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Abstract

In this paper, the characterization of the joint distribution of random set vector by the belief function
is investigated. A method for constructing the joint belief function of discrete bivariate random sets
through copula is given. Conversely, subcopulas can be obtained from the bivariate belief functions.
For illustration of main results, several examples are given.
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1. Introduction

Random sets can be used to model imprecise observations of random variables where the
outcomes are assigned as set valued instead of real valued. The theory of random sets is
viewed as a natural generalization of multivariate statistical analysis. Random set data can
also be viewed as imprecise or incomplete observations which are frequent in today’s tech-
nological societies. The distribution of the univariate random set and its properties can be
found in Nguyen [5], Nguyen and Wang [6] and Shafer[10]. Recently, the characterization
of joint distributions of random sets on co-product spaces was discussed by Schmelzer[8],
Nguyen[7] and Wei et al [13]. In this paper, this characterization is modified for discrete
random set vector.

Copulas are used to model multivariate data as they account for the dependence struc-
ture and provide a flexible representation of the multivariate distribution, as seen in Nelson
[4], Harry [3] and Wei et al. [12]. The notion of copula has been introduced by Sklar [11].
Copulas are multivariate distributions with [0, 1]-uniform marginal, which contain the most
of the multivariate dependence structure properties and do not depend on the marginals. It
is known that copulas connect with marginals to obtain possible joint distributions. In order
to investigate the dependence relationship between two random sets, it is necessary to built
a bridge for connecting the joint belief functions of random set vector and copulas. For
references, see Schmelzer [9], Nguyen [7], Joe [3] and Nelsen [4]. In this paper, a method
for constructing the joint distribution of the discrete bivariate random set vector through
copula is given.

This paper is organized as follows. The characterization of the joint distribution of ran-
dom set vector by its joint belief functions is obtained in Section 2. A method of connecting
the joint belief function of random set vector with given marginals and copula(subcopula)
is given in Section 3. To illustrate our main results, several examples are given.

2. Characterization of the joint belief function of discrete random set vector

Throughout this paper, let (€2, .4, P) be a probability space and let F; and F be finite sets,
where (2 is sample space, A is a o-algebra on subsets of €2 and P is a probability measure.
Recall that a finite random set S with values in powerset of a finite £ isamap S :  — 2F
such that S71({A}) = {w € Q : S(w) = A} € Aforany A C E. Let f : 28 — [0, 1] be
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f(A) = P(S = A), then f is a probability density function of S on 2Z. In the following,
we will extend this definition to the cases of the random set vector.

Definition 2.1 A random set vector (Sy, Sz) with values in 21 x 252 is a map (S1,S») :
Q — 281 x 282 such that {w € Q : S)(w) = A,S3(w) = B} € A, forany A C F; and
B C Es. Let h : 2F1 x 2F2 5 [0, 1] be a joint probability density function of (S1,S»),

ie, h>0and >, >, h(A,B) =1, where h(A,B) = P(Si1(w) = A,S2(w) = B),
ACE, BCE»
AgEl anng E2.

Inspired by the distribution of univariate random sets, we are going to define axiomati-
cally the concept of joint distribution functions of the random set vector (S1, S2).

Theorem 2.1 Let (S1,Ss) be a (nonempty) random set vector on 25+ x 22, and
H 2P x 2F2 [0, 1] be

H(A,B)=P(Si CA,8CB)= Y > h(CD), Aec2®, Be2® ()
CCADCB

Then, H satisfies the following properties:
() H(0,0)=H(0,B) = H(A,0) =0, and H(E\, E3) = 1;
(i) H is monotone of infinite order on each component, i.e., for any B in 22 and

any distinct sets A1, A, -, Ay in 281 k> 1,
k
H <U Ai,B> > Yy (-ytE (ﬂ Ai,B>, )
i=1 P£AIC{1,2, k} icl
and for any A € 28 and any distinct sets By, By, --- , By in 272, 0 > 1,
)4
HlAUB = > oME[ANB]; 3)
j=1 0£TC{1,2,- 6} jeJ
and
(iii) H(.,.) is jointly monotone of infinite order, i.e., for distinct sets Ay, Aa, - -+, Ay
in 2F1 and distinct By, Bo, - - - , By in 252, where k. £ are positive integers,

