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Abstract 

We have inaugurated the generalized form of the Counting process along with its various 

characteristics. The creditability and the consequences for the generalization of the 

counting process have also been explained in building generalized Poisson process, etc. 
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1. Introduction 

How rare is “Rare?” The knowledge of the occurrence of rare events is an important issue 

for our survival. The occurrences of these rare events have their own patterns which may 

not be entirely known. If the behaviors of the occurrences of each type of  rare events 

have been studied more than a single or a couple of centennial or decades or years or 

even hours depending on the life-span of its; the patterns of the occurrences of the typical 

rare events can be extended. The occurrence of the rare events is known as Poisson 

distribution which one is an independently and identically distributed Deterministic 

model and whose behaviors can be studied in several ways. On the other hand the Non-

Deterministic or the Stochastic Model of rare events having Poisson behavior is known as 

Poisson process.  

In Poisson process, the non-overlapping waiting time for the occurrences of the 

successive rare events follow Exponential Distribution. So, if the inter-arrival times can 

be treated as following the generalized exponential distributions as Adnan et el [1] as the 

Poisson process can be convoluted to the Generalized Poisson process. Similarly the 

probability of an event happening in per unit time is independent of any other unit time 

assuming that the inter-arrival time is identically distributed as exponential variant [31]. 

The generalized inter-arrival exponential time belonging to the Generalized Poisson 

process can be used to construct generalized Renewal Theory and Queuing Theory etc. 

 

Literature Review 

The Poisson distribution was first brought to light by Siméon Denis Poisson, in 1837. 

Later many authors like Stein (1972), Barbour (1988), Aratia (1989), Barbour (1992, 

2005), Brown (1994, 1995, 2000, 2001), Zeger (1994), Conway (1999), Salvador (2003), 

Chen (2004), Schuhmacher (2005, 2008), Xia (1994, 2008), Zhang (2005) worked on 

Poisson process. Authors such as Ibe (2005), Karlin (1975), Knill (2009), Ross (2000), 

Suhov (2008) explained Poisson process in their texts. The generalized Poisson 

probability model has many applications in areas such as engineering, manufacturing, 

survival analysis, genetic, shunting accidents, queuing, and branching processes. Various 

generalizations of the family of counting processes have been considered by a couple of 

authors [14, 16-19, 24, 30, 32]. Similarly, properties of family of counting processes can 

also be obtained from various generalized Poisson processes. Generalization of Poisson 

distribution had widely been studied by numerous authors like Satterthwaite (1942), 

Lakshmi (2012), Hubert and Lauretto (2009). Various generalized form of Poisson 
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process [18, 29] and its family such as Renewal process [16, 20, 25], Continuous time 

Markov chain and Branching process [23, 27, 44] with representations of the new form 

are presented in terms of definitions. Related theorems, properties and parameter 

estimations are also presented here with derivation. And also we have presented whether 

there is any difference between the usual process and generalized process. For inference 

procedure, we have tested the result of generalized form for different values of 𝑏 of the 

extra parameter ℎ𝑏. And our findings are at the end of this paper. 

Several texts books are out there about the family of counting processes such as 

Veerarajan (2008), Ross (2004), Medhi (2002), Bening and Korolev (2002) and Ross 

(2013). Haight (1959)Fel'dman (1983)& Bening and Korolev (2002) discussed about the 

Models of generalized Poisson processes with applications. To study the estimation of 

generalized Poisson distribution, Fel'dman (1992) used the weighted discrepancies 

method between observed and expected frequencies and found this better than the chi-

square method which links very well with the method of maximum likelihood. Famoye 

and Consul (1995) define univariate generalized Poisson distribution which is correlated 

bivariate version. Estimation of its parameters and some properties are also discussed. To 

allow the assignment of varying weights to events, Satterthwaite (1942) generalized the 

Poisson distribution when the number of events follows the Poisson law. Hubert, Lauretto 

and Stern (2009) studied the empirical properties of the Full Bayesian Significance Test 

for testing the nullity of extra parameter of the generalized Poisson distribution, which is 

capable to offer an evidence degree on sharp hypotheses. Pacheco (2003) proposed a 

procedure for fitting Markov Modulated Poisson processes (MMPPs) to traffic traces that 

matches both the auto covariance and marginal distribution of the counting process. The 

number of states is not fixed a priori is the major feature of the procedure. It is an output 

of the fitting process, thus allowing the number of states to be adapted to the particular 

trace being modeled. Lekshmi and Thomas (2012) made an attempt to review count data 

models developed so far as generalizations of Poisson process and considered Weibull 

and Winkleman's gamma count model of Mc Shane et al. A Mittag-Leffler count model 

is developed and studied in detail with simulation. Zhang (2008) presented three 

nonparametric methods respectively for making inferences of doubly stochastic Poisson 

processes. They analyzed sequences of arrival data.  

Wang and Yang (2012) proposed a nonlinear programming approach for the Kijima type 

GRP model I for estimating restoration factor, for repairable systems for the model II 

based on the conditional Weibull distribution, using negative log-likelihood as an 

objective function and adding inequality constraints to model parameters. The results 

shows that the GRP model is greater to the ordinary renewal process (ORP) and the 

power law non-homogeneous Poisson process model. Kijima (2002) considered a 

generalized renewal process (g-renewal process for short) and its applications to 

reliability theoryalso general repair model with full generality constructed using a general 

point process. Pyke (1961)studied the Markov Renewal processes having a finite number 

of states as well as its limiting behavior. Jacopino, Groen and Mosleh (2004)provided 

general insights into the behavior of the GRP model with applications and concluded that 

at a low number of renewals there is little difference between the two models, i.e., GRP 

and ORP.Hurtado, Joglar, and Modarres (2005) describes an alternative for calculating 

the parameters of GRP models using a Genetic Algorithm (GA) approach to solve 

complex MLE equations. Feller (1941) considered the behavior of the solutions of 

integral renewal process.  
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The main objective of the current study is to develop and find the consequences of the 

generalized Counting processes with an extra parameter to be applied affluently in 

multiple disciplines.  

Chapter 2 ensembles the constructions in counting process, Poisson processes. The new 

forms of generalized Poisson processes have briefly been discussed with related theorems 

and derivations. Generalized Renewal process has been discussed in Chapter 3. 

Conclusion appears in the last chapter. The summery of the differences among the 

traditional generalized process have been displayed in the Appendix. The ultimate part is 

the reference section.   

 

2. Generalized Poisson process 

A stochastic process [𝑁(𝑡), 𝑡 ≥ 0] is said to be a counting process if 𝑁(𝑡) represents the 

total number of “events” that have occurred up to time  𝑡 . The Poisson process is a 

collection {𝑁(𝑡) ∶  𝑡 ≥  0} of random variables, where 𝑁(𝑡) is the number of events that 

have occurred up to time t (starting from time 0) [37]. 𝜆𝑡 is the occurrence rate for the 

events being counted within he tome (0, 𝑡]. Poisson processes mathematically as 

𝑃[𝑁(𝑡) = 𝑛] =
𝑒−𝜆𝑡(𝜆𝑡)𝑛

𝑛!
 

Where 𝜆𝑡 is mean and variance. Since in the traditional Poisson distribution the pdf of the 

Poisson distribution 𝑃[𝑡 = 𝑛] =
𝑒−𝜆𝜆𝑛

𝑛!
 represents the probability of the 𝑛  number of 

events to be occurred per unit time or within the time interval (0,1] and the pdf of the 

Poisson process 

𝑃[𝑁(𝑡) = 𝑛] =
𝑒−𝜆𝑡(𝜆𝑡)𝑛

𝑛!
 

Representing the number of events to be occurred per unit time interval(0, 𝑡]. When the 

time unit is unique, the probabilistic model of the rare events is Poisson distribution and 

for the unit time interval the model claims Poisson process. As a result the average rate of 

occurrences within the unit time in the Poisson distribution is 𝜆(1 − 0) = 𝜆. 1 = 𝜆 and 

the average rate of happening within the unit time interval is equivalent to 𝜆(𝑡 − 0) = 𝜆𝑡. 
An extra parameter 𝑏  named shape parameter has been introduced in the pdf of the 

generalized Poisson process to present the power of the subset ℎ of the unit time (unit 

time interval(0,1]) where (0, ℎ] ⊂ (0,1]. So, depending on the value of 𝑏(𝑏 > 0), ℎ𝑏will 

be either greater than unit time 1 or less than 1. So the average rate of occurrence 𝜆 will 

be replaced by 𝜆ℎ𝑏 to present the average rate of events to be occurred per unit time 

interval ℎ𝑏. So, interval (0, ℎ𝑏] will be less than or greater than 1 for 𝑏 > 1,𝑏 < 1 & ℎ <
1. The probability of occurrence of 𝑛 number of events per unit time (time interval)  ℎ𝑏 is 

𝑃[𝑁 = 𝑛] =
𝑒−𝜆ℎ

𝑏
(𝜆ℎ𝑏)𝑛

𝑛!
; 

where 𝜆ℎ𝑏 is the rate of event to be occurred per unit time (time interval) ℎ𝑏 ∀ 𝑏 ≥ 0 to 

be known as Poisson probability such that 

𝑒𝜆ℎ
𝑏
=
(𝜆ℎ𝑏)

0

0!
+
(𝜆ℎ𝑏)

1

1!
+
(𝜆ℎ𝑏)

2

2!
+ ⋯ => 1 = ∑𝑃(𝑁 = 𝑛) =

∞

𝑛=0

∑
(𝜆ℎ𝑏)

𝑛
𝑒−𝜆ℎ

𝑏

𝑛!

