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Abstract
We introduce a survival/risk bump hunting framework to build a bump hunting model with a possibly
censored time-to-event type of response and to validate model estimates. First, we describe the use of
adequate survival peeling criteria to build a survival/risk bump hunting model based on recursive peeling
methods. Our method called “Patient Recursive Survival Peeling” is a rule-induction method that makes
use of specific peeling criteria such as hazards ratio or log-rank statistics. Second, to validate our model
estimates and improve survival prediction accuracy, we describe a resampling-based validation technique
specifically designed for the joint task of decision rule making by recursive peeling (i.e. decision-box) and
survival estimation. This alternative technique, called “combined” cross-validation is done by combining
test samples over the cross-validation loops, a design allowing for bump hunting by recursive peeling in a
survival setting. We provide empirical results showing the importance of cross-validation and replication.

Key Words: K-Fold Cross-Validation, Bump Hunting, Non-Parametric Survival Analysis, Patient
Rule-Induction Method, Survival/Risk Estimation, Survival/Risk Prediction

1. Introduction

Model Development and Validation in Discovery-Based Research
The primary problem encountered in discovery-based research has been non-reproducible results.
For instance, early biomarker discovery studies using modern high-throughput datasets with large
number of features have often been characterized by false or exaggerated claims [9, 12, 22, 26, 28].
This has been attributed to a lack of proper rules to assess the analytical validity of studies
simply because they were either under-developed or not routinely applied. Since then, however,
the problem has received considerable attention and developmental work from statisticians in
the fields of feature selection, predictive model building and model validation (see e.g. reviews
on guidelines and checklists [3, 9, 20]), as well as from recent editors and US regulators [21].

Regardless of dimensionality issues, one strategy to address the lack of model reliability
and reproducibility is to use large enough sample sizes in conjunction with proper validation
techniques for model development and model performance assessment. The problems of model
reliability and reproducibility have usually been characterized by issues of severe model over-
fitting, biased model estimates, and under-estimated errors. A common situation where this
arises is when, for instance, model performance estimates are made from the same data that
was used for model building, eventually resulting in initially promising results, but often non-
reproducible [2, 14, 26]. These so-called “resubstitution estimates” are severely (optimistically)
biased. Another problematic situation is when not all the steps of model building (such as
pre-selection, creation of the prediction rule and parameter tuning) are internal to the cross-
validation process, thereby creating a selection bias [2, 14, 31]. In addition, findings might not be
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reproducible even when using proper independent sample and validation procedures. Problems
may arise in the validation steps itself because cross-validated error estimates are well-known
to have very large variance, a situation that is obviously more prevalent when few independent
observations or small sample size n are used [3, 8, 26].

Predictive Survival/Risk Modeling by Rule-Induction Methods
One important application of survival/risk modeling is to identify and segregate samples for
predictive diagnostic and/or prognosis purposes. Direct applications include the stratification of
patients by diagnostic and/or prognostic groups and/or responsiveness to treatment. Therefore,
survival modeling is usually performed to predict/classify patients into risk or responder groups
(not to predict exact survival time) from which one usually derives survival/risk functions esti-
mates for these groups (e.g. by KaplanMeier estimates). However, for the reasons mentioned
above, KaplanMeier estimates for the risk groups computed on the same set of data used to
develop the survival model may be very biased [23, 31].

Although validation tools typically for evaluating classification models are often useful in
assessing the prediction accuracy of classifier models, resampling methods are not directly ap-
plicable for predictive survival modeling applications. Simon et al. have reviewed the literature
of such applications and identified serious deficiencies in the validation of survival risk models
[9, 27, 28]. They noted for instance that in order to utilize the cross-validation approach devel-
oped for classification problems, some studies have dichotomized their survival or disease-free
survival data . . . . The problem on how to cross-validate the estimation of survival distributions
(e.g. by KaplanMeier curves) is not obvious [27]. In addition, beside Subramanian and Simon’s
initial study on the usefulness of resampling methods for assessing survival prediction models in
high-dimensional data [29], no comparative study has been done for rule-induction methods and
specifically recursive peeling methods such as our “Patient Recursive Survival Peeling” algorithm
(see section 2.2.4).

In the context of a time-to-event outcome, rule-induction methods such as regression survival
trees have proven to be useful. Several methods have been proposed for fitting decision trees
to non-informative censored survival times [1, 4, 6, 11, 16, 17, 25, 30]. Although decision trees
are powerful techniques for understanding patient outcome and for forming multiple prognostic
groups, often times interest focuses only on the extreme prognostic groups. So, in contrast to
usual regression survival trees, survival bump hunting aims not at estimating the survival/risk
probability function over the entire variable space, but at searching regions where this probability
is larger than its average over the entire space.

Also, one possible drawback of decision trees is that the data splits at an exponential rate as
the space undergo partitioning (typically by binary splits) as opposed to a more patient rate in
decision boxes (typically by controlled data quantile). In this sense, bump hunting by recursive
peeling may be a more efficient way of learning from the data. With the exception of the work
of LeBlanc et al. on Adaptive Risk Group Refinement [19], it has not been studied whether
decision boxes, obtained from box-structured recursive peelings, would yield better estimates for
constructing prognostic groups than their tree-structured counterparts.

Goal and Scope of the Paper
Our first objective in this paper is to describe the use of appropriate survival peeling criteria to fit
a survival/risk bump hunting model based on recursive peeling methods. Our second objective
is to develop a validation strategy of model estimates using a resampling technique amenable
to the joint task of decision rule estimation and survival predictive accuracy. To develop our
survival bump hunting model, we focused on a non-parametric rule-induction method, derived
from a recursive peeling procedure, namely the Patient Rule Induction Method (PRIM) [10, 24],
which we have extended to allow for survival/risk response, possibly censored. Although, several
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resampling techniques are available (see section 3) such as full/complete cross-validation (K-
fold CV), leave-one-out cross-validation (LOOCV) or bootstrap-based methods like the out-of-
box 0.632 bootstrap cross-validation (0.632 OOB), in this study, we describe a full (K-fold)
cross-validation-based resampling technique adapted to the task. We have limited ourselves to
simulated datasets where n ě p for the only reason that the implementation used so far for
fitting our survival bump hunting models do not allow for high-dimensional situation yet. The
development of high-dimensional survival bump hunting models is work in progress beyond the
scope of this paper. Although we did not specifically use simulated datasets where p ą n, we
posit that the cross-validation techniques presented here will be applicable to high-dimensional
data as well.

