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Abstract
In this paper, the characterization of the joint distribution of random set vector by the belief function
is investigated. A method for constructing the joint belief function of discrete bivariate random sets
through copula is given. Conversely, subcopulas can be obtained from the bivariate belief functions.
For illustration of main results, several examples are given.
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1. Introduction

Random sets can be used to model imprecise observations of random variables where the
outcomes are assigned as set valued instead of real valued. The theory of random sets is
viewed as a natural generalization of multivariate statistical analysis. Random set data can
also be viewed as imprecise or incomplete observations which are frequent in today’s tech-
nological societies. The distribution of the univariate random set and its properties can be
found in Nguyen [5], Nguyen and Wang [6] and Shafer[10]. Recently, the characterization
of joint distributions of random sets on co-product spaces was discussed by Schmelzer[8],
Nguyen[7] and Wei et al [13]. In this paper, this characterization is modified for discrete
random set vector.

Copulas are used to model multivariate data as they account for the dependence struc-
ture and provide a flexible representation of the multivariate distribution, as seen in Nelson
[4], Harry [3] and Wei et al. [12]. The notion of copula has been introduced by Sklar [11].
Copulas are multivariate distributions with [0, 1]-uniform marginal, which contain the most
of the multivariate dependence structure properties and do not depend on the marginals. It
is known that copulas connect with marginals to obtain possible joint distributions. In order
to investigate the dependence relationship between two random sets, it is necessary to built
a bridge for connecting the joint belief functions of random set vector and copulas. For
references, see Schmelzer [9], Nguyen [7], Joe [3] and Nelsen [4]. In this paper, a method
for constructing the joint distribution of the discrete bivariate random set vector through
copula is given.

This paper is organized as follows. The characterization of the joint distribution of ran-
dom set vector by its joint belief functions is obtained in Section 2. A method of connecting
the joint belief function of random set vector with given marginals and copula(subcopula)
is given in Section 3. To illustrate our main results, several examples are given.

2. Characterization of the joint belief function of discrete random set vector

Throughout this paper, let (Ω,A, P ) be a probability space and let E1 and E2 be finite sets,
where Ω is sample space, A is a σ-algebra on subsets of Ω and P is a probability measure.
Recall that a finite random set S with values in powerset of a finite E is a map S : Ω → 2E

such that S−1({A}) = {ω ∈ Ω : S(ω) = A} ∈ A for any A ⊆ E. Let f : 2E → [0, 1] be
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f(A) = P (S = A), then f is a probability density function of S on 2E . In the following,
we will extend this definition to the cases of the random set vector.

Definition 2.1 A random set vector (S1,S2) with values in 2E1 × 2E2 is a map (S1,S2) :
Ω → 2E1 × 2E2 such that {ω ∈ Ω : S1(ω) = A,S2(ω) = B} ∈ A, for any A ⊆ E1 and
B ⊆ E2. Let h : 2E1 × 2E2 → [0, 1] be a joint probability density function of (S1,S2),
i.e., h ≥ 0 and

∑
A⊆E1

∑
B⊆E2

h(A,B) = 1, where h(A,B) = P (S1(ω) = A,S2(ω) = B),

A ⊆ E1 and B ⊆ E2.

Inspired by the distribution of univariate random sets, we are going to define axiomati-
cally the concept of joint distribution functions of the random set vector (S1,S2).

Theorem 2.1 Let (S1,S2) be a (nonempty) random set vector on 2E1 × 2E2 , and
H : 2E1 × 2E2 → [0, 1] be

H(A,B) = P (S1 ⊆ A,S2 ⊆ B) =
∑
C⊆A

∑
D⊆B

h(C,D), A ∈ 2E1 , B ∈ 2E2 . (1)

Then, H satisfies the following properties:
(i) H(∅, ∅) = H(∅, B) = H(A, ∅) = 0, and H(E1, E2) = 1;
(ii) H is monotone of infinite order on each component, i.e., for any B in 2E2 and

any distinct sets A1, A2, · · · , Ak in 2E1 , k ≥ 1,

H

(
k∪

i=1

Ai, B

)
≥

∑
∅̸=I⊆{1,2,··· ,k}

(−1)|I|+1H

(∩
i∈I

Ai, B

)
, (2)

and for any A ∈ 2E1and any distinct sets B1, B2, · · · , Bℓ in 2E2 , ℓ ≥ 1,

H

A,
ℓ∪

j=1

Bj

 ≥
∑

∅̸=J⊆{1,2,··· ,ℓ}

(−1)|J |+1H

A,
∩
j∈J

Bj

 ; (3)

and
(iii) H(., .) is jointly monotone of infinite order, i.e., for distinct sets A1, A2, · · · , Ak

in 2E1 and distinct B1, B2, · · · , Bℓ in 2E2 , where k, ℓ are positive integers,