!
> =y E (AL U B

i=1  j=1 DAIC{1,2, k el j=1

}
k

‘J|+1H U O] (4)
i=1 €

m

+ C =
>

M -
&
AV

0#JC{1,2,-, }
S R SRS R A
OAIC{1,2,-+ ,k} 0AIJC{1,2,--- £} i€l jeJ

Proof. The Property (i) is obvious. For Property (ii), it is sufficient to show that (2) holds
for any fixed B € 22, Indeed, we can treat H (A, B) as a univariate belief function of
random set (S1, B) so that (2) holds. (3) can be proved similarly.
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Now, for Property (iii), let7 (C') = {i = 1,2,--- ,ksuchthat C C A;} and £(D) =
{7 = 1,2,--- £suchthat D C B;j}. Then C C [\ A;if J(C) # 0 and D C
1€J(C)
N B;if K(D) # 0. Clearly,
jeK(D)

H{J4a.UBi| = > > wcebp= > Y wCD)

=1 7=1 k 4 CCE; DCE»
cc _U1 A; DC _U1 B;j TJ(C)#£D K(D)#0
1= 1=
+ > > weD+ Y. Z h(C, D)
DCEs> CCE;
CC U Ai K(D)#0 J(©C )#@DCU B;
1= j=1
J(C)=0 K(D)=0
= (1) + (II) + (II0)
() +{UI) + (D)} +{UII) + (D)}

Note that for any nonempty finite sets A and B, the following identities always hold:

So(=plert=1 and Y 3 (—DIHFPI=1

0£CCA 04£CCA0#£DCB

By using these identities we can rewrite (I), (I)+(II) and (I)+(III) given above as follows,

m = 3 3 wep

CCE1 DCEs
J(C)#0 K(D)#0

- X Xy s e

CCE1 DCEs |0£ICT(C)0£JCK(D
J(C)#0 K(D)#0

- 3 S (=N N w(C, D)

OAIC{L,~ k) 0£IC{1, 6} CCE,  DCE,
J(C)DIK(D)DJ

= 3 S nfHE [N AL () B
OAIC{1, k} 0#£JC{1,---£} i€l jeJ

Similarly, we obtain

k
m+mo = Y, )HE{{JA B,
D£JC{1, 0} =1 jeJ

and
l
In+@O= > (e |4 U
PAIC{1,2,+ k} iel

Therefore the Property (iii) holds. [l
It turns out that the properties (i), (ii) and (iii) of H in the Theorem 2.1 characterize the
joint distribution function of a (nonempty) random set vector.
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Definition 2.2 A set function H : 21 x 252 — (0, 1] satisfying the properties (i), (ii) and
(iii) in the Theorem 2.1 is said to be the joint belief function of random set vector (S1, Ss).

The following result shows that for any given joint belief function H of (S, Ss), there
exists a probability density function h : 21 x 22 — [0, 1] corresponding to H.

Theorem 2.2 [f H : 21 x 252 — [0, 1] is such that

(i) H0,0)=H(0,B) = H(A,0) =0, and H(E, E») = 1,

(ii) H is monotone of infinite order on each component, and

(iii) H is joint monotone of infinite order. then for any (A, B) € 2F1 x 2F2  there exists
a nonnegative set function h : 21 x 2F2 — [0, 1), called the Mdbius inverse of H, such

that
H(A,B) = Z Z h(C, D) (5)
CCADCB
and
> > weD) =1 (6)
CCE, DCE»

Proof. Let b : 281 x 282 — [0, 1] be defined by
WA B) =Y Y (-1)NHIRWIH(C, D), (7)

CCADCB

where A\ C = AN C°and C° is the complement of C. First we need to show £ is
nonnegative.

From (i), it is easy to see h(0,0) = h(A,0) = h(0, B) = 0, where A C E1, B C E».
Also, it is obvious h({z},{y}) = H({z},{y}) > 0, forany x € E1,y € E».

