases,
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but it is unclear if the bias will occur when a mixture of complete and incomplete data is
analysed. Future simulations will need to be performed to investigate ths issue.

Despite the biases observed in our simulations of scenario 3, the true M (r) profiles
were still reasonably well estimated by the posterior distributions. If the methods presented
here were used in an analysis of Milky Way tracer data, then it would be advisable to report
results with at least 95% credible regions.
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