H

 k∪
i=1

Ai,
ℓ∪

j=1

Bj

 ≥
∑

∅≠I⊆{1,2,··· ,k}

(−1)|I|+1H

∩
i∈I

Ai,
ℓ∪

j=1

Bj


+

∑
∅≠J⊆{1,2,··· ,ℓ}

(−1)|J |+1H

 k∪
i=1

Ai,
∩
j∈J

Bj

 (4)

−
∑

∅≠I⊆{1,2,··· ,k}

∑
∅̸=J⊆{1,2,··· ,ℓ}

(−1)|I|+|J |H

∩
i∈I

Ai,
∩
j∈J

Bj


Proof. The Property (i) is obvious. For Property (ii), it is sufficient to show that (2) holds
for any fixed B ∈ 2E2 . Indeed, we can treat H (A,B) as a univariate belief function of
random set (S1, B) so that (2) holds. (3) can be proved similarly.
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Now, for Property (iii), letJ (C) = {i = 1, 2, · · · , k such that C ⊂ Ai} and K(D) =
{j = 1, 2, · · · , ℓ such that D ⊂ Bj}. Then C ⊆

∩
i∈J (C)

Ai if J (C) ̸= ∅ and D ⊆∩
j∈K(D)

Bj if K(D) ̸= ∅. Clearly,

H

 k∪
i=1

Ai,

ℓ∪
j=1

Bj

 =
∑

C⊆
k∪

i=1
Ai

∑
D⊆

ℓ∪
j=1

Bj

h(C,D) ≥
∑
C⊆E1
J (C) ̸=∅

∑
D⊆E2
K(D)̸=∅

h(C,D)

+
∑

C⊆
k∪

i=1
Ai

J (C)=∅

∑
D⊆E2
K(D) ̸=∅

h(C,D) +
∑
C⊆E1
J (C) ̸=∅

∑
D⊆

ℓ∪
j=1

Bj

K(D)=∅

h(C,D)

≡ (I) + (II) + (III)

= −(I) + {(II) + (I)}+ {(III) + (I)}.

Note that for any nonempty finite sets A and B, the following identities always hold:∑
∅≠C⊆A

(−1)|C|+1 = 1 and
∑

∅≠C⊆A

∑
∅≠D⊆B

(−1)|C|+|D| = 1.

By using these identities we can rewrite (I), (I)+(II) and (I)+(III) given above as follows,

(I) =
∑
C⊆E1
J (C) ̸=∅

∑
D⊆E2
K(D)̸=∅

h(C,D)

=
∑
C⊆E1
J (C) ̸=∅

∑
D⊆E2
K(D)̸=∅

 ∑
∅≠I⊆J (C)

∑
∅≠J⊆K(D)

(−1)|I|+|J |

h(C,D)

=
∑

∅̸=I⊆{1,··· ,k}

∑
∅≠J⊆{1,···ℓ}

(−1)|I|+|J |

 ∑
C⊆E1
J (C)⊇I

∑
D⊆E2

K(D)⊇J

h(C,D)


=

∑
∅̸=I⊆{1,··· ,k}

∑
∅≠J⊆{1,···ℓ}

(−1)|I|+|J |H

∩
i∈I

Ai,
∩
j∈J

Bj

 .

Similarly, we obtain

(II) + (I) =
∑

∅̸=J⊆{1,···ℓ}

(−1)|J |+1H

 k∪
i=1

Ai,
∩
j∈J

Bj

 ,

and

(III) + (I) =
∑

∅≠I⊆{1,2,··· ,k}

(−1)|I|+1H

∩
i∈I

Ai,

ℓ∪
j=1

Bj

 .

Therefore the Property (iii) holds. □
It turns out that the properties (i), (ii) and (iii) of H in the Theorem 2.1 characterize the

joint distribution function of a (nonempty) random set vector.
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Definition 2.2 A set function H : 2E1 × 2E2 → [0, 1] satisfying the properties (i), (ii) and
(iii) in the Theorem 2.1 is said to be the joint belief function of random set vector (S1,S2).

The following result shows that for any given joint belief function H of (S1,S2), there
exists a probability density function h : 2E1 × 2E2 → [0, 1] corresponding to H .

Theorem 2.2 If H : 2E1 × 2E2 → [0, 1] is such that
(i) H(∅, ∅) = H(∅, B) = H(A, ∅) = 0, and H(E1, E2) = 1,
(ii) H is monotone of infinite order on each component, and
(iii) H is joint monotone of infinite order. then for any (A,B) ∈ 2E1 ×2E2 , there exists

a nonnegative set function h : 2E1 × 2E2 → [0, 1], called the Möbius inverse of H , such
that

H(A,B) =
∑
C⊆A

∑
D⊆B

h(C,D) (5)

and ∑
C⊆E1

∑
D⊆E2

h(C,D) = 1. (6)

Proof. Let h : 2E1 × 2E2 → [0, 1] be defined by

h(A,B) =
∑
C⊆A

∑
D⊆B

(−1)|A\C|+|B\D|H(C,D), (7)

where A \ C = A ∩ Cc and Cc is the complement of C. First we need to show h is
nonnegative.