∞

𝑛=0

 

Now, 𝑃[𝑁 = 1] =
𝑒−𝜆ℎ

𝑏
(𝜆ℎ𝑏)

1

1!
= 𝜆ℎ𝑏𝑒−𝜆ℎ

𝑏
= 𝜆ℎ𝑏 −

(𝜆ℎ𝑏)
2

1!
+
(𝜆ℎ𝑏)

3

2!
−⋯ 

∴ 𝑃[𝑁 = 1] = 𝜆ℎ𝑏 + ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚 𝑜𝑓 ℎ𝑏 = 𝜆ℎ𝑏 + 𝑂(ℎ𝑏)  (1) 
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Then,𝑃[𝑁 = 2] =
𝑒−𝜆ℎ

𝑏
(𝜆ℎ𝑏)

2

2!
=
(𝜆ℎ𝑏)

2

2!
𝑒−𝜆ℎ

𝑏
=
(𝜆ℎ𝑏)

2

2!
[1 −

(𝜆ℎ𝑏)
1

1!
+
(𝜆ℎ𝑏)

2

2!
−⋯](2) 

= 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚 𝑜𝑓 ℎ𝑏 = 𝑂(ℎ𝑏) ∴ 𝑃[𝑁 = 2] = 𝑂(ℎ𝑏) 
Now if 𝜆ℎ𝑏 is the rate of event the occurred per unit time(time interval) ℎ𝑏, 𝑏 ≥ 0 with 

the Poisson probability𝑃[𝑁 = 𝑛] =
𝑒−𝜆ℎ

𝑏
(𝜆ℎ𝑏)𝑛

𝑛!
; then 𝑁(𝑡)will be the counted number of 

events to be occurred in the time interval 𝑡 and {𝑁(𝑡), 𝑡 ≥ 0} is said to be a counting 

process with 𝜆ℎ𝑏 if and only if 

I. 𝑁(0) = 0. 
II. The process has stationary and independent increments 

III. 𝑃{𝑁(ℎ) = 1} = 𝜆ℎ𝑏 + 𝑜(ℎ𝑏).   [from (1)] 

IV. 𝑃{𝑁(ℎ) ≥ 2} = 𝑜(ℎ𝑏).              [from (2)] 

The Generalized Poisson process and its various properties have been developed through 

various theorems. 

 

Theorem 1: TheProbability of 𝑛 number of events occurring in the time interval 𝑡 will be 

𝑃𝑛(𝑡) = 𝑃[𝑁(𝑡) = 𝑛] =
𝑒−𝜆ℎ

𝑏−1𝑡(𝜆ℎ𝑏−1𝑡)𝑛

𝑛!
;   ∀  𝑛 = 0, 1, 2, 3, … ,∞    𝑎𝑛𝑑 𝑏 ≥ 1 which 

can also be referred as the probability distribution function of the generalized Poisson 

process. 

 

Theorem 2: Counting process starts from Bernoulli, binomial then Poisson distribution. 

𝑃{𝑋 = 𝑘} = (
𝑛
𝑘
)𝑃𝑘(1 − 𝑃)𝑛−𝑘. Binomial distribution converges to Poisson distribution. 

 

Theorem 3:If 𝑁(𝑡)is a counting process with the pdf, 𝑃𝑛(𝑡) =  
𝑒−𝜆ℎ

𝑏−1𝑥( 𝜆ℎ𝑏−1𝑥)𝑛

𝑛!
with 

occurrence rate 𝜆ℎ𝑏−1 , then the inter-arrival times 𝑋1, 𝑋2, … are an independent and 

identically distributed random sequence of 𝑋𝑖where each 𝑋𝑖has exponential probability 

density . 

 

Theorem 4: If 𝑁(𝑡) is a Poisson process along with the pdf 𝑃𝑛(𝑡) =  
𝑒−𝜆ℎ

𝑏−1𝑡( 𝜆ℎ𝑏−1𝑡)𝑛

𝑛!
 

having the inter-arrival times 𝑡1, 𝑡2, … having exponential pdf with the form  𝑓(𝑡) =

𝜆ℎ𝑏−1𝑒−𝜆𝑡ℎ
𝑏−1
;    𝑡 > 0 . Then 𝑆𝑛 = ∑ 𝑡𝑖

𝑛
𝑖=1 is the waiting time until the 𝑛𝑡ℎ  event 

occurs ∀𝑛 = 1,2,… Then each of the sequence of the waiting time 𝑆1, 𝑆2, … , 𝑆𝑛 follows 

gamma distribution with parameters (𝑛, 𝜆). 
 

Theorem 5: The counting process {𝑁(𝑡), 𝑡 ≥ 0} having the pdf 𝑃𝑛(𝑡) =
𝑒−𝜆ℎ

𝑏−1𝑡( 𝜆ℎ𝑏−1𝑡)𝑛

𝑛!
 

along with the rate 𝜆ℎ𝑏−1iff 

I. The number of arrivals in any interval  [𝑡0, 𝑡1] ,𝑁(𝑡1) − 𝑁(𝑡0)  is a Poisson 

random variable with expected value 𝜆ℎ𝑏−1[𝑡1 − 𝑡0]. 
II. For any pair of non-overlapping interval [𝑡0, 𝑡1], [𝑡0′, 𝑡1′]. The no of arrivals in 

each interval, 𝑁(𝑡1) − 𝑁(𝑡0) and 𝑁(𝑡1′) − 𝑁(𝑡0′) respectively are independent 

random variables. 

 

Theorem 6: For a Poisson process  {𝑁(𝑡), 𝑡 ≥ 0}  having the pdf 𝑃𝑛(𝑡) =

 
𝑒−𝜆ℎ

𝑏−1𝑡( 𝜆ℎ𝑏−1𝑡)𝑛

𝑛!
 along with the rate of occurrences𝜆ℎ𝑏−1, the joint probability mass 
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function of  𝑁(𝑡1),𝑁(𝑡2),… ,𝑁(𝑡𝑘−1),𝑁(𝑡𝑘)  ; 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑘−1 < 𝑡𝑘 is 

𝑃𝑁(𝑡1),𝑁(𝑡2),…,𝑁(𝑡𝑘−1),𝑁(𝑡𝑘)(𝑛1, 𝑛2, … , 𝑛𝑘−1, 𝑛𝑘) =

𝑒−𝜆ℎ
𝑏−1𝑡1( 𝜆ℎ𝑏−1𝑡1)

𝑛1

𝑛1!
.
𝑒−𝜆ℎ

𝑏−1[𝑡2−𝑡1]( 𝜆ℎ𝑏−1[𝑡2−𝑡1])
𝑛2−𝑛1

(𝑛2−𝑛1)!
…
𝑒−𝜆ℎ

𝑏−1[𝑡𝑘−𝑡𝑘−1]( 𝜆ℎ𝑏−1[𝑡𝑘−𝑡𝑘−1])
𝑛𝑘−𝑛𝑘−1

(𝑛𝑘−𝑛𝑘−1)!
 

 

Theorem 7:A counting process 𝑁(𝑡) having pdf 𝑃𝑛(𝑡) =  
𝑒−𝜆ℎ

𝑏−1𝑡( 𝜆ℎ𝑏−1𝑡)𝑛

𝑛!
& independent 

exponential arrivals 𝑋1, 𝑋2, …  with mean 𝐸(𝑋𝑖) =
1

𝜆ℎ𝑏−1
 is a Poisson process of rate 

𝜆ℎ𝑏−1 which is memoryless since 𝑃[𝑋𝑛 > 𝑡
′ + 𝑡|𝑋𝑛 > 𝑡

′] = 𝑃(𝑋𝑛 > 𝑡) for all 𝑡, 𝑡′ > 0. 

 

Theorem 8: If 𝑁(𝑡)  is a Poisson process along with the pdf 𝑃[𝑁(𝑡) = 𝑛] =

𝑒−𝜆ℎ
𝑏−1𝑡( 𝜆ℎ𝑏−1𝑡)

𝑛

𝑛!
, the mean  𝐸[𝑁(𝑡)]  and Variance 𝑉[𝑁(𝑡)]  will be 𝜆ℎ𝑏−1𝑡 ;  the 

correlation coefficient, 𝑐𝑜𝑟𝑟[𝑁(𝑡), 𝑁(𝑡 + 𝑟)] = √
𝑡

𝑡+𝑟
, Covariance, 𝐶𝑜𝑣[𝑁(𝑡), 𝑁(𝑡 +

𝑟)]=𝜆ℎ𝑏−1𝑡 and  moment generating function, 𝑀𝑁(𝑡)(𝑡) = 𝑒
𝜆ℎ𝑏−1𝑡(𝑒𝑡

′−1). 

 

Theorem 9: A Poisson process 𝑁(𝑡) having pdf 𝑃[𝑁(𝑡) = 𝑛] =
𝑒−𝜆ℎ

𝑏−1𝑡( 𝜆ℎ𝑏−1𝑡)
𝑛

𝑛!
 is a 

Markov process. 

 

Theorem10: If 𝑁1(𝑡) 𝑎𝑛𝑑 𝑁2(𝑡) are Poisson processes along with their pdf 𝑃[𝑁1(𝑡) =

𝑟] =
𝑒−𝜆ℎ

𝑏−1𝑡( 𝜆ℎ𝑏−1𝑡)
𝑟

𝑟!
 and 𝑃[𝑁2(𝑡) = 𝑛 − 𝑟] =

𝑒−𝜆ℎ
𝑏−1𝑡( 𝜆ℎ𝑏−1𝑡)

𝑛−𝑟

(𝑛−𝑟)!
where 𝑃[𝑁1(𝑡) +

𝑁2(𝑡) = 𝑛]then 𝑁1(𝑡) + 𝑁2(𝑡) is also a Poisson process. 