Organization of the Paper
We first introduce the regular bump hunting framework upon which we built our survival bump
hunting model to accommodate a possibly censored time-to-event type of response. In the follow-
ing section, we show how we derived our so-called “Patient Recursive Survival Peeling” algorithm
from the original Patient Rule Induction Method (PRIM) for bump hunting by recursive peeling
in a survival setting. In the process, we describe which peeling criteria one may use as well as
what specific survival endpoint statistics are of interest. In the subsequent section, we develop
our own resampling and replication cross-validation technique, specifically designed for the joint
task of decision rule making by recursive peeling (i.e. decision-box) and survival estimation. This
allowed to get combined cross-validated survival bump hunting estimates, namely decision boxes
and rules, survival distributions and endpoints statistics. Finally, we provide empirical results
from simulated data, illustrating the efficiency of our alternative cross-validation technique in
comparison to none.

2. Survival Bump Hunting for Exploratory Survival Analysis

2.1 Bump Hunting Model
2.1.1 Notations - Goal
The formal setup of bump hunting is as follows [see also 10, 24]. Let us consider a supervised
problem with a univariate output (response) random variable, denoted y P R. Further, let
us consider a p-dimensional random vector X P Rp of support S, also called input space, in
an Euclidean space. Let us denote the p input variables by X “ rxjs

p
j“1, of joint probability

density function ppXq, and by fpxq “ Epy|X “ xq the target function to be optimized (e.g. any
regression function or e.g. the p.m.f or p.d.f fXpxq).

Briefly, the goal in bump hunting is to find a sub-space or region R (not necessarily con-
tiguous) of the input space pR Ď Sq within which the average value f̄R of fpxq is expected to
be significantly larger (or smaller) than its average value f̄S over the entire input space. In
addition, one wishes that the corresponding support (mass) of R, say β0R, be not too small, that
is, greater than a minimal support threshold, say 0 ă β0 ă 1. Formally, in the continuous case

of X: f̄R “

ş

xPR fpxqppxqdx
ş

xPR ppxqdx
" f̄S and βR “

ş

xPR ppxqdx " β0.

Let Sj be the support of the jth variable xj , such that the input space can be written as
the (Cartesian) outer product space S “

Śp
j“1 Sj . Let sj Ď Sj denotes the unknown subset

of values of variable xj corresponding to the unknown support of the target region R. Let
J Ď t1, . . . , pu be the subset of indices of selected variables in the process. The goal in bump
hunting amounts to finding the value-subsets tsjujPJ of the corresponding variables txjujPJ such
that R “ tx P

Ş

jPJ pxj P sjq : pf̄R " f̄SqpβR " β0qu.

2.1.2 Estimates
Since the underlying distribution is not known, the estimates of f̄R and βR must be used. Assume
a supervised setting, where the outcome response variable is y “ py1 . . . ynqT and the explana-
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tory/input variables are X “ px1 . . .xnqT , where each observation is the p-dimensional vector of
covariates xi “ rxi,1 . . . xi,ps

T , for i P t1, . . . , nu. Plug-in estimates of the conditional expectation
f̄R of the target function fXpxq and of the support βR of the region R are respectively derived

as: ˆ̄fR “ 1
nβ̂R

ř

xiPR̂
yi “ 1

nβ̂R

řn
i“1 yiIpxi P R̂q and β̂R “ 1

n

ř

xiPR̂
Ipxi P R̂q “ 1

n

řn
i“1 Ipxi P R̂q.

2.1.3 Remarks
1. Note that the goal amounts to comparing the conditional expectation of the response over

the target region R: f̄R “ Erfpxq|x P Rs with the unconditional one f̄S “ Erfpxqs.

2. In the bump hunting objective stated in section 2.1.1, note that larger target function
average f̄R is associated with smaller support βR of the region R. So, in practice, one is
to use a coverage so as to trade-off between maximizing f̄R and maximizing βR.

3. If the target function to be optimized is for instance the p.m.f or p.d.f fXpxq, then PrpX P

Rq is the probability mass/density of a local maximum and the task is equivalent to a
mode(s) hunting.

4. In the case of real-valued inputs, the entire input space is the p-dimensional outer product
space S Ď Rp; the support Sj of each individual input variable (and of each corresponding

value-subset sj) is the usual interval of the form Sj “

”

t´
j , t

`
j

ı

Ă R for j “ 1, . . . , p; the

target region R has the shape of a (possibly contiguous) |J |-dimensional hyper-rectangle in
R|J |, called a box, which can be written as the outer product of the form B “

Ś

jPJ rt´
j , t

`
j s.

2.1.4 Estimation by the Patient Rule Induction Method (PRIM)
Let the data be txi, yiu

n
i“1. The Patient Rule Induction Method (PRIM) is used to get the region

estimate R̂ and the corresponding output response mean estimate ˆ̄fR. Essentially, the method
is one of recursive peeling/pasting algorithm that explores the input space target region, where
the response is expected to be larger on average. The method generates a sequence of boxes that
collectively cover the solution region R. The way the space is covered and the box induction
is done as well as how the patience and stopping rules are controlled is detailed in the original
paper of Friedman & Fisher [10], later formalized by Polonik & Wang [24].

Briefly, a sequence of boxes tBmuMm“1 is generated from the data txi, yiu
n
i“1 to collectively

cover the target region R. To induce the box Bm at the mth iteration pm ą 1q, the top-down
peeling algorithm generates a subsequence of nested sub-boxes tBm,lu

L
l“1 starting from an initial

box Bm,1 that covers all the data remaining at the mth iteration of the covering loop. At the
lth iteration, a sub-box is peeled off from within the current sub-box Bm,l to produce the next
smaller sub-box Bm,l`1. The current sub-box Bm,l is then updated: Bm,l`1 Ð Bm,l and the
peeling procedure is looped until some stopping rule is met. Eventually, the solution region R is
described by logical statements or decision rules of the input space involving the value-subset of
each selected input variable.