Forany A C FEj, y € Ey with |A| > 2, we assume that A = {x1,x9, -+ ,x;}. Let
A; = A\ {x;},i=1,2,--- k. Then from (7), we have
k
WA YY) = HA) =Y HA {y) + > H(Ai, N Ay, {y}) + -
i=1 i1<iz
k—1
HEDE Y B () Ay
1< <bp_1 7j=1
0AIC{1,2, k} i€l

by Property (ii), h(A,{y}) > 0. Similarly, we obtain h({z}, B) > 0 for any z € Ej,
B C E, with |B| > 2. Finally, for any A C E; and B C FE with |[A| > 2 and |B| > 2,
say A = {x1,x9, -+ ,xx} and B = {y1,y2, - ,ye}. Let A; = A\ {z;},i=1,2,--- |k
and B; = B\ {y;},7=1,2,--- ,{. Then,

h(A,B) = HAB) - >  (-nW'm {4, B
P£JC{1,2,- £} jeJ
D D G <ﬂ Ai7B>
0AIC{1,2,- ,k} iel

+ ) > (1)I|+JH(ﬂAi,ﬂBj>
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therefore, by Property (iii), h(A, B) > 0.
Next, we need to show > > h(C, D) = 1. Note that

CCEy DCE>
DD MED) = 3 3> Y () EHPVIH(E, F)]
CCADCB CCADCB ECC FCD
= Y Y (c) eI ),
ECCCAFCDCB

If E = Aand F' = B, the last expression is H(A,B). If E # A or F # B, then
A\ E has 2/“\El subsets and B \ F has 2/%\F| subsets, so there are even number pair of
subsets (C, D) such that E C C C Aand FF C D C B, exactly half of which will make
(—1)IC\EIHIP\F] t6 be 1 and half are —1. Thus

Z Z DIOEHD\FI (B F) =0, foreach E#A orF # B.
ECCCAFCDCB

Therefore, > >  h(C,D)= H(A,B).

CCADCB
In particular, 1 = H(E1,Es) = >, >, h(C,D), so that h is a joint probability
CCE1 DCE,
density on 261 x 2F2, U

The explanations of Theorem 2.1 and Theorem 2.2 are given below.
Remark 2.1 (a). Consider the set function Fy (A) = H(A, E5), A € 21 Itis easy to show
that F7(A) is a belief function of random set S; over E;, which is called the marginal
belief function of random set S;. Similarly, Fy(B) = H(E, B), B € 22 is the marginal
belief function of random set Sy over E5. More details on belief functions of univariate
random sets are given in Nguyen[5].

(b). For any given B C Ej, let fo(B) be the Mobius inverse of Fy(B). Then

P(8; C A8 =B) =Y _ h(C|B)f2(B) = Hs,s,(A|B) f(B),
CCA

where h(C|B) = P(S1 = C|S2 = B) is the conditional probability of S; = C' given
Sy = B. We call Hg,|s,(A|B) be the conditional belief function of S; given S; = B
Similarly, we can obtain Hg, s, (B|A) the conditional belief function of S given S; = A.
For a given joint belief function H (A, B) of random set vector (S1,S2), we say S1 and Sy
are independent if and only if H (A, B) = F}(A)Fy(B), forall A € 251 and B € 22,

(c) In Theorem 2.1, if By = By = --- = By = B, the Property (iii) is reduced to an
equality, so Property (ii) is needed for characterizing the marginal belief functions of Sy
and So, respectively.

(d) In view of the direct product (21 x 272, <) of two locally finite posets (21, C)
and (2P, C), where (C, D) < (A, B) means C C Aand D C B, with its Mbius function

e (280 x 272) 5 (2P0 x 2P2) 5 7 with u((C, D), (A, B)) = (—1)IM\CHIB\DL

we have

H(A,B)= Y h(C,D),

(C,D)<(A,B)
where h(A, B) is the Mobius inverse of H,

WAB) = Y (—)MCHRPIH(C, D). ®)
(C,D)<(A,B)
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h(.,.) is also called the probability assignment of random set vector (S1,S2). Note that
there is a bijection between the joint belief function H and its the corresponding joint
density h (See e.g. Nguyen [7]).
Remark 2.2 Similar to property of Theorem 2.2, there is a property called completely
monotone in each component, given by Schmelzer [8, 9] and Nguyen [7] as follows.