 

Theorem 11: If  𝑁1(𝑡) with parameters (𝜆1, 𝑏) and  𝑁2(𝑡)  with parameters (𝜆2, 𝑏)  are 

Poisson process along with their pdf 𝑃[𝑁1(𝑡) = 𝑟] =
𝑒−𝜆ℎ

𝑏−1𝑡( 𝜆ℎ𝑏−1𝑡)
𝑟

𝑟!
 and 𝑃[𝑁2(𝑡) =

𝑛 − 𝑟] =
𝑒−𝜆ℎ

𝑏−1𝑡( 𝜆ℎ𝑏−1𝑡)
𝑛−𝑟

(𝑛−𝑟)!
 where 𝑃[𝑁1(𝑡) + 𝑁2(𝑡) = 𝑛] with mgf 𝑒𝜆1ℎ

𝑏−1𝑡(𝑒𝑡
′
−1) 

and 𝑒𝜆2ℎ
𝑏−1𝑡(𝑒−𝑡

′
−1) respectively then  𝑁1(𝑡) −  𝑁2(𝑡) is not a Poisson process. 

 

Theorem 12:  
𝑁1(𝑡)

𝑁1(𝑡)+𝑁2(𝑡)
 follows Binomial variant along with the pdf   𝑃[𝑁1(𝑡) =

𝑟|𝑁1(𝑡) + 𝑁2(𝑡) = 𝑛] = (
𝑛
𝑟
) (

𝜆1

𝜆1+𝜆2
)
𝑟
(1 −

𝜆1

𝜆1+𝜆2
)
𝑛−𝑟

.  

 

Theorem 13: If 𝑁(𝑡) is a Poisson process along with the pdf 𝑃𝑛(𝑡) =  
𝑒−𝜆ℎ

𝑏−1𝑡( 𝜆ℎ𝑏−1𝑡)𝑛

𝑛!
 

having the inter-arrival times 𝑡1, 𝑡2, … having exponential pdf with the form  𝑓(𝑡) =

𝜆ℎ𝑏−1𝑒−𝜆𝑡ℎ
𝑏−1
;    𝑡 > 0. Follows independent and stationary increments then time[0, 𝑡], 

that is for 𝑠 < 𝑡  𝑎𝑛𝑑 𝑡ℎ𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟 − 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑓𝑆𝑛(𝑡) =
(𝜆ℎ𝑏−1)𝑛

(𝑛−1)!
𝑒−𝜆ℎ

𝑏−1𝑡𝑡𝑛−1    ; 𝑡 ≥ 0  then   𝑃{𝑇1 < 𝑆|𝑁(𝑡) = 1} =
𝑠

𝑡
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

 

3. Generalized Renewal Process 

From the generalized process we obtained a new form of exponential distribution for 

inter-arrival time along with the pdf, 
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𝑓(𝑡) = 𝜆ℎ𝑏−1𝑒−𝜆𝑡ℎ
𝑏−1
;   𝑡 > 0 

Based on this generalized exponential variant we have derived the generalized forms for 

various properties of Renewal process. A counting process {𝑁(𝑡), 𝑡 ≥ 0} for which the 

times between successive events are independently and identically distributed arbitrary 

random variables is known as renewal process.A Poisson process is a renewal process for 

which the times between successive events are independently and identically distributed 

exponential random variables. So renewal process is a special kind of Poisson process 

𝑃{N(t) ≥ n} = 𝑃{𝑆𝑛 ≤ 𝑡} 
Where waiting time until 𝑛𝑡ℎevent is, 𝑆𝑛 = ∑ 𝑇𝑖

𝑛
𝑖=1 , 𝑁(𝑡) is number of renewals; 𝑁(𝑡) =

𝑆𝑢𝑝{𝑛:  𝑆𝑛 ≤ 𝑡}. That is𝑁(𝑡) is a Renewal process.Then we can say, if 𝑁(𝑡)is a counting 

process, for a Poisson process of rate  𝜆ℎ𝑏 , the inter-arrival times 𝑇1, 𝑇2, … are an iid 

random sequence with exponential distribution  

𝑓𝑇(𝑡) = {
𝜆ℎ𝑏−1𝑒−𝜆𝑡ℎ

𝑏−1
,                    𝑡 > 0

0                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Theorem 14: The distribution of the renewal process𝑁(𝑡)  will be𝑃𝑟{𝑁(𝑡) = 𝑛} =
𝐹𝑛(𝑡) − 𝐹𝑛+1(𝑡) 
 

Theorem 15: The Renewal function 𝑃{𝑆𝑛 ≤ 𝑡} Where waiting time until 𝑛𝑡ℎ event 

is, 𝑆𝑛 = ∑ 𝑇𝑖
𝑛
𝑖=1 will be 𝑚(𝑡) = 𝐸{𝑁(𝑡)}, where 𝑚(𝑡) is the mean value of the function 

and 𝑚(𝑡) = 𝐸[𝑁(𝑡)] = 𝜆𝑡ℎ𝑏−1. 

 

Theorem 16: If 𝑁(𝑡) is a Poisson process along with the pdf 𝑃𝑛(𝑡) =  
𝑒−𝜆ℎ

𝑏−1𝑡( 𝜆ℎ𝑏−1𝑡)𝑛

𝑛!
 

having the inter-arrival times 𝑡1, 𝑡2, … having exponential pdf with the form  𝑓(𝑡) =

𝜆ℎ𝑏−1𝑒−𝜆𝑡ℎ
𝑏−1
;    𝑡 > 0 and inter-arrival distribution.If {𝑁(𝑡), 𝑡 ≥ 0} is a Renewal 

Process of a Stochastic Process thenMean,𝐸[𝑁(𝑡)] = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒, 𝑉[𝑁(𝑡)] = 𝜆𝑡ℎ𝑏−1. 
 

Theorem 17: The average renewal rate by time 𝑡  converges with probability 1  to 

𝜆ℎ𝑏−1𝑡as 𝑡 → ∞. Such that 𝑙𝑖𝑚
𝑡→∞

{
𝑁(𝑡)

𝑡
→ 𝜆ℎ𝑏−1𝑡}

𝑊.𝑃
→  1  where, 𝐸(𝑇𝑛) =

1

𝜆ℎ𝑏−1𝑡
≤ ∞.  

 

Conclusion 

The twenty first century makes the lives fast and furious. People are concerned about 

reducing the consequences of the effect of the occurrences used to happen less frequently 

or rarely. Ensuring the best emergency services may demand the prior knowledge of 

forecasting the local and global intensities of the random behavior of the occurrences of 

rare hazards. The knowledge of rare events may ensure a good public health and healthy 

economy.The family of counting process plays an important role to model the rare events 

with the probabilistic approach. This is one of the most important random processes in 

probability theory.The goal of this work is to develop and study the properties of the 

family of Generalized counting processes and its consequences in building the 

generalized Renewal process, etc. Attempts have been made to find the differences 

between the properties of usual processes and the generalized processes.  

The generalized forms of the Poisson process, Renewal process etc can be unfolded 

through the proper specification of the parameters of the Poisson processes. The explicit 

form of the various generalized process can be applied to several capricious situations in 

multiple disciplines. The way of generalization of the Poisson process and Renewal 

process etc. can be vastly extended due to the inequality of the shape parameters or of the 

small time interval of two Poisson processes (𝑏1 ≠ 𝑏2) and/or (ℎ1 ≠ ℎ2). 
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Appendix A 

Table A1: Explicit forms of the Poisson process and its properties 

Table A2: Mathematical expressions of the Renewal process and its various forms 

Characteristics For new exponent variant, 

 𝒇(𝒕) = 𝝀𝒉𝒃−𝟏𝒆−𝒕𝝀𝒉
𝒃−𝟏

 

𝒇(𝒕) = 𝝀𝒉𝒃−𝟏𝒆−𝒕𝝀𝒉
𝒃−𝟏

 

𝒃 = 𝟏 𝒃 = 𝟐 

Mean, 𝐸[𝑁(𝑡)] 𝜆𝑡ℎ𝑏−1 𝜆𝑡 𝜆ℎ𝑡 
Variance, 𝑉𝑎𝑟[𝑁(𝑡)] 𝜆𝑡ℎ𝑏−1 𝜆𝑡 𝜆ℎ𝑡 

lim
𝑡→∞

𝑁(𝑡)

𝑡
 

1

𝜇
 

1

𝜇
 

1

𝜇
 

Number of renewals, 

𝑁(𝑡) 
 

(𝑡𝜆ℎ𝑏−1)𝑛𝑒−𝑡𝜆ℎ
𝑏−1

𝑛!
 

(𝜆𝑡)𝑛𝑒−𝜆𝑡

𝑛!
 

(𝜆ℎ𝑡)𝑛𝑒−𝜆ℎ𝑡

𝑛!
 

Density function, 𝑓(𝑡)  𝜆ℎ𝑏−1𝑒−𝜆𝑡ℎ
𝑏−1

 𝜆𝑒−𝜆𝑡 𝜆ℎ𝑒−𝜆ℎ𝑡 

Waiting time, 𝑆𝑛 𝑡𝑛−1𝑒−𝑡𝜆ℎ
𝑏−1
(𝜆ℎ𝑏−1)

𝑛

𝑛!
 

𝑡𝑛−1𝑒−𝜆𝑡𝜆𝑛

𝑛!
 