2.2 Recursive Peeling Methods for Survival Bump Hunting

Assume a supervised problem, where the function of interest is a univariate survival/risk response
variable (possibly censored) in a multivariate setting of real-valued (continuous or discrete) inputs
variables X “ rxjs

p
j“1. The goal is to characterize an extreme-survival-response support in the

predictor space and identify the corresponding box-defined group of samples using a recursive
peeling method derived from the Patient Rule Induction Method (PRIM).

2.2.1 Survival Model Notations
We focus on a univariate right-censored survival outcome under the assumptions of independent
observations, non-competitive risks, and (type I or II) random or non-informative censoring.
Because the response variable is subject to censoring, we use the general random censoring
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model. Denote the true survival time by the random variable U and the true censoring time by
the random variable C, then the observed survival time is the random variable T “ minpU,Cq.
Also, under our assumptions, C is assumed independent of U conditionally on X. Let the
observed event (non-censoring) random variable indicator be ∆ “ IpU ď Cq. Using previous
notations (2.1.2), for each observation i P t1, . . . , nu, the individual true survival time, observed
censoring time, observed survival time and observed indicator event variable are the realizations
denoted by ui, ci, ti “ minpui, ciq and δi “ Ipui ď ciq, respectively, so that the observed data
consists of pti, δi,xiq

n
i“1, where xi “ rxi,1 . . . xi,ps

T , for i P t1, . . . , nu. Here, the outcome response

variable is denoted t “ rt1 . . . tns
T .

Let Sptq “ PrpT ě tq be the probability that an observation from the population of interest
will have an observed time-to-event T free of the event until time t. The non-parametric Kaplan-
Meier estimator was used to estimate the survival probability function Sptq of time-to-event
in each box-defined subgroup, whether it was observed or not. We used the log-rank test to
assess statistical significance of difference between survival distributions of each box-defined
subgroups. Let the hazard function and the cumulative hazard function be denoted by λptq and

Λptq, respectively, where λptq “
dΛptq
dt “ ´

d logpSptqq

dt . As is commonly done, the hazard rate may

be estimated by the maximum likelihood estimator (MLE) λ̂ML of the simple exponential hazard
rate, or by regressing the individual hazard rate of an observation i P t1, . . . , nu on the covariate
vector xT

i in a Cox Proportional Hazards (CPH) regression model: λpt|xiq “ λ0ptq exppβTxiq

where β “ rβ1 . . . βps
T is the p-dimensional vector of regression coefficients [5],

λ̂ML “

řn
i“1 δi

řn
i“1 ti

(1)

λ̂CPH “

n
ÿ

i“1

log
λpt|xiq

λ0ptq
“

n
ÿ

i“1

˜

p
ÿ

j“1

βjxi,j

¸

. (2)

In addition to the above assumption on the censoring mechanism, by definition the MLE assumes
exponential distribution of survival time ptiq

n
i“1 and the Cox-PH model assumes proportional

hazards.

2.2.2 Survival-Specific Peeling Criteria
As mentioned earlier, rule-induction methods such as decision tree-based methods have proven
to be useful to estimate relative risk in groups in the context of a time-to-event outcome. Here,
we describe several survival-specific peeling criteria for fitting decision boxes to non-informative
censored survival times, most of which are borrowed from the survival splitting rules used to
grow regression survival decision trees [1, 16, 17, 25, 30] or from their ensemble versions [15].
Specifically, survival-specific peeling criteria/rules are to be used to decide which variable will be
selected to give the best peel between two sub-boxes from two consecutive generations (parent-
child descendance) of the box induction/peeling loop in a recursive peeling algorithm (see next
section 2.2.4).

To account for censoring we simply supervise by proxy for extreme time-to-event outcome,
turning the censored outcome t into an uncensored “surrogate” outcome y. Using previous
notations (see section 2.1.4), the focus is on selecting a sub-box bm,l from within the current
sub-box Bm,l to be peeled off along one of its faces (i.e. direction of peeling := dimension j)
to induce the next smaller sub-box Bm,l`1 of the box induction/peeling sequence. This is done
by maximizing the “surrogate” outcome rate of increase between two consecutive generations
of sub-boxes Bm,l and Bm,l`1. Denote by ypm, lq the box “surrogate” outcome at sub-step or
generation pm, lq of the box induction/peeling sequence (see Algorithm 1). The rate of increase
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in ypm, lq between two consecutive generations of sub-boxes Bm,l and Bm,l`1 is defined as:

ηpm, lq “
ypm, l ` 1q ´ ypm, lq

βm,l ´ βm,l`1
(3)

The use of hazard rates was originally proposed by LeBlanc et al. [18, 19]. Since they
are always estimable, we can use them to maximize the hazards ratio or relative risk of the
observations inside the sub-box Bm,l compared to the observations inside the sub-box Bm,l`1

of the next generation. Let γipBq “ Ipxi P Bq be the box B membership indicator for each
observation i P t1, . . . , nu, and let γpBq “ rγ1pBq . . . γnpBqsT be the corresponding indicator
n-vector. If the MLE of the simple exponential hazard rate is used (1), then one considers λ̂ML

for the elements in box B. Likewise, if the Cox-PH estimate of the hazard rate is used (2), then
one considers λ̂CPH for the elements in box B by letting the indicator n-vector γT pBq be the

only covariate in the CPH model, so that β “ β1, xi “ xi,1 “ γipBq, λ̂MLpBq “
řn

i“1 δiγipBq
řn

i“1 tiγipBq
and

λ̂CPHpBq “ β1
řn

i“1 γipBq, which leads to the derivation of the estimated relative risks:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

η̂MLpm, lq “
λ̂MLpBm,l`1q´λ̂MLpBm,lq

β̂m,l´β̂m,l`1

“ 1
β̂m,l´β̂m,l`1

´
řn

i“1 δiγipBm,l`1q
řn

i“1 tiγipBm,l`1q
´

řn
i“1 δiγipBm,lq

řn
i“1 tiγipBm,lq

¯

η̂CPHpm, lq “
λ̂CPHpBm,l`1q´λ̂CPHpBm,lq

β̂m,l´β̂m,l`1

“ β1
řn

i“1 γipBm,l`1q´
řn

i“1 γipBm,lq

β̂m,l´β̂m,l`1

(4)