From (i), it is easy to see h(∅, ∅) = h(A, ∅) = h(∅, B) = 0, where A ⊆ E1, B ⊆ E2.
Also, it is obvious h({x}, {y}) = H({x}, {y}) ≥ 0, for any x ∈ E1, y ∈ E2.

For any A ⊆ E1, y ∈ E2 with |A| ≥ 2, we assume that A = {x1, x2, · · · , xk}. Let
Ai = A \ {xi}, i = 1, 2, · · · , k. Then from (7), we have

h(A, {y}) = H(A, {y})−
k∑

i=1

H(Ai, {y}) +
∑
i1<i2

H(Ai1 ∩Ai2 , {y}) + · · ·

+(−1)k−1
∑

i1<···<ik−1

H

k−1∩
j=1

Aij , {y}


= H(A, {y})−

∑
∅≠I⊆{1,2,··· ,k}

(−1)|I|+1H

(∩
i∈I

Ai, {y}

)
,

by Property (ii), h(A, {y}) ≥ 0. Similarly, we obtain h({x}, B) ≥ 0 for any x ∈ E1,
B ⊆ E2 with |B| ≥ 2. Finally, for any A ⊆ E1 and B ⊆ E2 with |A| ≥ 2 and |B| ≥ 2,
say A = {x1, x2, · · · , xk} and B = {y1, y2, · · · , yℓ}. Let Ai = A \ {xi}, i = 1, 2, · · · , k
and Bj = B \ {yj}, j = 1, 2, · · · , ℓ. Then,

h(A,B) = H(A,B)−
∑

∅≠J⊆{1,2,··· ,ℓ}

(−1)|J |+1H

A,
∩
j∈J

Bj


−

∑
∅̸=I⊆{1,2,··· ,k}

(−1)|I|+1H

(∩
i∈I

Ai, B

)

+
∑

∅̸=I⊆{1,2,··· ,k}

∑
∅≠J⊆{1,2,··· ,ℓ}

(−1)|I|+|J |H

(∩
i∈I

Ai,
∩
J∈J

Bj

)
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therefore, by Property (iii), h(A,B) ≥ 0.
Next, we need to show

∑
C⊆E1

∑
D⊆E2

h(C,D) = 1. Note that

∑
C⊆A

∑
D⊆B

h(C,D) =
∑
C⊆A

∑
D⊆B

[
∑
E⊆C

∑
F⊆D

(−1)|C\E|+|D\F |H(E,F )]

=
∑

E⊆C⊆A

∑
F⊆D⊆B

(−1)|C\E|+|D\F |H(E,F ).

If E = A and F = B, the last expression is H(A,B). If E ̸= A or F ̸= B, then
A \ E has 2|A\E| subsets and B \ F has 2|B\F | subsets, so there are even number pair of
subsets (C,D) such that E ⊆ C ⊆ A and F ⊆ D ⊆ B, exactly half of which will make
(−1)|C\E|+|D\F | to be 1 and half are −1. Thus∑

E⊆C⊆A

∑
F⊆D⊆B

(−1)|C\E|+|D\F |H(E,F ) = 0, for each E ̸= A or F ̸= B.

Therefore,
∑

C⊆A

∑
D⊆B

h(C,D) = H(A,B).

In particular, 1 = H(E1, E2) =
∑

C⊆E1

∑
D⊆E2

h(C,D), so that h is a joint probability

density on 2E1 × 2E2 . □
The explanations of Theorem 2.1 and Theorem 2.2 are given below.

Remark 2.1 (a). Consider the set function F1(A) = H(A,E2), A ∈ 2E1 . It is easy to show
that F1(A) is a belief function of random set S1 over E1, which is called the marginal
belief function of random set S1. Similarly, F2(B) = H(E1, B), B ∈ 2E2 is the marginal
belief function of random set S2 over E2. More details on belief functions of univariate
random sets are given in Nguyen[5].