A set function Hy : 251 x 282 — [0, 1] is said to be completely monotone in each
component, if for any & > 2 and (A;, B;) € 261 x 282, =1,2--. |k,

k k
H, (U A;, U Bi) > Z (-l (ﬂ AiaﬂBi> . 9
i=1 =1 }

P£IC{1,2,+ k iel el

The difference between (2)-(4) and (9) is that (A4;, B;)’s in (2)-(4) are distinct sets while
(A;, B;)’s in (9) are not necessary distinct sets and can be duplicated many times if needed.
In the following, we will show that (9) is equivalent to (2)-(4).

Proposition 2.1 If H : 21 x 282 — [0, 1] is such that H(),0) = H(), B) = H(A, () =
0, and H(E\, E2) = 1, then H is completely monotone in each component given (9) if and
only if H is monotone of infinite order on each component given in (2), and (3) and H is
Jjoint monotone of infinite order given in (4).

Proof. For “only if” part, assume that (9) holds. Let Ay, Ay---, A; € 2F1 be distinct,
B e 252 ifweset B = By = --- = Bi, = B, then (9) is reduced to

(o) (Unys)

> > o (—pitm (ﬂ A, Bi>

iel i€l
= Z DIy (ﬂ AZ,B>
OAIC{1,2, k } icl
so that (2) holds. Simiarly, if A € 251, weset Ay = Ay = --- = A, = A, and

By,By---, B, € 272 be distinct, then (9) implies (3).
Now let Ay, ---, A, € 2P0 and By, --- , By € 2F2 be distinct. Define sets C; and Dy,
1<t<k+ by

. VA
Ay ifl<t<k UB, ifl<t<k
Ct: k Dt: i

A <t <
Ui ifk+1<t<k+?, By_» ifk+1<t<k+/
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Then, (9) can be written to:

k l
H{|JA4 B | = > o (-p*E <ﬂ Ci, () Dt>
i=1 j=1 PAIC{1, k+L} tel tel
= (-n+tH (ﬂ L) Dt>
PAIC{1,- k} tel tel

+ > (—)H+t g (ﬂ ct,ﬂpt)

OATC{k+1, k+£} tel tel

s (o)

In{1, ,k}#£0 tel tel
IN{k+1,- k+£}#£0

l
- > cymm(nays

0A£ICA{1, k} i€l j=1
k
+ Y oYHE AL D
0£JC{1,- £} i=1 jeJ

- S ) (AL B

PAIC{1, kY O£TC{1, £} iel  jeJ

So that (4) holds.
For “if” part, assume (2)-(4) holds. By Theorem 2.2, there exists a nonnegative set
function h : 251 x 22 — [0, 1], such that

H(A,B)=Y_ Y mCD), and > > hCD)=1

CCADCB CCEy DCEs

Now, for any k& > 2 and (4;, B;) € 281 x 2F2,j = 1,2,--. k. Forany C C E,
and D C Ey, let 7(C,D) = {i = 1,2,--- ,ksuchthat C C A;,and D C B;}. Then
CC N AadDC () B;if 7(C,D) # . Clearly,

i€J(C,D) i€J(C,D)
k k
i=1 i=1 k k C,.D
cc .L:Jl A; DC ~L:J1 B; J(C,D)#£D
> (—)HL | w(C, D)
C,D 0£ICT(C,D)
J(C,D)#0
PAIC{1, k} C,D
J(C,D)DI

_ (1) (ﬂ Ay, ﬂ BZ>

0AIC{1, -k} el el
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And hence (9) holds. O

Given a set function H : 251 x 22 — [0, 1], it is nature to ask whether if it is a well-
defined joint belief function. By the conditions shown in Theorem 2.1, we only need to
check all distinct sets Ay, --- , Ag and By, --- , By.

3. Connections between joint belief functions and subcopulas

From the joint belief function of random set vector(S1, S2), it is not easy to tell the depen-
dence relationship between S; and S,. Copula is a useful tool for modeling dependence
of random variables as they account for the dependence structure and provide a flexible
representation, see Nelson[4], Sklar[11], Hung[7], and Wei et al.[12]. Copulas connect
marginals to obtain possible joint distributions. Therefore, it is necessary to built a bridge
for connecting the joint belief functions of random set vector and copulas.