Finally, the particular sub-box b̂˚
m,l that is chosen to yield the largest box increase rate

η̂pm, lq of relative risk between sub-box B̂m,l and the next one B̂m,l`1 “ B̂m,lzb̂
˚
m,l is such

that b̂˚
m,l “ argmaxb̂m,lPCpbq

rη̂pm, lqs, where Cpbq represents the class of potential sub-boxes b̂m,l

eligible for removal at sub-step or generation pm, lq.
For the record, alternative survival-specific peeling criteria may be used as well to maximize

the “surrogate” outcome rate of increase between two consecutive sub-boxes B̂m,l and B̂m,l`1

of the box induction/peeling loop. Currently, our implementation of Survival Bump Hunting in
our R package PrimSRC [7] uses the following three criteria:

1. The Log Hazards Ratio or Relative Risk statistic η̂pm, lq can be used to maximize the dif-
ference of hazards between observations inside two consecutive sub-boxes B̂m,l and B̂m,l`1

of the box induction/peeling sequence (see also [18, 19])

2. The two-sample Log-Rank Test statistic ζ̂pm, lq “
řn

i“1 γipm, lq
´

δi ´ Λ̂0ptiq
¯

can be used

to maximize the difference of survival distributions between observations inside two consec-
utive sub-boxes B̂m,l and B̂m,l`1 of the box induction/peeling sequence. An approximate
log-rank test introduced by LeBlanc and Crowley can also be used to greatly reduce com-
putations [17]

3. The Concordance Error Rate 1 ´ C, where C is Harrel’s rank correlation U-statistic or
concordance index [13], to maximize the probability of concordance between predicted and
observed survival, i.e. to minimize the prediction error estimate

2.2.3 Survival End Points Statistics
The first two end-points statistics defined for each sub-step or generation pm, lq in Survival Bump
Hunting are: (i) The Event-Free Probability P0pm, lq or probability of non-event until a certain
time T pm, lq in the highest-risk group/box (For instance: the Probability of Event-Free Survival
(PEFS), or the Survival Rate that indicates the probability to be alive for a given period of
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time after diagnosis); and (ii) The Event-Free Time T0pm, lq or time to reach a certain end-
point probability P pm, lq in the highest-risk group/box (Frequently themedianis used so that
the end-point can be calculated once 50% of subjects have reached the end-point. For instance:
the Median-Survival-Probability Time, also known as the Median Survival (MS), indicates the
period of time (survival duration) once 50% of subjects have reached survival).

However, often times these statistics are not observable: the survival/risk probability in
a group may be large enough that P0pm, lq may not be reached for a specified time T pm, lq.
Similarly, T0pm, lq may not always be reached for a certain probability P pm, lq. In any of these
cases, we determine the limit end-points P 1

0pm, lq and T 1
0pm, lq, which are always observable and

computable for each sub-step or generation pm, lq. These, along with the subsequent end-points,
are the cross-validated statistics that are implemented in our R package PrimSRC [7]:

1. Minimal Event-Free Probability (MEFP) P 1
0pm, lq and corresponding max. time T 1pm, lq

2. Maximal Event-Free Time (MEFP) T 1
0pm, lq and corresponding min. probability P 1pm, lq

3. Log Hazards Ratios (LHR) λpm, lq between the highest-risk group/box and lower-risk
groups/boxes of the same generation (see Algorithm 1)

4. Log-Rank Test statistic (LRT ) zpm, lq between the highest-risk group/box and lower-risk
groups/boxes of the same generation (see Algorithm 1)

5. Prediction Error (PE ) pepm, lq using the Concordance Error Rate 1´C, where C is Harrel’s
Concordance Index [13] (see also section 2.2.2)

2.2.4 Estimation by a Patient Recursive Survival Peeling Algorithm
The strategy employed here is one of recursive peeling algorithm for survival bump hunting
that we derived from the PRIM algorithm. Our “Patient Recursive Survival Peeling” algorithm
(annotated below w.l.o.g for a maximization problem) proceeds similarly as in PRIM except for
the Box Induction peeling/pasting criteria and Induction Stopping Rule (see section 2.1.4):

Algorithm 1 Patient Recursive Survival Peeling.

• Start with the training data Lp1q and a maximal box B1 containing it

• For m P t1, . . . ,Mu:

1: Generate a box Bm using the remaining training data Lpmq

2: For l P t1, . . . , Lu:

– Top-down peeling: Generate a box Bm,l by conducting a stepwise variable selection/usage: shrink
the box by compressing one face (peeling), so as to peel off a quantile α0 of observations of a
variable xj for j P t1, . . . , pu. Choose the direction of peeling j that yields the largest box increase

rate η̂pm, lq of hazards ratio or relative risk between sub-box B̂m,l and the next one Bm,l`1. The

current sub-box B̂m,l is then updated: B̂m,l`1 “ B̂m,lzb̂
˚
m,l, where b̂

˚
m,l “ argmaxbm,lPCpbq rη̂pm, lqs

– Bottom-up pasting: Expand the box along any face (pasting) as long as the resulting box increase
rate η̂pm, lq ą 0

– Stop the peeling looped until a minimal box support β̂m,L of B̂m,L is such that it reached a

minimal box support 0 ď β0 ď 1, expressed as a fraction of the data: β̂m,L ď β0

– l Ð l ` 1

3: Step #2 give a sequence of nested boxes tB̂m,lu
L
l“1, where L is the estimated number of peeling/pasting

steps with different numbers of observations in each box. Call the next box B̂m`1 “ B̂m,L. Remove

the data in box B̂m from the training data: Lpm`1q “ LpmqzB̂m

4: Stop the covering loop when running out of data or when a minimal number of observations remains

within the last box B̂M , say β̂M ď β0

5: m Ð m ` 1

• Steps #1 – #5 produce a sequence of (not necessarily nested) boxes tB̂muMm“1, where M is the estimated
total number of boxes covering Lp1q

• Collect the decision rules of all boxes tB̂muMm“1 into a simple final decision rule R̂ of the solution region R̂

of the form: R̂ “
ŤM

m“1 R̂m, where R̂m “
Ş

jPJpxj P rt´
j,m, t`

j,msq giving a full description of the estimated
bumps in the entire input space
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3. Cross-Validation for Recursive Peeling Methods

3.1 K-fold Cross-Validation for Recursive Peeling Methods
3.1.1 Setup
Cross-validation of box estimates should include all steps of the box generation sequence tBmuMm“1

i.e. for the (outer) coverage loop of our “Patient Recursive Survival Peeling” algorithm (1), each
step of which involves a peeling sequence tBm,lu

L
l“1 of the (inner) box peeling/induction loop.