(b). For any given B ⊆ E2, let f2(B) be the Möbius inverse of F2(B). Then

P (S1 ⊆ A,S2 = B) =
∑
C⊆A

h(C|B)f2(B) = HS1|S2
(A|B)f2(B),

where h(C|B) = P (S1 = C|S2 = B) is the conditional probability of S1 = C given
S2 = B. We call HS1|S2

(A|B) be the conditional belief function of S1 given S2 = B.
Similarly, we can obtain HS2|S1

(B|A) the conditional belief function of S2 given S1 = A.
For a given joint belief function H(A,B) of random set vector (S1,S2), we say S1 and S2

are independent if and only if H(A,B) = F1(A)F2(B), for all A ∈ 2E1 and B ∈ 2E2 .
(c) In Theorem 2.1, if B1 = B2 = · · · = Bℓ = B, the Property (iii) is reduced to an

equality, so Property (ii) is needed for characterizing the marginal belief functions of S1

and S2, respectively.
(d) In view of the direct product (2E1 × 2E2 ,≤) of two locally finite posets (2E1 ,⊆)

and (2E1 ,⊆), where (C,D) ≤ (A,B) means C ⊆ A and D ⊆ B, with its Möbius function

µ : (2E1 × 2E2)× (2E1 × 2E2) → Z with µ((C,D), (A,B)) = (−1)|A\C|+|B\D|,

we have
H(A,B) =

∑
(C,D)≤(A,B)

h(C,D),

where h(A,B) is the Möbius inverse of H ,

h(A,B) =
∑

(C,D)≤(A,B)

(−1)|A\C|+|B\D|H(C,D). (8)
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h(., .) is also called the probability assignment of random set vector (S1,S2). Note that
there is a bijection between the joint belief function H and its the corresponding joint
density h (See e.g. Nguyen [7]).
Remark 2.2 Similar to property of Theorem 2.2, there is a property called completely
monotone in each component, given by Schmelzer [8, 9] and Nguyen [7] as follows.

A set function H1 : 2E1 × 2E2 → [0, 1] is said to be completely monotone in each
component, if for any k ≥ 2 and (Ai, Bi) ∈ 2E1 × 2E2 , i = 1, 2 · · · , k,

H1

(
k∪

i=1

Ai,

k∪
i=1

Bi

)
≥

∑
∅̸=I⊆{1,2,··· ,k}

(−1)|I|+1H1

(∩
i∈I

Ai,
∩
i∈I

Bi

)
. (9)

The difference between (2)-(4) and (9) is that (Ai, Bj)’s in (2)-(4) are distinct sets while
(Ai, Bi)’s in (9) are not necessary distinct sets and can be duplicated many times if needed.
In the following, we will show that (9) is equivalent to (2)-(4).

Proposition 2.1 If H : 2E1 × 2E2 → [0, 1] is such that H(∅, ∅) = H(∅, B) = H(A, ∅) =
0, and H(E1, E2) = 1, then H is completely monotone in each component given (9) if and
only if H is monotone of infinite order on each component given in (2), and (3) and H is
joint monotone of infinite order given in (4).

Proof. For “only if” part, assume that (9) holds. Let A1, A2 · · · , Ak ∈ 2E1 be distinct,
B ∈ 2E2 , if we set B1 = B2 = · · · = Bk = B, then (9) is reduced to

H

(
k∪

i=1

Ai, B

)
= H

(
k∪

i=1

Ai,
k∪

i=1

Bi

)

≥
∑

∅≠I⊆{1,2,··· ,k}

(−1)|I|+1H1

(∩
i∈I

Ai,
∩
i∈I

Bi

)

=
∑

∅̸=I⊆{1,2,··· ,k}

(−1)|I|+1H1

(∩
i∈I

Ai, B

)
,

so that (2) holds. Simiarly, if A ∈ 2E1 , we set A1 = A2 = · · · = Ak = A, and
B1, B2 · · · , Bℓ ∈ 2E2 be distinct, then (9) implies (3).

Now let A1, · · · , Ak ∈ 2E1 and B1, · · · , Bℓ ∈ 2E2 be distinct. Define sets Ct and Dt,
1 ≤ t ≤ k + ℓ by

Ct =


At if 1 ≤ t ≤ k
k∪

i=1
Ai if k + 1 ≤ t ≤ k + ℓ,

Dt =


ℓ∪

j=1
Bj if 1 ≤ t ≤ k

Bt−k if k + 1 ≤ t ≤ k + ℓ.
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Then, (9) can be written to:

H

 k∪
i=1

Ai,
ℓ∪

j=1

Bj

 ≥
∑

∅≠I⊆{1,··· ,k+ℓ}

(−1)|I|+1H

(∩
t∈I

Ct,
∩
t∈I

Dt

)

=
∑

∅≠I⊆{1,··· ,k}

(−1)|I|+1H

(∩
t∈I

Ct,
∩
t∈I

Dt

)

+
∑

∅≠I⊆{k+1,··· ,k+ℓ}

(−1)|I|+1H

(∩
t∈I

Ct,
∩
t∈I

Dt

)

+
∑

I∩{1,··· ,k}≠∅
I∩{k+1,··· ,k+ℓ}̸=∅

(−1)|I|+1H

(∩
t∈I

Ct,
∩
t∈I

Dt

)