Definition 3.1 (Sklar 1959)[11] A copula C is a function C(.,.) : [0,1]? — [0, 1] satisfy-
ing:

(i) C(u,0) = C(0,v) = 0, foru,v € [0, 1],

(ii) C(u,1) = u, C(1,v) = v, for u,v € [0, 1], and

(iii) for any (u1,v1) < (u2,v2), C(uz, v2) — C(u, v2) — C(uz,v1) + C(uy,v1) = 0.

Let H be the joint distribution function of a random vector (X,Y") with marginals F'
and G, then there exists a copula C such that H(z,y) = C(F(x),G(y)). Furthermore,
if the marginals are continuous, then the copula C is unique. In order to investigate both
discrete and continuous distributions, we consider a slightly more general concept, namely
subcopula. A bivariate subcopula is a function C'(.,.) : Iy x Is — [0, 1] where I, I C
[0, 1] containing 0 and 1, such that (i), (ii) and (iii) in Definition 3.1 are satisfied on its
domain. An initial approach of using copulas for random sets was discussed by Alvarez
[1].

In this section, we are going to investigate some connections between joint belief func-
tions of discrete random set vector and copulas(subcopulas).

3.1 An algorithm for constructing joint belief functions through copulas

Given two univariate belief functions Fj(A) = P(S; C A),A € 21 and F4(B) =
P(S; C B),B€ 22 on finite domains F; and Fs , respectively, what are all possible joint
belief functions, H (A, B), with these given marginals? In the following, we will introduce
a method for constructing joint belief functions from given marginal belief functions and
copula.

Let fi(A) = P(S1 = A) and f2(B) = P(S2 = B) be the densities of S; and Sa,
respectively. Since E;’s are finite sets, we can order the elements of F(f1) = {A C E; :
f1(A) > 0}, by the Lexicographical order(also known as lexical order, dictionary order) as

‘F(fl) = {A17A27 T 7Am}
Similarly, we can obtain
.F(fg) = {B CEs: fQ(B) > 0} = {Bl,BQ, s ,Bn}

Let B; is the collection of all Borel subsets of [0, 1] and A(dz) is the Lebesgue measure on
B;. Consider the probability space ([0, 1], By, A(dx)). For Fj(A), partition [0, 1] into m
intervals Iy, I, - - - , I,,, with length f1(A;), A; € F(f1). Similarly, for F»(B) = P(S2 C
B), partition [0, 1] into n intervals Jy, Jo, - - -, J,, with length fo(B;), Bj € F(f2). Define

S1:10,1] = F(f1) Si(z)=4; forzel,i=1---,m, (10)
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and
S3:[0,1] = F(f2)  S3(y)=B; forye Jj,j=1---,n (11)

Observe that the Lebesgue measure A(dz) on [0, 1] corresponds, by Lebesgue-Stieltjes
theorem, to the distribution function x — =z, on [0, 1], of the uniform random variable
on it. As such, a joint distribution on [0, 1]* with uniform marginals is preciesly some
copula C.

Note that each copula C, as a bivariate distribution, generates a probability measure on
By x By of [0,1]2, denoted as dC, by

dC{[ul,uQ] X [Ul,vg]} = C(ul,vl) — C(ul,vg) — C(UQ,Ul) +C(U2,U2). (12)

Now we can consider the random set vector (S}, S5) : [0,1]2 — 21 x 2P2 which has
marginal densities f1, fo. Let C be a copula. If we equip the measurable space ([0, 1], By x
B1) with the probability measure dC, then the function He : 21 x 2F2 — [0, 1], defined
by

He(A, B) = dC{(z,y) € [0,1]" : S{ () C A, S3(y) € B}

2 / / (13)
=dC{(x,y) € 10,1]° : S;(x) x S5(y) € A x B}.

In summary, we have the following result,

Proposition 3.1 For any given univariate belief functions Iy and F» of random sets Sy and
S, and a copula C, if we equip an order on their focal sets F(f1), F(f2), then the joint
belief function of random set vector (S1, S2) can be constructed by (13). Furthermore, the
joint density of random set vector (S1,S2) can be obtained by its Mobius inverse of He
given in (8).

Note that it is easy to verify that He(.,.) has marginal belief functions F; and F5. The
following example is an illustration of our construction method.