For simplicity, cross-validation designs of box estimates tBm,lu
L
l“1 and of resulting decision rule

R̂m are shown for fixed m P t1, . . . ,Mu, so that subscript m is further dropped. Without loos
of generality, fix m “ 1 (first coverage box).

3.1.2 Estimated Box Quantities of Interest
Using previous notations and assuming m fixed (m “ 1), if we let B̂l be the lth trained box
and β̂l be its estimated box support for l P t1, . . . , Lu of the box peeling sequence tB̂lu

L
l“1, then

useful box quantities of interest are (for the lth peeling step l P t1, . . . , Lu):

• Highest-risk box definition: box 2p edges
”

t̂´
j,l, t̂

`
j,l

ıp

j“1
, box support β̂l, and box membership

indicator γ̂pBlq

• Traces of Variable Usage (VU ) xvul and Variable Importance (VI ) pvil
• Profiles of Log Hazard Ratios (LHR) λ̂l, Log-Rank Tests (LRT ) ẑl, Minimal Event-Free

Probability (MEFP) P̂ 1
0,l and Maximal Event-Free Time (MEFT ) T̂ 1

0,l

• Kaplan-Meir curves of survival probability values with p-values p̂l (see section 3.3)

• Prediction Error (PE ) ppel

3.1.3 Resampling Design
Although using a fully independent test set in evaluating a predictive bump hunting model is
always advisable, the sample size n in discovery-based studies is often too small to effectively
split the data into training and testing sets and provide accurate estimates [3, 8, 26]. In such
cases, re-sampling techniques mentioned in the introduction such as K-fold Cross-Validation are
required [2, 23]. Similarly as in Split Sample Validation, the re-use of training data is proper if
performed using data resampling methods that iteratively partition the data to hold out data
subsets that are not used for model building [23].

In resampling based on full K-fold cross-validation, the whole data L is randomly partitioned
into K approximately equal parts of test samples or test subsets pL1, . . . ,Lk, . . . ,LKq. For each
test subset pLk, pk P t1, . . . ,Kuq, a training set Lpkq is formed from the union of the remaining
K ´ 1 subsets: Lpkq “ L r Lk. The process is repeated K times, so that K test subsets Lk

are formed of about equal size and K corresponding training subsets Lpkq, for k P t1, . . . ,Ku.
Typically, K P t3, . . . , 10u. The training samples are approximately of size « npK ´ 1q{K and
the test samples are of size nt « n{K.

3.1.4 Nested K-fold Cross-Validation
Here, assuming m fixed (m “ 1) and using previous notations, a specific nested K-fold Cross-
Validation (CV) strategy for training a cross-validated box peeling sequence tB̂lu

L
l“1 in a predic-

tive bump hunting model is as follows:
• Overall-CV : A peeling model of a certain fixed length L̂ (estimated by Internal-CV ) and

a resulting training decision rule, abbreviated R̂k, are generated from each training subset
Lpkq, leaving out the test subset Lk during all aspects of model building including variable
selection and calibration (see step #2 of Algorithm 1).

• Internal-CV : To estimate the optimal number of peeling steps/boxes L̂ from the training
subset Lpkq, one uses one of the cross-validated end-points statistics described in 2.2.3 as a
criterion or measure of performance taking censoring into account.
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The trained model is in turn used to generate cross-validated box estimates from which cross-
validated survival estimates as well as cross-validated predictions are made in the left out test
subset Lk. This process is repeated K times, for k P t1, . . . ,Ku, repeating model building for
each models tR̂kuk“K

k“1 . After K rounds of training and testing are complete, all the test set
predictions are used to estimate the accuracy. The CV error is then given by the average of the
prediction errors computed from the K models tR̂kuk“K

k“1 generated from each loop of the cross-
validation. The prediction or classification error is estimated from the discrepancies between the
true and predictive classifications of the n independent observations.

3.1.5 K-fold Cross-Validation Techniques
There are remaining issues to deal with K-fold CV: how to cross-validate a simple box peeling
sequence tB̂lu

L
l“1 and related statistics is not straightforward, and how to cross-validate survival

curve estimates and related statistics is also not intuitive (see also [27]). So, regular K-fold cross-
validation is not directly applicable to the tasks of generating a simple box decision rule and
estimating survival curves. Therefore, one must design a specific CV technique that is amenable
to the dual task of bump hunting by recursive peeling and survival analysis together. In addition,
in regular averaged K-fold CV, all final test subset mean estimates of interest (including survival
estimates) are computed on test samples of size nt « n{K, which could be a problem in case of
small sample size n.

Hence, we propose a technique by which our overall K-fold cross-validation estimates can be
computed by the so-called combining technique. In it, all the test sets are first collected from
all cross-validation loops and the CV estimates are computed once on this combined test set to
give the final “Combined Cross-Validation” estimates (see section below 3.2). In this article, this
strategy was compared with the situation where no cross-validation was done at all (see result
section 4.2).

Finally, cross-validation estimates are known to be quite variable. To address this issue, K-
fold cross-validation must somehow account for this by averaging over some replications. This
technique is further detailed in the Replicated Cross-Validation section below (3.4).

3.2 K-fold Combined Cross-Validation for Recursive Peeling Methods

For each loop, samples from the training subset are used to train a peeling model of a certain
cross-validated length, then samples from the test subset are used to generate estimates. At the
end, all test samples in the box are combined together and all test samples outside the box are
combined together as well. This allows the estimation box quantities and of survival distribution
curves for both groups. In addition, all final statistical quantities of interest (including survival
estimates) are now computed on samples of full size n instead of n{K, as it would be in regular
averaged K-fold CV.