𝑡𝑛−1𝑒−𝜆ℎ𝑡(𝜆ℎ)𝑛

𝑛!
 

 

Appendix B 

B1 Theorem 1 Proof:  𝑃{𝑁(ℎ) = 0} + 𝑃{𝑁(ℎ) = 1} + 𝑃{𝑁(ℎ) = 2} +⋯ = 1 ⇒
𝑃{𝑁(ℎ) = 0} = 1 − 𝑃{𝑁(ℎ) = 1} − 𝑃{𝑁(ℎ) ≥ 2} 

⇒ 𝑃{𝑁(ℎ) = 0} = 1 − [𝜆ℎ𝑏 + 𝑜(ℎ𝑏)] − 𝑜(ℎ𝑏) 

∴ 𝑃{𝑁(ℎ) = 0} = 1 −  𝜆ℎ𝑏 + 𝑜(ℎ𝑏)   [Since 𝑜(ℎ𝑏) is very small 

𝑷[𝑵(𝒉) = 𝟎] 𝟏 −  𝝀𝒉𝒃 + 𝒐(𝒉𝒃) 𝟏 −  𝝀𝒉𝒃 + 𝒐(𝒉𝒃) 

𝒃 = 𝟏 𝒃 = 𝟐 

No. of events occurred 

by time𝑡 , 𝑃𝑛(𝑡) 
𝑒−𝜆ℎ

𝑏−1𝑡( 𝜆ℎ𝑏−1𝑡)𝑛

𝑛!
 

𝑒−𝜆𝑡( 𝜆𝑡)𝑛

𝑛!
 

𝑒−𝜆ℎ𝑡( 𝜆ℎ𝑡)𝑛

𝑛!
 

Inter-arrival Density 

function 𝑓(𝑡) = 𝐹′(𝑡) 
𝜆ℎ𝑏−1𝑒−𝜆ℎ

𝑏−1𝑡 ;          𝑡 > 0 𝜆𝑒−𝜆𝑡 𝜆ℎ𝑒−𝜆ℎ𝑡 

Probability of occurring 

event for non-

overlapping time 

𝑒−𝜆ℎ
𝑏−1[𝑡1−𝑡0]( 𝜆ℎ𝑏−1[𝑡1 − 𝑡0])

𝑛

𝑛!
 
𝑒−𝜆[𝑡1−𝑡0]( 𝜆[𝑡1 − 𝑡0])

𝑛

𝑛!
 
𝑒−𝜆ℎ[𝑡1−𝑡0]( 𝜆ℎ[𝑡1 − 𝑡0])

𝑛

𝑛!
 

Mean,  𝐸[𝑁(𝑡)] 𝜆ℎ𝑏−1𝑡 𝜆𝑡 𝜆ℎ𝑡 
Variance,  𝑉[𝑁(𝑡)] 𝜆ℎ𝑏−1𝑡 𝜆𝑡 𝜆ℎ𝑡 
Covariance, 

[𝑁(𝑡), 𝑁(𝑡 + 𝑟)] 
𝜆ℎ𝑏−1𝑡 𝜆𝑡 𝜆ℎ𝑡 

Correlation,

[𝑁(𝑡), 𝑁(𝑡 + 𝑟)] 
√𝑡

√𝑡 + 𝑟
 

√𝑡

√𝑡 + 𝑟
 

√𝑡

√𝑡 + 𝑟
 

Joint Conditional 

distribution,  𝑃[𝑋1(𝑡) =
𝑟/𝑋1(𝑡)+𝑋2(𝑡) = 𝑛] 

(
𝑛
𝑟
) (

𝜆1
𝜆1 + 𝜆2

)
𝑟

(1 −
𝜆1

𝜆1 + 𝜆2
)
𝑛−𝑟

 (
𝑛
𝑟
) (

𝜆1
𝜆1 + 𝜆2

)
𝑟

 

(1 −
𝜆1

𝜆1 + 𝜆2
)
𝑛−𝑟

 

(
𝑛
𝑟
) (

𝜆1
𝜆1 + 𝜆2

)
𝑟

 

(1 −
𝜆1

𝜆1 + 𝜆2
)
𝑛−𝑟

 

Conditional distribution 

of waiting time 

𝑠

𝑡
 

𝑠

𝑡
 

𝑠

𝑡
 

Waiting time,𝑓𝑆𝑛(𝑡) 𝑒−𝜆ℎ
𝑏−1𝑡(𝜆ℎ𝑏−1)𝑛𝑡𝑛−1

(𝑛 − 1)!
 

𝑒−𝜆𝑡𝜆𝑛𝑡𝑛−1

(𝑛 − 1)!
 

𝑒−𝜆ℎ𝑡(𝜆ℎ)𝑛𝑡𝑛−1

(𝑛 − 1)!
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Now, probability of𝑛 events to be occurred in (𝑡 + ℎ) interval of time is as follows where 

ℎ is very small. 

∴  𝑃[𝑁(𝑡 + ℎ) = 𝑛] = 𝑃[𝑁(𝑡) = 𝑛 𝑎𝑛𝑑 𝑁(ℎ) = 0 𝑜𝑟, 𝑁(𝑡) = 𝑛 − 1 𝑎𝑛𝑑 𝑁(ℎ)
= 1 𝑜𝑟, 𝑁(𝑡) = 𝑛 − 2 𝑎𝑛𝑑 𝑁(ℎ) = 2… ]   

⇒ 𝑃[𝑁(𝑡 + ℎ) = 𝑛] =  𝑃{𝑁(𝑡) = 𝑛 𝑎𝑛𝑑 𝑁(ℎ) = 0} + 𝑃{𝑁(𝑡) = 𝑛 − 1 𝑎𝑛𝑑 𝑁(ℎ) = 1} 
  +𝑃{𝑁(𝑡) = 𝑛 − 2 𝑎𝑛𝑑 𝑁(ℎ) = 2} +⋯ 

= 𝑃𝑛(𝑡)[1 −  𝜆ℎ
𝑏 + 𝑜(ℎ𝑏)] + 𝑃𝑛−1(𝑡)[ 𝜆ℎ

𝑏 + 𝑜(ℎ𝑏)] + 𝑜(ℎ𝑏) 

⇒ lim
ℎ→0

𝑃𝑛(𝑡 + ℎ) − 𝑃𝑛(𝑡)

ℎ
 = −  𝜆ℎ𝑏−1𝑃𝑛(𝑡) + 𝜆ℎ

𝑏−1𝑃𝑛−1(𝑡) + lim
ℎ→0

𝑜(ℎ𝑏)

ℎ
 

∴
𝑑

𝑑𝑡
[𝑃𝑛(𝑡)] = − 𝜆ℎ

𝑏−1𝑃𝑛(𝑡) + 𝜆ℎ
𝑏−1𝑃𝑛−1(𝑡)..(3) ∵ lim

ℎ→0

𝑜(ℎ𝑏)

ℎ
= 0 𝑤𝑖𝑡ℎ 𝑎 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑟𝑎𝑡𝑒 

If we put 𝑛 = 1  in the above equation (3), we get 
𝑑

𝑑𝑡
[𝑃1(𝑡)] =  − 𝜆ℎ

𝑏−1𝑃1(𝑡) + 𝜆ℎ
𝑏−1𝑃0(𝑡)         (4) 

𝑃0(𝑡) = 𝑃[𝑁(𝑡) = 0] ∴ 𝑃0(𝑡 + ℎ) = 𝑃[𝑁(𝑡 + ℎ) = 0] = 𝑃0(𝑡)[1 − 𝜆ℎ
𝑏 + 𝑜(ℎ𝑏)] 

⇒ lim
ℎ→0

𝑃0(𝑡 + ℎ) − 𝑃0(𝑡)

ℎ
 = − 𝜆ℎ𝑏−1𝑃0(𝑡) + lim

ℎ→0

𝑜(ℎ𝑏)

ℎ
 

∴  
𝑑

𝑑𝑡
[𝑃0(𝑡)] = 𝑃0

′(𝑡) = − 𝜆ℎ𝑏−1𝑃0(𝑡) ∴
𝑃0
′(𝑡)

𝑃0(𝑡)
= − 𝜆ℎ𝑏−1 

By integrating the above equation, 

⇒ ∫
𝑃0
′(𝑡)

𝑃0(𝑡)
 𝑑𝑡 = −  𝜆ℎ𝑏−1∫𝑑𝑡 ⇒ ln𝑃0(𝑡) = −  𝜆𝑡ℎ

𝑏−1 + 𝐶 ∴ 𝑃0(𝑡) = 𝑒
− 𝜆𝑡ℎ𝑏−1+𝐶 

If we put 𝑡 = 0, 𝑃0(0) = 𝑒
− 𝜆ℎ𝑏−10+𝐶 ⇒ 𝑒0 = 𝑒𝐶 ∴ 𝐶 = 0 ∴  𝑃0(𝑡) = 𝑒

− 𝜆ℎ𝑏−1𝑡 

So from equation (4) we get, 
𝑑

𝑑𝑡
[𝑃1(𝑡)] = 𝑃1

′(𝑡) = −𝜆ℎ𝑏−1𝑃1(𝑡) + 𝜆ℎ
𝑏−1𝑃0(𝑡) = −𝜆ℎ

𝑏−1𝑃1(𝑡) + 𝜆ℎ
𝑏−1𝑒− 𝜆ℎ

𝑏−1𝑡 

We can rewrite equation (3)as, 
𝑑

𝑑𝑡
[𝑃𝑛(𝑡)] =  𝑃𝑛

′(𝑡) = −𝜆ℎ𝑏−1𝑃𝑛(𝑡) + 𝜆ℎ
𝑏−1𝑃𝑛−1(𝑡) 