Example 3.1 Let £y = {1,2} and E> = {3,4,5}. Suppose the densities of random sets
St and Sy are given by

H({1}) = f1({2}) = 0.25, f1({1,2}) = 0.5,

and
f2({3}) = 0.2, fo({4}) = f2({3,5}) = 0.3, f2({3,4,5}) = 0.2,

respectively. Now if we equip F(f;) with Lexicographical order, we will obtain a unique
Jjoint belief function of S1 and Ss for any given copula C.
Consider the orders given by

F(h) =H{15{25{1,2}} and F(f2) = {{3},{4},{3,5},{3,4,5}}.
Define 8] : [0,1] — F(f1) and S} : [0,1] — F(f2) respectively by by

{3}, ify €10,0.2],
{4}, ify € (0.2,0.5),
3,5}, ifye(0.5,0.8],
{3,4,5}, ify e (0.8,1].

1}, ifzel0,0.25],
Si(z) = ¢ {2}, ifx € (0.25,0.5], Sh(y) =
{1,2}, ifz € (0.5,1]

If we apply Farlie-Gumbel-Morgenstern copula
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C(u,v) =uwv(1+ p(1 —u)(1 —wv))

with p = %, then from (13), we obtain the joint distribution given bellow,

He | {3} 4 {55 34 {35 45; {345}
{1y | 13200 267/3200 0 19/128 421/3200 367/3200  1/4
{2} | 117200 249/3200 0  17/128 407/3200 249/3200  1/4
{12} | U5 310 0 12 12 3/10 1

Table 1: Joint distribution of (S, Sa).

Then, from (8), we can calculate the joint density, he, of (S1,S2) given below.

he | {3} 4 {5 (34 {35} {45} {345}
{1y 113200 267/3200 0 0  213/3200 0  7/200
{2} | 11/200 249/3200 0 0  231/3200 0  9/200
{12} | 2/25 111/800 0 0  129/800 O  3/25

Table 2: Joint density of (S1,S2).

Remark 3.1 Note that the construction method given above shows that the joint distribution
H¢ depends not only on copula C but also on the order of F(f1) and F(f2). Nguyen [7]
suggested us to use the principle of maximum entropy for selecting the orders of A;’s and
Bj’s so that the definition of joint distribution is determined. However, this selection of A4;’s
and B;’s is not unique so that same maximum entropy can result different joint distribution
of (51, 82)

Example 3.2 Forexample, let E1 = {1,2} and E5 = {3,4}, f1({1}) = 1/3, fi({1,2}) =
2/3 and f2({4}) = 3/4, f2({3,4}) = 1/4, all four different orders on F(f1) = {A1 =
{1}, Ay = {1,2}} and F(f2) = {B1 = {4}, By = {3,4}} give different distributions.

However, all four different orders gives the same entropy,

Ewlhc)=— Y. hc(A B)log, ho(A, B) = 0.5183131.
Ae2F1 Be2F2

As an application of the construction method given in this section, the joint belief func-
tion can be applied in game theory. Given two correlated univariate games, one can further
calculate the joint Shapley’s value based on the copula based joint belief function. More
detials about the connections between the joint belief function and its applications on the
joint game can be found in Wei et al [13].

Example 3.3 (See Fernandez [2] with some values changed) Consider three cell-phone
operators (namely O1, 02, and O3) that want to enter a new market. There are two cri-
teria that must be considered in the process. On the one hand, there is the profit that has
been estimated from the market analysis. On the other hand, there is the coverage, which
is regulated by law. Thus, the percentage of population covered by each operator or by
merging is fixed by the government. Cover- age is very important because it is known to
improve the return in the medium and long run. Let us assume that profit is measured in
millions of dollars and coverage in percent. We represent by vectors with two entries the
values obtained by each operator: the first entry is the profit and the second one is the
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coverage. Let us consider the following data that represent the values obtained in different
cooperation situations:

Coalition | {O1} {02} {03} {O1,02} {O1,03} {02,03} {01,02,03}

21 2 3 3 6 6 8 12
Vo 20 40 10 70 30 50 100

Table 3: Two correlated games vy and 1.

Let set functions v and v be the profit and the coverage of each coalition, respectively.
Note that vy and vy are converted to standardized games vy and vl which are belief func-
tions, given in Table 4.