Using previous notations and assuming m fixed (m “ 1), we let B̂lpkq and β̂lpkq be respectively

the lpkqth trained box and its estimated box support from the box peeling sequence tB̂lpkqu
Lpkq

l“1 ,
where lpkq indicates the lth peeling step in the kth trajectory for l P t1, . . . , Lpkqu and k P

t1, . . . ,Ku. In K-fold Combined CV, estimates of a box quantity of interest q are indexed by the
resulting combined test boxes, and are computed once on the combined K test subsets collected
from all cross-validation loops.

Below, one considers K peeling trajectories of this kind, each of length Lpkq, from the kth
training subset Lpkq, for k P t1, . . . ,Ku. Denote by L̂cv “ minkPt1,...,Ku rLpkqs the minimum

length of the peeling trajectories over the K loops. A trained box B̂lpkq of support β̂lpkq is con-
structed from each training subset Lpkq. Each test subset Lk is used to estimate the test box

B̂t
lpkq

and its membership indicator γ̂t
lpkq from the model grown on the kth training subset Lpkq.

The lth combined CV test box B̂cvplq and its membership indicator γ̂cvplq are formed over the K

JSM 2014 - Biometrics Section

3374



cross-validation loops by union of the K boxes tB̂t
lpkq

uKk“1 and logical disjunction of the K box

membership indicators tγ̂t
lpkqu

K
k“1, respectively. Here, the combined CV trajectory curve q̂tkpxq

of length L̂cv is defined as the piecewise constant curve, evaluated at the lth combined test box
B̂cvplq or its membership indicator γ̂cvplq.

For the kth training
subset:

kth training trajectory
and estimates

ÝÑ

$

’

&

’

%

kth test boxes and
membership indicators

ÝÑ

$

’

&

’

%

Union of CV test boxes
over K trajectories

ÝÑ

#

Disjunction of CV test
box membership indica-
tors over K trajectories

ÝÑ

#

Combined CV test box
quantities over K tra-
jectories

ÝÑ

#

First peeling
step in the kth

trajectory
direction of peeling

Last peeling
step in the kth

trajectoryÝÑ

1pkq lpkq Lpkq

B̂1pkq ¨ ¨ ¨ B̂lpkq ¨ ¨ ¨ B̂Lpkq

β̂1pkq ¨ ¨ ¨ β̂lpkq ¨ ¨ ¨ β̂Lpkq

B̂t
1pkq ¨ ¨ ¨ B̂t

lpkq ¨ ¨ ¨ B̂t
Lpkq

γ̂t T
1pkq ¨ ¨ ¨ γ̂t T

lpkq ¨ ¨ ¨ γ̂t T
Lpkq

“

”

Irxi P B̂t
1pkqs

ın

i“1
“

”

Irxi P B̂t
lpkqs

ın

i“1
“

”

Irxi P B̂t
Lpkqs

ın

i“1

B̂cvp1q“

K
ď

k“1

B̂t
1pkq ¨ ¨ ¨ B̂cvplq“

K
ď

k“1

B̂t
lpkq ¨ ¨ ¨ B̂cvpL̂cvq“

K
ď

k“1

B̂t
L̂cv

γ̂cvp1q“

K
ł

k“1

γ̂t
1pkq ¨ ¨ ¨ γ̂cvplq“

K
ł

k“1

γ̂t
lpkq ¨ ¨ ¨ γ̂cvpL̂cvq“

K
ł

k“1

γ̂t
L̂cv

q̂cvp1q ¨ ¨ ¨ q̂cvplq ¨ ¨ ¨ q̂cvpL̂cvq

“ q̂
”

B̂cvp1q

ı

“ q̂
”

B̂cvplq
ı

“ q̂
”

B̂cvpL̂cvq

ı

Wherefrom one derives “Combined CV” estimates over the K test trajectories, for each step
l P t1, . . . , L̂cvu:

• The “Combined CV” estimate of the box definition (2p edges
”

t̂´
j,l, t̂

`
j,l

ıp

j“1
): B̂cvplq “

ŤK
k“1 B̂

t
lpkq

• The “Combined CV” estimate of the box membership indicator (Boolean n-vector): γ̂cv T plq “

rγ̂cvi plqs
n
i“1 “

ŽK
k“1 γ̂

t
lpkq “

ŽK
k“1

”

Irxi P B̂t
lpkq

s

ın

i“1
“

”

Irxi P B̂cvplqs

ın

i“1

• The “Combined CV” estimates of box quantities of interest, each taken as the combined

CV trajectory curve evaluated at the combined CV test box B̂cvplq: q̂cvplq “ q̂
”

B̂cvplq
ı

.

The latter is done for the “Combined CV” box estimates of: (i) The box support: β̂cvplq “

β̂
”

B̂cvplq
ı

; (ii) The Log Hazard Ratio (LHR) in the high-risk box: λ̂cvplq “ λ̂
”

B̂cvplq
ı

;

(iii) The Log-rank Test (LRT ) between the high vs. low-risk box: ẑcvplq “ ẑ
”

B̂cvplq
ı

; (iv)

The Minimal Event-Free Probability (MEFP): P̂ 1 cv
0 plq “ P̂ 1

0

”

B̂cvplq
ı

; (v) The Minimal

Event-Free Time (MEFT ): T̂ 1 cv
0 plq “ T̂ 1

0

”

B̂cvplq
ı

.
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3.3 K-fold Cross-Validation of P-Values

In order to evaluate the statistical significance of spread among the cross-validated survival
curves, the log-rank test statistic is a classical measure. However, null distribution of the log-rank
test (χ2

1 for a two group comparison) is not valid because the observations used to cross-validate
the curves are not independent anymore.

for each step l P t1, . . . , L̂cvu, we generate the null distribution of the cross-validated log-rank
statistic ẑcvpaqplq for a P t1, . . . , Au by randomly permuting the correspondence of survival times
and censoring indicators to the data and computing the cross-validated survival curves and the
cross-validated log-rank statistic for that permutation. By repeating A times the entire K-fold
cross-validation process for many random permutations (typically A “ 1000), one generates a
null distribution of the cross-validated log-rank statistics tẑcvpaqplquAa“1.