=
∑

∅̸=I⊆{1,··· ,k}

(−1)|I|+1H

∩
i∈I

Ai,
ℓ∪

j=1

Bj


+

∑
∅≠J⊆{1,··· ,ℓ}

(−1)|J |+1H

 k∪
i=1

Ai,
∩
j∈J

Dj


−

∑
∅≠I⊆{1,··· ,k}

∑
∅̸=J⊆{1,··· ,ℓ}

(−1)|I|+|J |H

∩
i∈I

Ai,
∩
j∈J

Bj

 ,

So that (4) holds.
For “if” part, assume (2)-(4) holds. By Theorem 2.2, there exists a nonnegative set

function h : 2E1 × 2E2 → [0, 1], such that

H(A,B) =
∑
C⊆A

∑
D⊆B

h(C,D), and
∑
C⊆E1

∑
D⊆E2

h(C,D) = 1.

Now, for any k ≥ 2 and (Ai, Bi) ∈ 2E1 × 2E2 , i = 1, 2, · · · , k. For any C ⊆ E1

and D ⊆ E2, let J (C,D) = {i = 1, 2, · · · , k such that C ⊆ Ai, and D ⊆ Bi}. Then
C ⊆

∩
i∈J (C,D)

Ai and D ⊆
∩

i∈J (C,D)

Bi if J (C,D) ̸= ∅. Clearly,

H

(
k∪

i=1

Ai,

k∪
i=1

Bi

)
=

∑
C⊆

k∪
i=1

Ai

∑
D⊆

k∪
i=1

Bi

h(C,D) ≥
∑
C,D

J (C,D) ̸=∅

h(C,D)

=
∑
C,D

J (C,D)̸=∅

 ∑
∅̸=I⊆J (C,D)

(−1)|I|+1

h(C,D)

=
∑

∅̸=I⊆{1,··· ,k}

(−1)|I|+1

 ∑
C,D

J (C,D)⊇I

h(C,D)


=

∑
∅̸=I⊆{1,··· ,k}

(−1)|I|+1H

(∩
i∈I

Ai,
∩
i∈I

Bi

)
.
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And hence (9) holds. □
Given a set function H : 2E1 × 2E2 → [0, 1], it is nature to ask whether if it is a well-

defined joint belief function. By the conditions shown in Theorem 2.1, we only need to
check all distinct sets A1, · · · , Ak and B1, · · · , Bℓ.

3. Connections between joint belief functions and subcopulas

From the joint belief function of random set vector(S1,S2), it is not easy to tell the depen-
dence relationship between S1 and S2. Copula is a useful tool for modeling dependence
of random variables as they account for the dependence structure and provide a flexible
representation, see Nelson[4], Sklar[11], Hung[7], and Wei et al.[12]. Copulas connect
marginals to obtain possible joint distributions. Therefore, it is necessary to built a bridge
for connecting the joint belief functions of random set vector and copulas.

Definition 3.1 (Sklar 1959)[11] A copula C is a function C(., .) : [0, 1]2 → [0, 1] satisfy-
ing:
(i) C(u, 0) = C(0, v) = 0, for u, v ∈ [0, 1],
(ii) C(u, 1) = u, C(1, v) = v, for u, v ∈ [0, 1], and
(iii) for any (u1, v1) ≤ (u2, v2), C(u2, v2)− C(u1, v2)− C(u2, v1) + C(u1, v1) ≥ 0.

Let H be the joint distribution function of a random vector (X,Y ) with marginals F
and G, then there exists a copula C such that H(x, y) = C(F (x), G(y)). Furthermore,
if the marginals are continuous, then the copula C is unique. In order to investigate both
discrete and continuous distributions, we consider a slightly more general concept, namely
subcopula. A bivariate subcopula is a function C′(., .) : I1 × I2 → [0, 1] where I1, I2 ⊆
[0, 1] containing 0 and 1, such that (i), (ii) and (iii) in Definition 3.1 are satisfied on its
domain. An initial approach of using copulas for random sets was discussed by Alvarez
[1].

In this section, we are going to investigate some connections between joint belief func-
tions of discrete random set vector and copulas(subcopulas).

3.1 An algorithm for constructing joint belief functions through copulas

Given two univariate belief functions F1(A) = P (S1 ⊆ A), A ∈ 2E1 and F2(B) =
P (S2 ⊆ B), B ∈ 2E2 on finite domains E1 and E2 , respectively, what are all possible joint
belief functions, H(A,B), with these given marginals? In the following, we will introduce
a method for constructing joint belief functions from given marginal belief functions and
copula.

Let f1(A) = P (S1 = A) and f2(B) = P (S2 = B) be the densities of S1 and S2,
respectively. Since Ei’s are finite sets, we can order the elements of F(f1) = {A ⊆ E1 :
f1(A) > 0}, by the Lexicographical order(also known as lexical order, dictionary order) as

F(f1) = {A1, A2, · · · , Am}.