⇒ 𝑃𝑛
′(𝑡) + 𝜆ℎ𝑏−1𝑃𝑛(𝑡)  = 𝜆ℎ

𝑏−1𝑃𝑛−1(𝑡) 

By multiplying 𝑒  𝜆ℎ
𝑏−1𝑡 in both sides we get- 

𝑒  𝜆ℎ
𝑏−1𝑡[𝑃𝑛

′(𝑡) + 𝜆ℎ𝑏−1𝑃𝑛(𝑡)] ⇒
𝑑

𝑑𝑡
[𝑒  𝜆ℎ

𝑏−1𝑡 𝑃𝑛(𝑡)] = 𝜆ℎ
𝑏−1𝑒 𝜆ℎ

𝑏−1𝑡 𝑃𝑛−1(𝑡) 

If we put 𝑛 = 1  the value of 𝑃0(𝑡) 
𝑑

𝑑𝑡
[𝑒  𝜆ℎ

𝑏−1𝑡 𝑃1(𝑡)] = 𝜆ℎ
𝑏−1𝑒 𝜆ℎ

𝑏−1𝑡 𝑃0(𝑡) =  𝜆ℎ
𝑏−1𝑒 𝜆ℎ

𝑏−1𝑡𝑒− 𝜆ℎ
𝑏−1𝑡   = 𝜆ℎ𝑏−1 

By integrating the above equation, 

∫
𝑑

𝑑𝑡
[𝑒  𝜆ℎ

𝑏−1𝑡  𝑃1(𝑡)] 𝑑𝑡 =  𝜆ℎ
𝑏−1∫𝑑𝑡 ⇒ 𝑒  𝜆ℎ

𝑏−1𝑡 𝑃1(𝑡) = 𝜆ℎ
𝑏−1𝑡 + 𝐶 = 𝜆ℎ𝑏−1𝑡  

[We know, C=0] ∴ 𝑃1(𝑡) = 𝜆ℎ
𝑏−1𝑡  𝑒−𝜆ℎ

𝑏−1𝑡 

If we put 𝑛 = 2 and use the value of 𝑃1(𝑡) = 𝜆ℎ
𝑏−1𝑡  𝑒−𝜆ℎ

𝑏−1𝑡 we get- 
𝑑

𝑑𝑡
[𝑒  𝜆ℎ

𝑏−1𝑡 𝑃2(𝑡)] = 𝜆ℎ
𝑏−1𝑒 𝜆ℎ

𝑏−1𝑡 𝑃1(𝑡) =  ( 𝜆ℎ
𝑏−1)2𝑡 

Since we know, C=0; By integrating the above equation we get,  

∫
𝑑

𝑑𝑡
[𝑒  𝜆ℎ

𝑏−1𝑡  𝑃2(𝑡)] 𝑑𝑡 = ( 𝜆ℎ
𝑏−1)2∫𝑡𝑑𝑡 ⇒ 𝑒  𝜆ℎ

𝑏−1𝑡  𝑃2(𝑡) = ( 𝜆ℎ
𝑏−1)2 [

𝑡2

2
+ 𝐶] 

∴  𝑃2(𝑡) =  𝑒
−𝜆ℎ𝑏−1𝑡 [

( 𝜆ℎ𝑏−1𝑡)2

2!
+ 0] =  

𝑒−𝜆ℎ
𝑏−1𝑡( 𝜆ℎ𝑏−1𝑡)2

2!
 

If we put 𝑛 = 𝑛 + 1 we get- 
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𝑑

𝑑𝑡
[𝑒  𝜆ℎ

𝑏−1𝑡 𝑃𝑛+1(𝑡)] =  𝜆ℎ
𝑏−1𝑒  𝜆ℎ

𝑏−1𝑡
𝑒−𝜆ℎ

𝑏−1𝑡( 𝜆ℎ𝑏−1𝑡)𝑛

𝑛!
= ( 𝜆ℎ𝑏−1)𝑛+1

𝑡𝑛

𝑛!
 

By integrating the above equation,∫
𝑑

𝑑𝑡
[𝑒  𝜆ℎ

𝑏−1𝑡 𝑃𝑛+1(𝑡)] 𝑑𝑡 =
( 𝜆ℎ𝑏−1)𝑛+1

𝑛!
∫ 𝑡𝑛𝑑𝑡 

⇒ 𝑒  𝜆ℎ
𝑏−1𝑡 𝑃𝑛+1(𝑡) =

( 𝜆ℎ𝑏−1)𝑛+1

𝑛! (𝑛 + 1)
[𝑡𝑛+1 + 𝐶] ∴  𝑃𝑛+1(𝑡) = 𝑒

−𝜆ℎ𝑏−1𝑡
( 𝜆ℎ𝑏−1𝑡)𝑛+1

(𝑛 + 1)!
 

Since the following equation is true for 𝑛 = 1, 2, 3, … , 𝑛 + 1  so, according to the 

iterative method we can claim that the following equation, 𝑃𝑛(𝑡) =  
𝑒−𝜆ℎ

𝑏−1𝑡( 𝜆ℎ𝑏−1𝑡)𝑛

𝑛!
; is 

true for 𝑛 = 1, 2, 3, … ,∞ and 𝑏 ≥ 1.  

B2 Theorem 2 Proof: If 𝑛 𝑎𝑛𝑑 𝑘 are the number of trials in any random experiment and 

success within a time interval ℎ𝑏 then binomial distribution with parameter (𝑛, 𝑝) is 

𝑛 →No. of trials, 𝑘 →no. of success within time ℎ𝑏; 

This forms a Binomial distribution from Counting process 𝑘; i.e.,𝑃(𝑛) = (
𝑛
𝑘
)𝑝𝑘𝑞𝑛−𝑘. 

𝐼𝑓
𝑘

𝑛
= 𝑝 → 0 => 𝑛 → ∞ ∴  𝑛.

𝑘

𝑛
→ ∞. 0 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝜆ℎ𝑏−1, So it becomes a Poisson 

random variable with PMF, 𝑃(𝑛) =
𝑒
−𝑛.

𝑘
𝑛( 𝑛.

𝑘

𝑛
)

𝑘

𝑘!
=
𝑒−𝜆ℎ

𝑏−1
(𝜆ℎ𝑏−1)𝑘

𝑘!
 

𝐴𝑠 𝑛𝑝 → 𝜆ℎ𝑏−1;
∟𝑛

∟(𝑛 − 𝑘)∟𝑥
(
𝑛𝑝

𝑛
)
𝑘

(1 −
𝑛𝑝

𝑛
)
𝑛−𝑘

=
𝑒−𝑛𝑝( 𝑛𝑝)𝑘

𝑘!
=   
𝑒−𝜆ℎ

𝑏−1
(𝜆ℎ𝑏−1)𝑘

𝑘!
 

𝑘 → 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖;∑𝑘𝑖 = 𝑆1 → 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙; 𝑘1 + 𝑘2 = 𝑆2 → 𝑃𝑜𝑖𝑠𝑠𝑜𝑛𝑡𝑖𝑚𝑒, 𝑘 → 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 

𝑃(𝐾 = 𝑘) =
𝑒−𝑛𝑝( 𝑛𝑝)𝑘

𝑘!
=   
𝑒−𝜆ℎ

𝑏−1
(𝜆ℎ𝑏−1)𝑘

𝑘!
;              𝑘 = 1, 2, 3, … ,∞  

 

B3 Theorem 3 Proof: Given 𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑛−1 = 𝑥𝑛−1 arrival 𝑛 − 1 occurs at 

time, 𝑡𝑛−1 = 𝑥1 + 𝑥2 +⋯+ 𝑥𝑛−1. For 𝑥 > 0,  𝑋𝑛 > 𝑥 if and only if there are no arrivals  

in the interval(𝑡𝑛−1, 𝑡𝑛−1 + 𝑥). The number of arrivals in (𝑡𝑛−1, 𝑡𝑛−1 + 𝑥) is independent 

of the past history described by 𝑋1, 𝑋2, … ,  𝑋𝑛−1. This implies  

𝑃(𝑋𝑛 > 𝑥/𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑛−1 = 𝑥𝑛−1) = 𝑃[𝑁(𝑡𝑛−1 + 𝑥) − 𝑁(𝑡𝑛−1) = 0] 

∴ 𝑃(𝑋𝑛 > 𝑥) =   
𝑒−𝜆ℎ

𝑏−1𝑥(𝜆ℎ𝑏−1𝑥)0

0!
= 𝑒−𝜆ℎ

𝑏−1𝑥                                                     (5) 

So the distribution function,   𝐹(𝑥) = 1 − 𝑃(𝑋𝑛 > 𝑥) = 1 − 𝑒
−𝜆ℎ𝑏−1𝑥 

𝑑

𝑑𝑥
𝐹(𝑥) = 0 − (−𝜆)𝑒−𝜆ℎ

𝑏−1𝑥        ∴ 𝑓(𝑥) = 𝜆ℎ𝑏−1𝑒−𝜆ℎ
𝑏−1𝑥 

Thus 𝑋𝑛 is independent of𝑋1, 𝑋2, … ,  𝑋𝑛−1.So the waiting time distribution 𝑓(𝑥)follows 

exponential distribution which is one kind of Poisson distribution. 

We will derive theorems of generalized Poisson process for this new exponential variant. 