The proportion of replicates with log-rank statistic greater than or equal to the observed
statistic ẑcvplq for the un-permuted data is the statistical significance level for the test. Cross-
validated permutation test p-values are then calculated for each step l P t1, . . . , L̂cvu as: p̂cvplq “
1
A

řA
a“1 I

“

ẑcvpaqplq ě ẑcvplq
‰

. These p-values may be discrete: the precision depends on the
number A of random permutations.

3.4 Replicated K-fold Cross-Validation for Recursive Peeling Methods

To account for the high variability of cross-validated estimates,K-fold cross-validation is repeated
(typically B “ 10 ´ 100 times) and results averaged over the Monte-Carlo replications. We
call these estimates “Replicated Combined CV”. Denote by superscript rcv a replicated cross-
validated estimate, and by superscript b each Monte-Carlo replicate, for b P t1, . . . , Bu:

• The “Replicated Combined CV” box peeling sequence length is taken as the floored-mean
of the box peeling sequence lengths obtained from the B replicates:

L̄rcv “

[

1

B

B
ÿ

b“1

L̂cvpbq

_

(5)

• The “Replicated Combined CV” estimate of the box definition (2p edges
”

t̂´
j,l, t̂

`
j,l

ıp

j“1
):

B̄rcvplq “ ave
bPt1,...,Bu

”

B̂cvpbqplq
ı

(6)

• The “Replicated Combined CV” estimate of the box membership indicator (Boolean n-
vector, observed to be approximately equal to the point-wise majority vote over the B
replicates):

γ̄rcvplq “

”

Irxi P B̂rcvplqs

ın

i“1
«

«

I

˜

B
ÿ

b“1

γ̂
cvpbq

i plq ě

R

B

2

V

¸ffn

i“1

(7)

• The “Replicated Combined CV” estimates of the quantities of interest, each taken as the
average estimate over the B replicates:

q̄rcvplq “
1

B

B
ÿ

b“1

q̂cvpbqplq (8)

The latter is done for the “Replicated Combined/Averaged CV” estimates of: (i) The box
support: β̄rcvplq; (ii) The The Log Hazard Ratio (LHR) in the high-risk box: λ̄rcvplq; (iii)
The Log-rank Test (LRT ) between the high vs. low-risk box: z̄rcvplq; (iv) The Minimal
Event-Free Probability (MEFP): P̄ 1 rcv

0 plq; (v) The Minimal Event-Free Time (MEFT ):
T̄ 1 rcv
0 plq.
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4. Simulations

4.1 Design

The p-dimensional covariates xi “ rxi,1 . . . xi,ps
T were simulated by drawing independent variates

for i P t1, . . . , nu from a p-multivariate uniform distribution on the interval r0, 1s: xi „ Upr0, 1s

with n “ 250 and p “ 3.
Simulations were carried out according to section 2.2.1. Simulated realizations of true sur-

vival times ui were drawn independently from an exponential distribution with rate parameter
λ (and mean 1

λ): ui „ Exppλq. Individual hazards rates λi were estimated by the CPH model as
described in section 2. Simulated realizations ci of true censoring times were independently sam-
pled from a uniform distribution: ci „ U r0, vs, so that approximately 100ˆπp%q of the simulated
realizations of observed survival times ti “ minpui, ciq were censored, where π P t0.3, 0.5, 0.7u.
Finally, the simulated realizations of observed event (non-censoring) random variable indicator
were as follows: δi “ Ipui ď ciq.

For simplification, subsequent simulations shown here were done:

• by characterization of the first coverage box B̂1, using constrained peeling, without pasting
and with default meta-parameter values pα0, β0q “ p0.05, 0.05q

• using the log hazards ratios or relative risk η̂plq as peeling criterion, with π = 0.5

• for three concurrent models: Values of the regression parameter β “ rβ1 . . . 0j . . . βpsT were
set with j P ∅Y t1, . . . , pu to simulate various levels of relationship between survival times
and variables (i.e. variable informativeness):

$

’

&

’

%

Model #1: β “ rβ1 β2 β3sT

Model #2: β “ rβ1 β2 0sT

Model #3: β “ r0 0 0sT

• by usingK “ 5-fold cross-validation, A “ 1000 for the cross-validated p-values and B “ 100
independent Monte-Carlo replications for generating sampling distributions and inferring
point and CI of statistics of interest.

4.2 Results

The results are compared on the basis of the box cross-validated estimates of the recovered
decision rule and/or of the descriptive survival endpoints statistics as stated in section 3.1.2.
We first compared the performance of our “Replicated Combined CV” K-fold cross-validation
technique, denoted RCCV (section 3.1.5) with the situation where no cross-validation was done
at all. Results for model #2 are shown in Figure 1. We then compared in Figure 2 the survival
distribution curves estimates for each model and cross-validation technique (including none).
Finally, we show in Table 1 the comparison between all three models for our RCCV technique.

4.2.1 On Peeling Trajectories
Peeling trajectories are estimated by a step function versus the box support/mass (Figure 1).
They are read from right to left as they track the top-down direction of box induction process
(peeling loop) of our Patient Recursive Survival Peeling method (Algorithm 1). Cross-validated
peeling trajectories are, up to sampling variability:

• Monotone functions for each input variable xj , for j P t1, . . . , pu.

• Monotone increasing functions for Log Hazard Ratios (LHR) λ̄l.

• Monotone increasing functions for Log-Rank Tests (LRT ) z̄l.

• Monotone decreasing functions for Minimal Event-Free Probability (MEFP) P̄ 1
0,l.

• Monotone decreasing functions for Maximal Event-Free Time (MEFT ) T̄ 1
0,l.

• Converging towards the input space coordinates of the maximum of the uncensored “sur-
rogate” outcome y (see section 2.2.2).
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4.2.2 On Trace Curves
Trace curves of variable importance and variable usage are estimated by piece-wise linear and
step functions, respectively, vs the box support/mass (Figure 1). Similarly to peeling trajectories,
they are read from right to left. Trace curves of variable importance show on a single plot: (i)
the amplitude of used variables, (ii) the order (prioritization) with which these variables are used
and (iii) the extent to which each variable is used. Variable traces are reminiscent of the concept
of variable selection from the fields of decision tree and regularization.