Similarly, we can obtain

F(f2) = {B ⊆ E2 : f2(B) > 0} = {B1, B2, · · · , Bn}.

Let B1 is the collection of all Borel subsets of [0, 1] and λ(dx) is the Lebesgue measure on
B1. Consider the probability space ([0, 1],B1, λ(dx)). For F1(A), partition [0, 1] into m
intervals I1, I2, · · · , Im with length f1(Ai), Ai ∈ F(f1). Similarly, for F2(B) = P (S2 ⊆
B), partition [0, 1] into n intervals J1, J2, · · · , Jn with length f2(Bj), Bj ∈ F(f2). Define

S ′
1 : [0, 1] → F(f1) S ′

1(x) = Ai for x ∈ Ii, i = 1, · · · ,m, (10)
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and
S ′
2 : [0, 1] → F(f2) S ′

2(y) = Bj for y ∈ Jj , j = 1, · · · , n. (11)

Observe that the Lebesgue measure λ(dx) on [0, 1] corresponds, by Lebesgue-Stieltjes
theorem, to the distribution function x → x, on [0, 1], of the uniform random variable
on it. As such, a joint distribution on [0, 1]2 with uniform marginals is preciesly some
copula C.

Note that each copula C, as a bivariate distribution, generates a probability measure on
B1 × B1 of [0, 1]2, denoted as dC, by

dC {[u1, u2]× [v1, v2]} = C(u1, v1)− C(u1, v2)− C(u2, v1) + C(u2, v2). (12)

Now we can consider the random set vector (S ′
1,S ′

2) : [0, 1]
2 → 2E1 × 2E2 which has

marginal densities f1, f2. Let C be a copula. If we equip the measurable space ([0, 1]2,B1×
B1) with the probability measure dC, then the function HC : 2E1 × 2E2 → [0, 1], defined
by

HC(A,B) = dC{(x, y) ∈ [0, 1]2 : S ′
1(x) ⊆ A,S ′

2(y) ⊆ B}
= dC{(x, y) ∈ [0, 1]2 : S ′

1(x)× S ′
2(y) ⊆ A×B}.

(13)

In summary, we have the following result,

Proposition 3.1 For any given univariate belief functions F1 and F2 of random sets S1 and
S2, and a copula C, if we equip an order on their focal sets F(f1), F(f2), then the joint
belief function of random set vector (S1,S2) can be constructed by (13). Furthermore, the
joint density of random set vector (S1,S2) can be obtained by its Möbius inverse of HC
given in (8).

Note that it is easy to verify that HC(., .) has marginal belief functions F1 and F2. The
following example is an illustration of our construction method.

Example 3.1 Let E1 = {1, 2} and E2 = {3, 4, 5}. Suppose the densities of random sets
S1 and S2 are given by

f1({1}) = f1({2}) = 0.25, f1({1, 2}) = 0.5,

and
f2({3}) = 0.2, f2({4}) = f2({3, 5}) = 0.3, f2({3, 4, 5}) = 0.2,

respectively. Now if we equip F(fi) with Lexicographical order, we will obtain a unique
joint belief function of S1 and S2 for any given copula C.

Consider the orders given by

F(f1) = {{1}, {2}, {1, 2}} and F(f2) = {{3}, {4}, {3, 5}, {3, 4, 5}}.

Define S ′
1 : [0, 1] → F(f1) and S ′

2 : [0, 1] → F(f2) respectively by by

S ′
1(x) =


{1}, if x ∈ [0, 0.25],

{2}, if x ∈ (0.25, 0.5],

{1, 2}, if x ∈ (0.5, 1]

S ′
2(y) =


{3}, if y ∈ [0, 0.2],

{4}, if y ∈ (0.2, 0.5],

{3, 5}, if y ∈ (0.5, 0.8],

{3, 4, 5}, if y ∈ (0.8, 1].

If we apply Farlie-Gumbel-Morgenstern copula
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C(u, v) = uv(1 + ρ(1− u)(1− v))

with ρ = 1
2 , then from (13), we obtain the joint distribution given bellow,

HC {3} {4} {5} {3,4} {3,5} {4,5} {3,4,5}
{1} 13/200 267/3200 0 19/128 421/3200 367/3200 1/4
{2} 11/200 249/3200 0 17/128 407/3200 249/3200 1/4
{1,2} 1/5 3/10 0 1/2 1/2 3/10 1

Table 1: Joint distribution of (S1,S2).

Then, from (8), we can calculate the joint density, hC , of (S1,S2) given below.

hC {3} {4} {5} {3,4} {3,5} {4,5} {3,4,5}
{1} 13/200 267/3200 0 0 213/3200 0 7/200
{2} 11/200 249/3200 0 0 231/3200 0 9/200
{1,2} 2/25 111/800 0 0 129/800 0 3/25

Table 2: Joint density of (S1,S2).