Coalition | {O1} {02} {03} {01,02} {01,03} {0203} {01,02,03}
V] /6 14 113 172 172 23 1
vh 02 04 01 0.7 0.3 0.5 1

Table 4: | and v/} .

If we use the correlation coefficient of the profit and the coverage p = 0.83, and adopt
Farlie-Gumbel-Morgenstern copula C,(u, v) to construct the joint game (or the joint belief
function ) v, then we have the following Table 5.

v {01} {02} {03} {0O1,02} {01,03} {02,03} {01,02,03}
{01} 052 076 013 139 .065 .089 1/6
{02} 064 107  .022 191 .086 129 1/4
{03} .059 13 .035 225 .094 .164 1/3

{01,02} 126 213 .045 .38 171 258 172

{01,03} 11 206 .048 363 159 253 172

{02,03} 131 266 .067 464 199 333 2/3
{01,02,03} | 0.2 0.4 0.1 0.7 0.3 0.5 1

Table 5: The joint game v of v1 and vy .

Note that the last row and the last column of v can be treated as the standardized the
vector-valued game (i in Table 3.

Remark 3.2 From Example 3.3, we can see that the vector valued game can be treated as
special case of of the joint belief function whose marginals are games of the vector valued
game respectively. For more details of the joint belief function and the joint game see Wei
et al[13].

3.2 Constructing a subcopula from the joint belief function

The previous subsection shows that given marginal belief functions and a copula, we can
construct a joint belief function. Conversely, given joint belief function, we can obtain a
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subcopula. Note that any subcopula can be extended to a copula, but its extension is not
generally unique.

Now given a joint belief function H : 2F1 x 2F2 — [0, 1] of discrete random set
vector (S1,S2), we can find its marginal belief functions Fi(A) = H(A, Ey), Fa(B) =
H(F1, B) and the corresponding marginal densities f; : 281 — [0,1], fo : 262 — [0,1].
By the construction method given in (10) to (13), we can solve for a subcopula C’.

Proposition 3.2 Given a joint belief function H : 251 x 22 — [0, 1] of discrete random set
vector (S1,82), if we equip an order on their marginal focal sets F( f1), F(f2), then there is
a unique subcopula C', such that H(A, B) = C'(F1(A), Fa(B)), forany A C Ey, B C Ej,
where I\ and F> are marginal belief functionals.

Proof: Given H : 2F1 x 22 — [0,1], we can find two marginal belief functions Fy :
281 — [0,1] and Fy : 22 — [0,1] by F1(A) = H(A, Es) and Fy(B) = H(E1, B) for
any A C Fy and B C FE5. Furthermore, we can find two marginal densities f; and fo.
Since E;’s are finite sets, we can order the elements of F(f1) = {A C E; : fi(4) > 0},
by the Lexicographical order as

]:(fl) = {A17A27 T 7Am}
Similarly, we can obtain
F(fa) ={B C Ey: fo(B) >0} ={By,Bs, -+ ,Bn}.

For F (A), partition [0, 1] into m intervals Iy, Io, - - - , I,, with length f1(4;), A; € F(f1),
assume the partition is 0 = ig < i3 < -+ < ipy—1 < iy, = 1. Similarly, for F5(B) =
P(S; C B), partition [0, 1] into n intervals Jy, Jo, - -, J, with length fo(B;), B; €
F(f2), assume the partitionis 0 = jo < j1 < --- < jn—1 < jn = L.. Define

S1:00,1] = F(f1) Si(z)=A4; forzel,i=1---,m, (14)
and

S [0,1] = F(f2) Sy(y) =B; forye Jj,j=1,---,n. (15)
Then, S/s are two marginal random sets with densities f;. Let Iy = {io, -+ ,%m,} and
Iy = {jo, - ,jn}, then I; C [0, 1] which contains 0 and 1. Then we can define C’:

I x Iy — [0,1] by (13): Define C'(u,0) = 0 = C'(0,v), and C'(i1,j1) = C'(i1,71) —
C'(i1,0) — C'(0,41) + C'(0,0) = H(A;y, By), following this pattern, we can define C’ for
all i € I and j € I5 recursively and it is easy to verify C’ is indeed a subcopula by the
definition. O

The following example is an illustration of the above construction algorithm.