B4 Theorem 4 Proof: Let 𝑡𝑖 be the random variable representing the interval between 

two successive occurrences of Poisson process [N(t), t ≥ 0]  and let 𝐹(𝑡)  be its 

distribution function. We know from the previous theorem (*); 𝑡 ~ exp  ( 𝜆, 𝑏)  with 

probability density function, 𝑓(𝑡) = 𝐹′(𝑡) = 𝜆ℎ𝑏−1𝑒−𝜆𝑡ℎ
𝑏−1
;                             𝑡 > 0  

Then the distribution of  𝑆𝑛, waiting time until the 𝑛𝑡ℎ event occurs is denoted by  

𝑓 [𝑆𝑛(𝑡) =∑𝑡𝑖

𝑛

𝑖=1

;  where 𝑓(𝑡) = 𝜆ℎ𝑏−1𝑒−𝜆𝑡ℎ
𝑏−1
] =

(𝜆ℎ𝑏−1𝑡)𝑛−1𝜆ℎ𝑏−1𝑒−𝜆ℎ
𝑏−1𝑡

(n − 1)!
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This follows Gamma distribution, that is, 𝑓𝑆𝑛(𝑡) =
𝑡𝑛−1(𝜆ℎ𝑏−1)𝑛𝑒−𝜆ℎ

𝑏−1𝑡

Γ𝑛
    ; 𝑡 ≥ 0           

B5 Theorem 6 Proof: Let the number of arrival in any time is 𝑁(𝑡𝑖) for 𝑖 = 2,… , 𝑘. Then 

in  𝑡1, 𝑡2, … , 𝑡𝑘−1, 𝑡𝑘  time events are  𝑁(𝑡1),𝑁(𝑡2), … ,𝑁(𝑡𝑘−1), 𝑁(𝑡𝑘) where  𝑡1 <
⋯ < 𝑡𝑘−1 < 𝑡𝑘. If the arrival of any two consecutive times interval is 𝑁(𝑡𝑖) − 𝑁(𝑡𝑖−1). 
By the definition of Poisson process, the joint probability mass function of total events is 

𝑃𝑁(𝑡1),𝑁(𝑡2),…,𝑁(𝑡𝑘−1),𝑁(𝑡𝑘)(𝑛1, … , 𝑛𝑘) = 𝑃{𝑁(𝑡1)}𝑃{𝑁(𝑡2)}…𝑃{𝑁(𝑡𝑘−1)}𝑃{𝑁(𝑡𝑘)} 

= 𝑃[𝑁(𝑡1) = 𝑛1]𝑃[𝑁(𝑡2) = 𝑛2|𝑁(𝑡1) = 𝑛1]…𝑃[𝑁(𝑡𝑘−1) = 𝑛𝑘−1|𝑁(𝑡𝑘−2) =
𝑛𝑘−2]𝑃[𝑁(𝑡𝑘) = 𝑛𝑘|𝑁(𝑡𝑘−1) = 𝑛𝑘−1]                                                                           (6) 

 [𝑆𝑖𝑛𝑐𝑒, 𝑃(𝐴|𝐵) = 𝑃(𝐴)𝑤ℎ𝑒𝑛 𝑃(𝐴)𝑎𝑛𝑑 𝑃(𝐵)𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 
= 𝑃[𝑁(𝑡1) = 𝑛1]𝑃[𝑁(𝑡2 − 𝑡1) = 𝑛2 − 𝑛1]…𝑃[𝑁(𝑡𝑘−1 − 𝑡𝑘−2)

= 𝑛𝑘−1 − 𝑛𝑘−2]𝑃[𝑁(𝑡𝑘 − 𝑡𝑘−1) = 𝑛𝑘 − 𝑛𝑘−1] 

=
𝑒−𝜆ℎ

𝑏−1𝑡1( 𝜆ℎ𝑏−1𝑡1)
𝑛1

𝑛1!
.
𝑒−𝜆ℎ

𝑏−1[𝑡2−𝑡1]( 𝜆ℎ𝑏−1[𝑡2 − 𝑡1])
𝑛2−𝑛1

(𝑛2 − 𝑛1)!
… 

𝑒−𝜆ℎ
𝑏−1[𝑡𝑘−𝑡𝑘−1]( 𝜆ℎ𝑏−1[𝑡𝑘−𝑡𝑘−1])

𝑛𝑘−𝑛𝑘−1

(𝑛𝑘−𝑛𝑘−1)!
   Where  𝑛1 ≤ 𝑛2 ≤ ⋯ ≤ 𝑛𝑘 

The probability of an arrival during any instant is independent of the past history of the 

process.  

B6 Theorem 7 Proof: If 𝑋𝑛denotes the time between the(𝑛 − 1)𝑠𝑡and the 𝑛𝑡ℎevent then 

the probability of 𝑛𝑡ℎ inter-arrival is  𝑃(𝑋𝑛 > 𝑡) = 𝑒
−𝜆ℎ𝑏−1𝑡; if and only if no more than 

(𝑛 − 1)𝑠𝑡  event occur before 𝑡  as it follows exponential distribution. If 𝑡′  is the 

additional time and given that, number of occurrence by time 𝑡′, the additional time until 

the arrival  𝑋𝑛 − 𝑡
′ , has the same exponential distribution as  𝑋𝑛 .The conditional 

probability that 𝑋𝑛 − 𝑡
′ > 𝑡 given 𝑋𝑛 > 𝑡

′, is  

𝑃[𝑋𝑛 − 𝑡
′ > 𝑡|𝑋𝑛 > 𝑡

′] =
𝑃[𝑋𝑛>𝑡+𝑡

′,   𝑋𝑛>𝑡
′]

𝑃[𝑋𝑛>𝑡
′]

=
𝑃[𝑋𝑛>𝑡+𝑡

′]

𝑃[𝑋𝑛>𝑡
′]
=
𝑒−𝜆ℎ

𝑏−1(𝑡+𝑡′)

𝑒−𝜆ℎ
𝑏−1𝑡′

= 𝑒−𝜆ℎ
𝑏−1𝑡 =

𝑃(𝑋𝑛 > 𝑡)for all 𝑡, 𝑡′ > 0 

That is, no matter how long we have waited for the arrival, the remaining time until the 

arrival always has an exponential distribution with mean 
1

𝜆ℎ𝑏−1
. That is, if the lifetime (or 

the holding time) has exceeded the value𝑡′then, conditionally, the residual lifetime 𝑋𝑛 −
𝑡′is still 𝐸𝑋𝑃(𝜆). So the memory less property of the Poisson process can also be seen in 

the exponential inter-arrival Times. 

B7 Theorem 8 Proof: Mean, 𝐸[𝑁(𝑡)] = ∑ 𝑛
𝑒−𝜆ℎ

𝑏−1𝑡( 𝜆ℎ𝑏−1𝑡)
𝑛

𝑛!
∞
𝑛=0 = 𝜆ℎ𝑏−1𝑡 

Variance,  𝑉𝑎𝑟[𝑁(𝑡)] = 𝐸[𝑁(𝑡)]2 − [𝐸{𝑁(𝑡)}]2 = 𝐸[{𝑁(𝑡)}{𝑁(𝑡 − 1)}] + E[𝑁(𝑡)] −

[𝐸{𝑁(𝑡)}]2 = ∑ 𝑛(𝑛 − 1)
𝑒−𝜆ℎ

𝑏−1𝑡( 𝜆ℎ𝑏−1𝑡)
𝑛

𝑛!
∞
𝑛=0 + 𝜆ℎ𝑏−1𝑡 − ( 𝜆ℎ𝑏−1𝑡)

2
= 𝜆ℎ𝑏−1𝑡  

We know, 𝐶𝑜𝑟𝑟[𝑁(𝑡), 𝑁(𝑡 + 𝑟)] =
𝐶𝑜𝑣[𝑁(𝑡),𝑁(𝑡+𝑟)]

√𝑉𝑎𝑟[𝑁(𝑡)]𝑉𝑎𝑟[𝑁(𝑡+𝑟)]
 

Now, Covariance, 𝐶𝑜𝑣[𝑁(𝑡), 𝑁(𝑡 + 𝑟)]=𝐸[𝑁(𝑡), 𝑁(𝑡 + 𝑟)] − 𝐸[𝑁(𝑡)]𝐸[𝑁(𝑡 + 𝑟)] 
∴ 𝐸[𝑁(𝑡), 𝑁(𝑡 + 𝑟)] = 𝐸[𝑁(𝑡)]𝐸[𝑁(𝑟)] + {𝐸[𝑁(𝑡)]}2 +  𝑉[𝑁(𝑡)]

= 𝜆ℎ𝑏−1𝑡𝜆ℎ𝑏−1𝑟 +  ( 𝜆ℎ𝑏−1𝑡)2 + 𝜆ℎ𝑏−1𝑡 
[𝑡ℎ𝑒 𝑜𝑐𝑐𝑢𝑟𝑎𝑛𝑐𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒(0, 𝑡]𝑖𝑠 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑡ℎ𝑎𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 (𝑡, 𝑟) 
∴ 𝐶𝑜𝑣[𝑁(𝑡), 𝑁(𝑡 + 𝑟)]

= 𝜆ℎ𝑏−1𝑡𝜆ℎ𝑏−1𝑟 + 𝜆ℎ𝑏−1𝑡 + ( 𝜆ℎ𝑏−1𝑡)
2
− 𝜆ℎ𝑏−1𝑡𝜆ℎ𝑏−1(𝑡 + 𝑟) 

= 𝜆ℎ𝑏−1𝑡        ∴ 𝐶𝑜𝑣[𝑁(𝑡), 𝑁(𝑡 + 𝑟)] = 𝜆ℎ𝑏−1𝑡 
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∴ 𝐶𝑜𝑟𝑟[𝑁(𝑡), 𝑁(𝑡 + 𝑟)] =
𝜆ℎ𝑏−1𝑡