Remark 3.1 Note that the construction method given above shows that the joint distribution
HC depends not only on copula C but also on the order of F(f1) and F(f2). Nguyen [7]
suggested us to use the principle of maximum entropy for selecting the orders of Ai’s and
Bj’s so that the definition of joint distribution is determined. However, this selection of Ai’s
and Bj’s is not unique so that same maximum entropy can result different joint distribution
of (S1,S2).

Example 3.2 For example, let E1 = {1, 2} and E2 = {3, 4}, f1({1}) = 1/3, f1({1, 2}) =
2/3 and f2({4}) = 3/4, f2({3, 4}) = 1/4, all four different orders on F(f1) = {A1 =
{1}, A2 = {1, 2}} and F(f2) = {B1 = {4}, B2 = {3, 4}} give different distributions.
However, all four different orders gives the same entropy,

Ent(hC) = −
∑

A∈2E1 ,B∈2E2

hC(A,B) log2 hC(A,B) = 0.5183131.

As an application of the construction method given in this section, the joint belief func-
tion can be applied in game theory. Given two correlated univariate games, one can further
calculate the joint Shapley’s value based on the copula based joint belief function. More
detials about the connections between the joint belief function and its applications on the
joint game can be found in Wei et al [13].

Example 3.3 (See Fernandez [2] with some values changed) Consider three cell-phone
operators (namely O1, O2, and O3) that want to enter a new market. There are two cri-
teria that must be considered in the process. On the one hand, there is the profit that has
been estimated from the market analysis. On the other hand, there is the coverage, which
is regulated by law. Thus, the percentage of population covered by each operator or by
merging is fixed by the government. Cover- age is very important because it is known to
improve the return in the medium and long run. Let us assume that profit is measured in
millions of dollars and coverage in percent. We represent by vectors with two entries the
values obtained by each operator: the first entry is the profit and the second one is the
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coverage. Let us consider the following data that represent the values obtained in different
cooperation situations:

Coalition {O1} {O2} {O3} {O1,O2} {O1,O3} {O2,O3} {O1,O2,O3}
ν1 2 3 3 6 6 8 12
ν2 20 40 10 70 30 50 100

Table 3: Two correlated games ν1 and ν2.

Let set functions ν1 and ν2 be the profit and the coverage of each coalition, respectively.
Note that ν1 and ν2 are converted to standardized games ν ′1 and ν ′2 which are belief func-
tions, given in Table 4.

Coalition {O1} {O2} {O3} {O1,O2} {O1,O3} {O2,O3} {O1,O2,O3}
ν ′1 1/6 1/4 1/3 1/2 1/2 2/3 1
ν ′2 0.2 0.4 0.1 0.7 0.3 0.5 1

Table 4: ν ′1 and ν ′2 .

If we use the correlation coefficient of the profit and the coverage ρ = 0.83, and adopt
Farlie-Gumbel-Morgenstern copula Cρ(u, v) to construct the joint game (or the joint belief
function ) ν, then we have the following Table 5.

ν {O1} {O2} {O3} {O1,O2} {O1,O3} {O2,O3} {O1,O2,O3}
{O1} .052 .076 .013 .139 .065 .089 1/6
{O2} .064 .107 .022 .191 .086 .129 1/4
{O3} .059 .13 .035 .225 .094 .164 1/3

{O1,O2} .126 .213 .045 .38 .171 .258 1/2
{O1,O3} .111 .206 .048 .363 .159 .253 1/2
{O2,O3} .131 .266 .067 .464 .199 .333 2/3

{O1,O2,O3} 0.2 0.4 0.1 0.7 0.3 0.5 1

Table 5: The joint game ν of ν1 and ν2 .

Note that the last row and the last column of ν can be treated as the standardized the
vector-valued game µ in Table 3.

Remark 3.2 From Example 3.3, we can see that the vector valued game can be treated as
special case of of the joint belief function whose marginals are games of the vector valued
game respectively. For more details of the joint belief function and the joint game see Wei
et al[13].

3.2 Constructing a subcopula from the joint belief function

The previous subsection shows that given marginal belief functions and a copula, we can
construct a joint belief function. Conversely, given joint belief function, we can obtain a
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subcopula. Note that any subcopula can be extended to a copula, but its extension is not
generally unique.

Now given a joint belief function H : 2E1 × 2E2 → [0, 1] of discrete random set
vector (S1,S2), we can find its marginal belief functions F1(A) = H(A,E2), F2(B) =
H(E1, B) and the corresponding marginal densities f1 : 2E1 → [0, 1], f2 : 2E2 → [0, 1].
By the construction method given in (10) to (13), we can solve for a subcopula C′.

Proposition 3.2 Given a joint belief function H : 2E1×2E2 → [0, 1] of discrete random set
vector (S1,S2), if we equip an order on their marginal focal sets F(f1), F(f2), then there is
a unique subcopula C′, such that H(A,B) = C′(F1(A), F2(B)), for any A ⊆ E1, B ⊆ E2,
where F1 and F2 are marginal belief functionals.