Example 3.4 Given a joint belief function H in the following table,

H | {3} {4 {5} {34) {35} {45} {345}

{1y [z 112 iz 16 16 1/6 173

{2y |v12 vi2 vi2 e 16 16 173
{12y | 6 16 16 13 13 1/3 1

Table 6: The joint belief function H.

From the last row and the last column of the joint belief function, we can calculate the
marginal densities, f1 and fo, which are given below.
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Al{y {23 {12} B {3} {4 {5} {34} {35} {45} {345}
Al 13 1313 | U4 14 U4 0 0 0 1/4

Table 7: Marginal densities f1(A) and fo(B).

Define Sy : [0,1] — 21 and Sy : [0,1] — 22 respectively by

{1}, ifrelo g Z:y E E(i }12]],

Sl(m): {2}, lfaje (%7%]’ SQ(y): ) . Yy 421’431 y
{1,2}, ifze (3,1 {5} ify € (3,1,

o e (3.4,5), ify e (3,1].

Solving C'(u, v) in (13), we obtain a subcopula C' given in Table 8.

c | 4 214 34 1

173 | 1712 1/6 1/4 1/3
23| 1/6 2/6 2/4 2/3
1 174 2/4 3/4 1

Table 8: The subcopula C’.

For example, for calculating C'(3, %), which belongs to the interval (%, 2] x (1, 3], we have

@{(33] (03]} - e (Gi)re(ai)-e(3)-¢ (i)
= H({2),{4) = 5.
Thus,
¢(33) = HELEn-
1 1 1 1 1
6

12

6 3

It is easy to check that C' is an independent subcopula, which in turn shows that H is an
independent joint belief function.

4. Acknowledgments

The authors would like to thank Professor Hung T. Nguyen for introducing this interesting
topic to us.

References
[1] Alvarez, D.A.(2009), “A Monte Carlo-based method for the estimation of lower and upper probabilities of
events using infinite random sets of indexable type,” Fuzzy Sets and Systems, 160, 384-401.

[2] Fernandez, F.R., Miguel, A.H., Justo, P.: Core solutions in vector-valued games. Journal of Optimization
Theory and Applications 112 331-360 (2002)

[3] Harry, J.(1997), Multivariate Models and Dependence Concepts, London, UK: Chapman & Hall.
[4] Nelsen, R.B.(2006), An introduction to Copulas (second edition), New York: Springer.

3427



JSM 2014 - IMS

[5S] Nguyen, H.T.(2006), An Introduction to Random Sets, Boca Raton, FL: CRC Press.

[6] Nguyen, H.T. and Wang, T.(1997), Belief functions and random sets, The IMA Volumes in Mathematics
and Its Applications, New York: Springer-Verlag, pp. 243-255.

[7]1 Nguyen, H.T.(2013), Lecture Notes in: Statistics with copulas for applied research, Department of Eco-
nomics, Chiang Mai University, Chiang Mai, Thailand.

[8] Schmelzer, B.(2012), “Characterizing joint distributions of random sets by multivariate capacities,” Intern.
J. Approximate Reasoning 53, 1228-1247.

[9] Schmelzer, B.(2014), “Joint distributions of random sets and their relation to copulas,” in Modeling De-
pendence in Econometrics, Advances in Intelligent Systems and Computing 251, DOI: 10.1007/978-3-
319-03395-2-10, ©Springer International Publishing Switzerland 2014 Copulas.

[10] Shafer, G.(1976), A mathematical theory of evidence, New Jersey, Princeton: Princeton University Press.

[11] Sklar, A.(1959), “Fonctions de répartition & n dimensions et leurs marges,” Publ. Inst. Statist. Univ. 8,
229-231.

[12] Wei, Z., Wang, T. and Panichkitkosolkul, W., “Dependence and association concepts through copulas,”
in Modeling Dependence in Econometrics, Advances in Intelligent Systems and Computing 251, DOI:
10.1007/978-3-319-03395-2-7, (©Springer International Publishing Switzerland 2014 Copulas.

[13] Wei, Z., Wang, T., Li, B. and Nguyen A. P., “The joint belief function and Shapley value for the joint
cooperative game,” in Modeling Dependence in Econometrics, (to appear).

3428