√𝜆ℎ𝑏−1𝑡𝜆ℎ𝑏−1(𝑡 + 𝑟)
=

𝑡

√𝑡(𝑡 + 𝑟)
=

√𝑡

√𝑡 + 𝑟
= √

𝑡

𝑡 + 𝑟
 

Now, moment generating function, 𝑀𝑁(𝑡)(𝑡) = 𝐸(𝑒
𝑡′𝑁(𝑡)) = ∑

𝑒𝑛𝑡
′
𝑒−𝜆ℎ

𝑏−1𝑡(𝜆ℎ𝑏−1𝑡)
𝑛

𝑛!
∞
𝑛=0  

= 𝑒𝜆ℎ
𝑏−1𝑡(𝑒𝑡

′
−1)…(7)         [𝑆𝑖𝑛𝑐𝑒, ∑

(𝑒𝑡
′
𝜆ℎ𝑏−1𝑡)

𝑛

𝑛!
∞
𝑛=0 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑜𝑤𝑒𝑟 𝑠𝑒𝑟𝑖𝑒𝑠 𝑓𝑜𝑟 𝑒𝑒

𝑡′𝜆ℎ𝑏−1𝑡 

B8 Theorem 9 Proof: Let the number of events occurred in 𝑡1, 𝑡2, 𝑡3… time interval is 

𝑛1, 𝑛2, 𝑛3, … respectively. So the number of events occurred by 𝑡1,𝑡2  is   𝑁(𝑡1) = 𝑛1 , 

𝑁(𝑡2) = 𝑛2. Then the inter-arrival time (𝑡2 − 𝑡1) indeed produces(𝑛2 − 𝑛1) number of 

events occurred.Now the probability of 𝑛3 event in the time interval  𝑡3 ; given that 

𝑛1 𝑎𝑛𝑑 𝑛2 events occur at 𝑡1 𝑎𝑛𝑑 𝑡2 time interval respectively; will be  

∴ 𝑃[𝑁(𝑡3) = 𝑛3|𝑁(𝑡2) = 𝑛2, 𝑁(𝑡1) = 𝑛1]; 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 

=

𝑒−𝜆ℎ
𝑏−1𝑡1( 𝜆ℎ𝑏−1𝑡1)

𝑛1

𝑛1!
.
𝑒−𝜆ℎ

𝑏−1(𝑡2−𝑡1)[ 𝜆ℎ𝑏−1(𝑡2−𝑡1)]
𝑛2−𝑛1

(𝑛2−𝑛1)!
.
𝑒−𝜆ℎ

𝑏−1(𝑡3−𝑡2)[ 𝜆ℎ𝑏−1(𝑡3−𝑡2)]
𝑛3−𝑛2

(𝑛3−𝑛2)!

𝑒−𝜆ℎ
𝑏−1𝑡1( 𝜆ℎ𝑏−1𝑡1)

𝑛1

𝑛1!
.
𝑒−𝜆ℎ

𝑏−1(𝑡2−𝑡1)[ 𝜆ℎ𝑏−1(𝑡2−𝑡1)]
𝑛2−𝑛1

(𝑛2−𝑛1)!

 

=
𝑒−𝜆ℎ

𝑏−1(𝑡3−𝑡2)[ 𝜆ℎ𝑏−1(𝑡3 − 𝑡2)]
𝑛3−𝑛2

(𝑛3 − 𝑛2)!
 [𝑓𝑟𝑜𝑚 𝑡ℎ𝑒𝑜𝑟𝑒𝑚 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (6) 

The process 𝑁(𝑡3) only depends on the immediate past 𝑁(𝑡2). So, the process 𝑁(𝑡3) is a 

Markov process. Thus we can say that  𝑃[𝑁(𝑡𝑘) = 𝑛𝑘|𝑁(𝑡𝑘−1) = 𝑛𝑘−1, … , 𝑁(𝑡1) =
𝑛1] = 𝑃[𝑁(𝑡𝑘) = 𝑛𝑘|𝑁(𝑡𝑘−1) = 𝑛𝑘−1]. So, 𝑁(𝑡) is a Markov Process. 

B9 Theorem 10 Proof: 𝑁1(𝑡) 𝑎𝑛𝑑 𝑁2(𝑡) follows Poisson process. Let total number of 

events occur in total time 𝑡 is 𝑛. That is if  𝑁1(𝑡) = 𝑟,𝑁2(𝑡) = 𝑛 − 𝑟 .  

∴ 𝑃[𝑁(𝑡) = 𝑛] = 𝑃[𝑁1(𝑡) + 𝑁2(𝑡) = 𝑛] =∑𝑃[𝑁1(𝑡) = 𝑟,𝑁2(𝑡) = 𝑛 − 𝑟]

𝑛

𝑟=0

 

= ∑
𝑒−𝜆1ℎ

𝑏−1𝑡(𝜆1ℎ
𝑏−1𝑡)

𝑟

𝑟!
𝑛
𝑟=0 .

𝑒−𝜆2ℎ
𝑏−1𝑡(𝜆2ℎ

𝑏−1𝑡)
𝑛−𝑟

(𝑛−𝑟)!
=
𝑒−(𝜆1+𝜆2)ℎ

𝑏−1𝑡[(𝜆1+𝜆2)ℎ
𝑏−1𝑡]𝑛

𝑛!
So, 

𝑁1(𝑡) + 𝑁2(𝑡) is also a Poisson process. 

B10 Theorem 11 Proof: Let 𝑁1(𝑡) 𝑎𝑛𝑑 𝑁2(𝑡)follows Poisson process. Number of events 

occur within time 𝑡 is 𝑛. So the difference between these two processes will be 

𝑀𝑁1−𝑁2(𝑡) = 𝐸[𝑒
𝑡′(𝑁1−𝑁2)] = 𝐸[𝑒𝑡

′𝑁1] − 𝐸[𝑒𝑡
′𝑁2] = 𝑒

𝜆1ℎ
𝑏−1𝑡(𝑒𝑡

′
−1)
. 𝑒
𝜆2ℎ

𝑏−1𝑡(𝑒−𝑡
′
−1)

 

= 𝑒𝜆1ℎ
𝑏−1𝑡(𝑒𝑡

′
−1). 𝑒

−𝜆2ℎ
𝑏−1𝑡(1−

1

𝑒𝑡
′) = 𝑒ℎ

𝑏−1𝑡(𝜆1𝑒
𝑡′+𝜆2𝑒

−𝑡′). 𝑒−(𝜆1+𝜆2)ℎ
𝑏−1𝑡[𝐹𝑟𝑜𝑚 𝑡ℎ𝑒𝑜𝑟𝑒𝑚 (8) 

This is not a Poisson process. 

 

B11 Theorem 12 Proof: Let 𝑁1(𝑡) 𝑎𝑛𝑑 𝑁2(𝑡)follows Poisson process and total number 

of events in 𝑡 is 𝑛; if the number of events in 𝑁1(𝑡) is 𝑟 so the number of events in 𝑁2(𝑡) 

is 𝑛 − 𝑟 in then
𝑁1(𝑡)

𝑁1(𝑡)+𝑁2(𝑡)
will be 𝑃[𝑁1(𝑡) = 𝑟|𝑁1(𝑡) + 𝑁2(𝑡) = 𝑛] 

=

𝑒−𝜆1ℎ
𝑏−1𝑡(𝜆1ℎ

𝑏−1𝑡)
𝑟

𝑟!

𝑒−𝜆2ℎ
𝑏−1𝑡(𝜆2ℎ

𝑏−1𝑡)
𝑛−𝑟

(𝑛−𝑟)!

𝑒−(𝜆1+𝜆2)ℎ
𝑏−1𝑡[(𝜆1+𝜆2)ℎ

𝑏−1𝑡]
𝑛

𝑛!

= (
𝑛
𝑟
) (

𝜆1
𝜆1 + 𝜆2

)
𝑟

(1 −
𝜆1

𝜆1 + 𝜆2
)
𝑛−𝑟

 

[𝑓𝑟𝑜𝑚 𝑡ℎ𝑒𝑜𝑟𝑒𝑚  (6)]. Which is the probability mass function of Binomial distribution.   

B12 Theorem 13 Proof: Let 𝑇1denotes the time of the first event. To find the distribution 

of it, we know the event {𝑇1 < 𝑠}takes place if and only if, the first event of the Poisson 

process occur in the interval [0, 𝑠]and each interval in[0, 𝑡] of equal length should have 
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the same probability of containing the event. Thus if the number of event is 1 in 𝑡 time 

interval, 𝑃{𝑇1 < 𝑠|𝑁(𝑡) = 1} =
𝑃{𝑇1<𝑠 & 𝑁(𝑡)=1}

𝑃{𝑁(𝑡)=1}
 

=
𝑃{1 𝑒𝑣𝑒𝑛𝑡 𝑜𝑐𝑐𝑢𝑟𝑠 𝑎𝑡 (0, 𝑠)𝑎𝑛𝑑 𝑛𝑜 𝑒𝑣𝑒𝑛𝑡𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 (𝑠, 𝑡)}

𝑃{𝑁(𝑡) = 1}
 

=
𝑃{𝑁(𝑠) = 1} 𝑃{𝑁(𝑡 − 𝑠) = 0}

𝑃{𝑁(𝑡) = 1}
=
𝜆ℎ𝑏−1𝑠𝑒−𝜆𝑠ℎ

𝑏−1
𝑒−𝜆ℎ

𝑏−1(𝑡−𝑠)

𝜆ℎ𝑏−1𝑡𝑒−𝜆ℎ
𝑏−1𝑡

=
𝑠

𝑡
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

B13 Theorem 14 Proof: Suppose that 𝑇1, 𝑇2, … , 𝑇𝑛be a sequence of inter-arrival time. 