Proof: Given H : 2E1 × 2E2 → [0, 1], we can find two marginal belief functions F1 :
2E1 → [0, 1] and F2 : 2E2 → [0, 1] by F1(A) = H(A,E2) and F2(B) = H(E1, B) for
any A ⊆ E1 and B ⊆ E2. Furthermore, we can find two marginal densities f1 and f2.
Since Ei’s are finite sets, we can order the elements of F(f1) = {A ⊆ E1 : f1(A) > 0},
by the Lexicographical order as

F(f1) = {A1, A2, · · · , Am}.

Similarly, we can obtain

F(f2) = {B ⊆ E2 : f2(B) > 0} = {B1, B2, · · · , Bn}.

For F1(A), partition [0, 1] into m intervals I1, I2, · · · , Im with length f1(Ai), Ai ∈ F(f1),
assume the partition is 0 = i0 < i1 < · · · < im−1 < im = 1. Similarly, for F2(B) =
P (S2 ⊆ B), partition [0, 1] into n intervals J1, J2, · · · , Jn with length f2(Bj), Bj ∈
F(f2), assume the partition is 0 = j0 < j1 < · · · < jn−1 < jn = 1.. Define

S ′
1 : [0, 1] → F(f1) S ′

1(x) = Ai for x ∈ Ii, i = 1, · · · ,m, (14)

and
S ′
2 : [0, 1] → F(f2) S ′

2(y) = Bj for y ∈ Jj , j = 1, · · · , n. (15)

Then, S ′
is are two marginal random sets with densities fi. Let I1 = {i0, · · · , im} and

I2 = {j0, · · · , jn}, then Ii ⊆ [0, 1] which contains 0 and 1. Then we can define C′:
I1 × I2 → [0, 1] by (13): Define C′(u, 0) = 0 = C′(0, v), and C′(i1, j1) = C′(i1, j1) −
C′(i1, 0) − C′(0, j1) + C′(0, 0) = H(A1, B1), following this pattern, we can define C′ for
all i ∈ I1 and j ∈ I2 recursively and it is easy to verify C′ is indeed a subcopula by the
definition. □

The following example is an illustration of the above construction algorithm.

Example 3.4 Given a joint belief function H in the following table,

H {3} {4} {5} {3,4} {3,5} {4,5} {3,4,5}
{1} 1/12 1/12 1/12 1/6 1/6 1/6 1/3
{2} 1/12 1/12 1/12 1/6 1/6 1/6 1/3
{1,2} 1/6 1/6 1/6 1/3 1/3 1/3 1

Table 6: The joint belief function H.

From the last row and the last column of the joint belief function, we can calculate the
marginal densities, f1 and f2, which are given below.
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A {1} {2} {1,2}
f1 1/3 1/3 1/3

B {3} {4} {5} {3,4} {3,5} {4,5} {3,4,5}
f2 1/4 1/4 1/4 0 0 0 1/4

Table 7: Marginal densities f1(A) and f2(B).

Define S1 : [0, 1] → 2E1 and S2 : [0, 1] → 2E2 respectively by

S1(x) =


{1}, if x ∈ [0, 13 ],

{2}, if x ∈ (13 ,
2
3 ],

{1, 2}, if x ∈ (23 , 1],

S2(y) =


{3}, if y ∈ [0, 14 ],

{4}, if y ∈ (14 ,
2
4 ],

{5}, if y ∈ (24 ,
3
4 ],

{3, 4, 5}, if y ∈ (34 , 1].

Solving C′(u, v) in (13), we obtain a subcopula C′ given in Table 8.

C′ 1/4 2/4 3/4 1
1/3 1/12 1/6 1/4 1/3
2/3 1/6 2/6 2/4 2/3
1 1/4 2/4 3/4 1

Table 8: The subcopula C′.

For example, for calculating C′(23 ,
2
4), which belongs to the interval (13 ,

2
3 ]×(14 ,

2
4 ], we have

dC′
{(

1

3
,
2

3

]
×
(
1

4
,
2

4

]}
= C′

(
2

3
,
2

4

)
+ C′

(
1

3
,
1

4

)
− C′

(
1

3
,
2

4

)
− C′

(
2

3
,
1

4

)
= H({2}, {4}) = 1

12
.

Thus,

C′
(
2

3
,
2

4

)
= H ({2}, {4})− C′

(
1

3
,
1

4

)
+ C′

(
1

3
,
2

4

)
+ C′

(
2

3
,
1

4

)
=

1

12
− 1

12
+

1

6
+

1

6
=

1

3
.

It is easy to check that C′ is an independent subcopula, which in turn shows that H is an
independent joint belief function.
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