4.2.3 On Survival Curves
Each subplot of Figure 2 corresponds to the last peeling step of our Patient Recursive Survival
Peeling method for each tested model and cross-validation technique (including none). They
show Kaplan-Meir estimates of the survival functions (as a function of survival time) of both
in-box (red) and out-of-the-box (black) samples, corresponding respectively to the high-risk vs.
the low-risk groups, along with cross-validated p-values p̂cvplq (see section 3.3). A single survival
curve exists at the first peeling step, corresponding to the first box covering the entire data (not
shown). As the peeling progresses, the survival curves of in-box and out-of-the-box samples
further separate until the peeling stops (Figure 2).

4.2.4 Specific Comments on Plots
Our “Replicated Combined CV” (RCCV) technique tend to effectively: (i) smooth out peeling
trajectories/profiles, and (ii) prune off peeling trajectories/profiles lengths. Compare for instance

results for model #2:
L̄rcv “ 27 without CV
(NOCV), as compared to
L̄rcv “ 17 for RCCV (Figure
1). Figure 1 also shows traces
of variable importance pvil
(top) and variables usage xvul
(bottom) for model #2. Non-
informative (noise/random)
variables can be selectively
eliminated from the model
after RCCV: while the noise
variable x3 in model #2 has
been used in the absence of
cross-validation (NOCV - dot-
ted blue curve), as can be seen
from its peeling profile and
variable usage plots, its peel-
ing profile is mostly horizontal
(unused) in the presence of
our cross-validation technique
RCCV (solid blue curve). In
fact, variable trace and vari-
able usage plots also show that
x3 (in model #2) is not used
at all for β̄rcvpl “ 6q Æ 0.384
(third column, middle and
bottom row of Figure 1).
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Figure 1: Comparison of cross-validation techniques results on peeling
trajectories and trace plots of variable importance and variable usage in
model #2. Results without any cross-validation (NOCV) are compared to
those obtained with “Replicated Combined CV” (RCCV).

The very high LHR and LRT values in the non-cross-validated results (λ̄rcvpl “ 27q “ 9.411
and z̄rcvpl “ 27q “ 93.321) clearly reflect bias and/or overfitting. This is evident when comparing
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to the much more conservative values obtained from the corresponding “Replicated Combined
CV” (RCCV) peeling profiles: λ̄rcvpl “ 17q “ 3.474 and z̄rcvpl “ 17q “ 84.634 (Figure 1).

Further, the overly impressive
p-values of separation of sur-
vival distributions in the non-
cross-validated (NOCV) re-
sults of Figure 2 reflects again
bias and/or overfitting. This
is especially evident for the
results of model #3: the
survival probability curves of
the high-risk (red curve in-
box) and low-risk (black curve
out-of-box) groups are well
separated (p « 0.0254) in
the absence of cross-validation
(NOCV), while the corre-
sponding “Replicated Com-
bined CV” (RCCV) curves
overlap with a cross-validated
p-value (pcv « 0.9326) that is
no longer significant (bottom
row of Figure 2).
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Figure 2: Comparison of CV results for the Kaplan-Meir survival prob-
ability curves of the high-risk (red curve in-box) and low-risk (black curve
out-of-box) groups in all models. Top row: No cross-validation (NOCV),
bottom row: ‘Replicated Combined CV” (RCCV). Left column: model
#1, middle column: model #2, right column: model #3. For conciseness,
only the last peeling step of the peeling sequence is shown for each tested
model and cross-validation technique (including none).

Using now “Replicated Combined Cross-Validation” alone (RCCV), we noticed striking dif-
ferences in cross-validated peeling trajectories and variable traces between all models, that is,
either (i) when all noise covariates px1,x2,x3q are introduced in the model (#3), or (ii) when
one noise covariate only (x3) is introduced in the model (#2) or (iii) when none is introduce
in the model (#1). For instance, all peeling trajectories related to model #3 are much shorter
in length and especially flatter than in the other models (not shown), indicating little or no
usage as expected (Table 1). Similar observations can be made for variable importance and
variable usage curves of model #3: the curves stop at box mass β̄rcvpL̄rcvq « 0.432 after only
two steps (L̄rcv “ 2), as compared to β̄rcvpL̄rcvq « 0.132 with L̄rcv “ 18 for model #1 and
β̄rcvpL̄rcvq « 0.128 with L̄rcv “ 17 for model #2 (Table 1). Also, we noticed how LHR and LRT
cross-validated peeling trajectories in model #1 reach higher levels than in model #2 (Table 1).
This was expected due to our simulation design where each covariate of model #1 additively
contributes to the hazards and to the separation of survival distributions.

Table 1: Comparison of cross-validated decision rules between all models #1, #2, #3 for the “Replicated
Combined CV” (RCCV) technique. For conciseness, only the last steps L̄rcv are shown.

L̄rcv x1 x2 x3 T̄ 1 rcv
0 plq P̄ 1 rcv

0 plq λ̄rcvplq z̄rcvplq β̄rcvplq

model #1 18 x1 ě 0.513 x2 ď 0.514 x3 ď 0.615 0.001 0.000 5.865 163.264 0.132
model #2 17 x1 ě 0.466 x2 ď 0.517 x3 ď 0.541 0.006 0.000 3.474 84.634 0.128
model #3 2 x1 ď 0.910 x2 ě 0.363 x3 ď 0.773 1.827 0.407 0.013 0.006 0.432

5. Conclusion

Our replicated cross-validation strategy, namely the “Replicated Combined CV” (RCCV) pro-
cedure is effective in attenuating the over-fitting and/or bias issues for the sample size tested.

Overall, results testify of the effectiveness of the Replicated Combined Cross-Validation
(RCCV) technique to help select the informative variables and possibly to rank them by im-
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portance in a survival bump hunting model.
The stepwise variable usage procedure in the peeling loop of Algorithm 1 naturally induces

an inflation of variance estimates simply because each peeling step is conditional on the previous
step. Therefore, replications of our K-fold Combined Cross-Validation for recursive peeling
methods, although optional, are recommended to reduce the variability of box and survival
estimates for both CV procedures and attenuates the non-monotonicity of peeling trajectories.
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