Then,𝑆1 = 𝑇1 =Time until the first renewal occurs 

𝑆2 = 𝑇1 + 𝑇2 = Time of the second renewal 
⋮ 

𝑆𝑛 = 𝑇1 + 𝑇2 + 𝑇3 +⋯+ 𝑇𝑛 = Time of the 𝑛𝑡ℎrenewal 

If 𝑁(𝑡) is the number of independent and identically distributed random variables with a 

common distribution 𝐹 , then, the number of renewals, 𝑁(𝑡)  by time 𝑡  depends on 

𝑛𝑡ℎ renewal  𝑆𝑛 . That is, 𝑁(𝑡) ≥ 𝑛 ↔ 𝑆𝑛 ≤ 𝑡 . Thus we obtain 𝑃𝑟{𝑁(𝑡) = 𝑛} =
𝑃𝑟{𝑁(𝑡) ≥ 𝑛} − 𝑃𝑟{𝑁(𝑡) ≥ 𝑛 + 1} = 𝑃𝑟{𝑆𝑛 ≤ 𝑡} − 𝑃𝑟{𝑆𝑛+1 ≤ 𝑡} = 𝐹𝑛(𝑡) − 𝐹𝑛+1(𝑡). 

B14 Theorem 15 Proof: If 𝑁(𝑡) is the number of independent and identically distributed 

random variables with an arbitrary common distribution 𝐹 then the renewal function will 

be, 𝑚(𝑡) = 𝐸[𝑁(𝑡)] = ∑ 𝑛𝑃𝑛(𝑡) =
∞
𝑛=0 ∑ 𝑛[𝐹𝑛(𝑡) − 𝐹𝑛+1(𝑡)]

∞
𝑛=1 = ∑ 𝐹𝑛(𝑡)

𝑁(𝑡)
𝑛=1  

Where, 𝐹𝑛(. )  is the 𝑛𝑡ℎ convolution of 𝐹(. ). 

If the inter-arrival time 𝑇𝑛 have gamma distribution with density 𝑓(𝑡) = 𝜆ℎ𝑏−1𝑒−𝜆𝑡ℎ
𝑏−1

. 

Then the density function of  𝑆𝑛 = ∑ 𝑇𝑖
𝑛
𝑖=1  is, 𝐹′(𝑡) =

(𝜆ℎ𝑏−1)𝑛

Γ𝑛
𝑒−𝜆ℎ

𝑏−1𝑡𝑡𝑛−1; 𝑡 ≥ 0 . 

𝐹𝑛(𝑡) = ∫
(𝜆ℎ𝑏−1)𝑛

Γ𝑛
𝑒−𝜆ℎ

𝑏−1𝑡𝑡𝑛−1𝑑𝑡 =
𝑡

0
1 − 𝑒−𝜆ℎ

𝑏−1𝑡∑
(𝜆ℎ𝑏−1𝑡)

𝑟

𝑟!
𝑛−1
𝑟=0  

∴ 𝑃𝑛(𝑡) = 𝑒
−𝜆ℎ𝑏−1𝑡

(𝜆ℎ𝑏−1𝑡)𝑛

𝑛!
∴ 𝑚(𝑡) = ∑𝑛

𝑒−𝜆ℎ
𝑏−1𝑡( 𝜆ℎ𝑏−1𝑡)𝑛

𝑛!

∞

𝑛=0

= 𝜆ℎ𝑏−1𝑡 

B15 Theorem 16 Proof: If {𝑁(𝑡), 𝑡 ≥ 0} is a Renewal Process of a Stochastic Process 

then 𝑉[𝑁(𝑡)] = 𝐸[𝑁(𝑡)]2 − {𝐸[𝑁(𝑡)]}2…(1) where 𝐸[𝑁(𝑡)] = 𝜆ℎ𝑏−1𝑡     [Theorem 15      
We know the inter-arrival time 𝑇𝑛  have gamma distribution with density 𝑓(𝑡) =

𝜆ℎ𝑏−1𝑒−𝜆𝑡ℎ
𝑏−1

.  

Then the density function of  𝑆𝑛 = ∑ 𝑇𝑖
𝑛
𝑖=1  is 𝐹′(𝑡) =

(𝜆ℎ𝑏−1)𝑛

Γ𝑛
𝑒−𝜆ℎ

𝑏−1𝑡𝑡𝑛−1;        𝑡 ≥ 0 

𝐹𝑛(𝑡) = 1 − 𝑒
−𝜆ℎ𝑏−1𝑡 ∑

(𝜆ℎ𝑏−1𝑡)𝑟

𝑟!
𝑛−1
𝑟=0 And 𝑃𝑛(𝑡) = 𝑒

−𝜆ℎ𝑏−1𝑡 (𝜆ℎ
𝑏−1𝑡)𝑛

𝑛!
    [From theorem 15 

𝑉[𝑁(𝑡)] =  ( 𝜆ℎ𝑏−1𝑡)2 + 𝜆ℎ𝑏−1𝑡 −  ( 𝜆ℎ𝑏−1𝑡)
2
= 𝜆𝑡ℎ𝑏−1          [From theorem 8 

B16 Theorem 17 Proof: Here the distribution function 𝐹(𝑡) = 1 − 𝑃[𝑇 > 𝑡] = 1 −

𝑒−𝜆𝑡ℎ
𝑏−1
. ∴ 𝑤𝑒 𝑘𝑛𝑜𝑤, 𝜇 = ∫ 𝑡𝑓(𝑡)𝑑𝑡 = ∫ 𝑡𝑑𝐹(𝑡)

∞

0

∞

0
=

1

𝜆ℎ𝑏−1𝑡
 

Let 𝑆𝑁(𝑡)+1be the time of the first renewal after time 𝑡 where time of the last renewal 

prior to 𝑡  or at time  𝑡  is  𝑆𝑁(𝑡).  Then as  𝑁(𝑡) ≤ 𝑛 < 𝑁(𝑡) + 1 ; we have, 𝑆𝑁(𝑡) ≤ 𝑡 <

𝑆𝑁(𝑡)+1 Now,
𝑆𝑁(𝑡)

𝑁(𝑡)
≤

𝑡

𝑁(𝑡)
<
𝑆𝑁(𝑡)+1

𝑁(𝑡)
∴
𝑆𝑁(𝑡)

𝑁(𝑡)
=
𝑇1+𝑇2+⋯+𝑇𝑁(𝑡)

𝑁(𝑡)
⟹

𝑆𝑁(𝑡)

𝑁(𝑡)
=

𝑇1

𝑁(𝑡)
+
𝑇2+⋯+𝑇𝑁(𝑡)

𝑁(𝑡)
. 

If we take limit , lim
𝑁(𝑡)→∞

𝑆𝑁(𝑡)

𝑁(𝑡)
= lim
𝑁(𝑡)→∞

𝑇1

𝑁(𝑡)
+ lim
𝑁(𝑡)→∞

𝑇2+⋯+𝑇𝑁(𝑡)

𝑁(𝑡)
= 0 +

1

𝜆ℎ𝑏−1𝑡
=
∑ 𝑇𝑛
𝑁(𝑡)
𝑛=1

𝑁(𝑡)
 

[𝑏𝑦 𝑡ℎ𝑒 𝑠𝑡𝑟𝑜𝑛𝑔 𝑙𝑎𝑤 𝑜𝑓 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 
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So we can write, lim
𝑡→∞

𝑆𝑁(𝑡)+1

𝑁(𝑡)
= lim
𝑡→∞

𝑆𝑁(𝑡)+1

𝑁(𝑡)+1
. lim
𝑡→∞

𝑁(𝑡)+1

𝑁(𝑡)
= lim
𝑡→∞

𝑆𝑁(𝑡)+1

𝑁(𝑡)+1

𝑁(𝑡)

𝑁(𝑡)
=

lim
𝑡→∞

∑ 𝑇𝑛
𝑁(𝑡)+1
𝑛=1

𝑁(𝑡)+1
. 1 [𝑆𝑖𝑛𝑐𝑒,

𝑁(𝑡)+1

𝑁(𝑡)
→ 1   𝑎𝑠 𝑡 → ∞]. 𝑆𝑜, lim

𝑁(𝑡)→∞

𝑆𝑁(𝑡)+1

𝑁(𝑡)
=
𝑆𝑁(𝑡)+1

𝑁(𝑡)+1
=

1

𝜆ℎ𝑏−1𝑡
 

Now from (i) we get, lim
𝑡→∞

𝑆𝑁(𝑡)

𝑁(𝑡)
≤ lim
𝑡→∞

𝑡

𝑁(𝑡)
< lim
𝑡→∞

𝑆𝑁(𝑡)+1

𝑁(𝑡)
⟹

1

𝜆ℎ𝑏−1𝑡
≤ lim
𝑡→∞

𝑡

𝑁(𝑡)
<

1

𝜆ℎ𝑏−1𝑡
 

That is, lim
𝑡→∞

𝑡

𝑁(𝑡)
→

1

𝜆ℎ𝑏−1𝑡
⟹ lim

𝑡→∞

𝑁(𝑡)

𝑡
→ 𝜆ℎ𝑏−1𝑡 ∴ lim

𝑡→∞
{
𝑁(𝑡)

𝑡
= 𝜆ℎ𝑏−1𝑡}

𝑊.𝑃
→  1 
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