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Abstract

A key observation in the Kolmogorov–Smirnov Goodness–of–Fit test is that the
largest difference between the cumulative distribution function F (x) and the empiri-
cal distribution function Fn(x) converges to 0 in probability. This observation allows
one to test whether two underlying univariate probability distributions differ from each
other or whether a given distribution differs from a hypothesized distribution, assum-
ing the data are unbiased and independent. However, these assumptions render the
test inadequate for spatial data. We extend the Kolmogorov–Smirnov goodness–of–fit
test to spatial data, and assume the data are from a regularly or an irregularly spaced
lattice.

1 Introduction

A spatial distribution depicts a trend or occurrence. Determining the distribution of a spatial
dataset, or determining if two spatial datasets have the same distribution allows for more
accurate data analysis of a trend. Tests such as goodness of fit tests are well established
for independent, identically distributed data. However, goodness of fit tests for spatial data
have received little attention (Olea, 2009). Spatial distribution applications include epi-
demiological, environmental, geographical, to name a few.

This paper is organized as follows. Section 2 discusses spatial data simulation methods.
Since this research proposes a new Kolmogorov–Smirnov test for spatial data, Section 3
reviews the classical Kolmogorov–Smirnov test. The proposed Kolmogorov–Smirnov test
uses a parametric spatial bootstrap, which is discussed in Section 4. Section 5 presents the
new Kolmogorov–Smirnov test. A simulation study is provided in Section sec:ss. Final
remarks are in Section 7.

2 Spatial Data Simulation

Spatial data are categorized according to a location j and a realized value

{Z(j) : j ∈ d}, (1)

where j is in d–dimensional Euclidean space, j ∈ <d. There are several categories of
spatial data including geostatistical data, point patterns, objects, and lattice data. Our focus
is regularly spaced lattice data.
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A lattice, a countable collection of spatial sites, may be regular or irregular (Cressie,
1993). In the former, data are obtained over a regularly spaced set of points. In the latter,
data are obtained over an irregularly spaced set of points. Lattice data are dependent obser-
vations from a spatial sampling region Rn ⊂ <d, d ≥ 1 in d–dimensional Euclidean space
on which a spatial process {Zs : s ∈ Zd} is observed on a grid Zd. A spatial process is
the manner in which data values change from one spatial location to another. The variable
d denotes the dimension of sampling, s represents the spatial sampling site, and n indicates
sample size (Nordman, 2008).

Unlike random samples, statistical packages typically do not have functions that simu-
late spatial data. The following algorithm (Cressie, 1993) can be adapted to simulate spatial
data:

The correlation structure is specified in the error term instead of in the mean as is con-
ditional models.

Step 1: Determine a valid spatial covariance structure such as power, exponential, or cir-
cular, and determine its corresponding covariance matrix.

• Σ is an n× n covariance matrix.

Step 2: Obtain the Cholesky decomposition of the covariance matrix, Σ:

• Σ = L× LT , where L is the lower triangular matrix.

• Choose a constant mean µ for the spatial region.

• Generate a vector of independent, identically distributed random variables from
the standard normal distribution.

• The error vector is ε = ε1, . . . , εn, where εi N(0, 1) for i = 1, . . . , n.

Step 3: Generate a spatial data vector Z using the relationship

Z = µ+ Lε (2)

• The vector Z contains spatially correlated data in the region of interest.

Since lattice data are on a grid, the form of the data needs to be adjusted to accommo-
date the Kolmogorov–Smirnov test. This adjustment is accomplished through estimating
equations.

3 Classical Kolmogorov–Smirnov Test

Although not originally intended as a goodness–of–fit test, the classical Kolmogorov–
Smirnov test uses the empirical distribution Fn(x) to test whether the cumulative distribu-
tion F (x) is the distribution of x (Kolmogorov, 1933). The idea behind the Kolmogorov–
Smirnov test is that the distribution of

sup
x∈<
|Fn(x)− F (x)| (3)

does not depend on the unknown distribution of the sample when the data are continuous,
independent, and identically distributed. The Kolmogorov–Smirnov test is motivated by
Theorem 3.1.
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Theorem 3.1 If H(t) = 1 − 2
∑∞

i=1(−1)i−1e−2i
2t is the cumulative distribution function

of the Kolmogorov–Smirnov distribution then

P (
√
n sup

x∈<
|Fn(x)− F (x)| ≤ t) D→ H(t). (4)

The statistic
Dn =

√
n sup

x∈<
|Fn(x)− F (x)| (5)

is known as the Kolmogorov–Smirnov D statistic. It is not to be confused with D→, conver-
gence in distribution. The D statistic is a measure of the discrepancy between the empirical
and hypothesized distribution functions. Its values have been tabulated, which allows one
to compute p–values.

Since the classical Kolmogorov–Smirnov Goodness–of–Fit test assumes that the data
are independent, the authors propose a new Kolmogorov–Smirnov test for spatial data. The
new test uses the parametric spatial bootstrap.

4 Parametric Spatial Bootstrap

Sampling bias and dependence, both inherent in spatiotemporal measurements, violate the
assumptions of the classical Kolmogorov–Smirnov test. This necessitates a new Kolmogorov–
Smirnov test for spatially correlated data. The proposed test obtains the distribution of the
Kolmogorov–SmirnovD statistic by bootstrapping. However, the classical bootstrap (Efron
and Tibshirani, 1993) cannot be used because it samples with replacement without regard
to relative locations. Disregarding location destroys the correlation structure of the original
spatial sample. The proposed method instead uses the parametric spatial bootstrap because
its artificial samples maintain the correlation structure of the original data (Tang, 2005).

The parametric spatial bootstrap maintains the correlation structure by generating sam-
ples similar to the way in which spatial data are generated. The authors generate spatial
data Z using the relationship

Z = µ+ Lε, (6)

where µ is a constant mean value, L is the lower triangular Cholesky decomposition of the
covariance matrix, and ε is the spatial error sequence. The purpose of L is to correlate the
errors. The bootstrap resample

Z = µ̂+ L̂ε∗, (7)

is obtained by bootstrapping the residuals ε∗ which are generated from a Gaussian distribu-
tion.

The parametric spatial bootstrap algorithm is as follows (Tang, 2005). First estimate
the spatial residuals δ̂ = Z − µ̂, and choose a semivariogram model based on empirical
semivariogram estimates. Next, estimate the parameters in the semivariogram model us-
ing weighted least squares, then estimate the covariance matrix Ĉ. Obtain the Cholesky
decomposition matrix L̂ of the estimated covariance matrix Ĉ, then estimate the sampling
distribution of θ̂∗ by repeating the followingB times: Generate parametric bootstrap residu-
als ε∗ from a Gaussian distribution. Transform the residuals and obtain bootstrap resamples
Equation (7). Finally, calculate the statistic of interest −2 log l(θ) = θ̂∗ from Z∗.
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5 Kolmogorov–Smirnov Test for Spatially Correlated Data

The proposed Kolmogorov–Smirnov test for spatially correlated data combines the spatial
bootstrap with the spatial empirical likelihood method to calculate the distribution of the
Kolmogorov–SmirnovD statistic at specified points for a finite sample of size n. It is based
on an unbiased empirical sample of size n. The method is outlined as follows:

1. Determine spatial sampling region.

2. Vectorize spatial grid. The vectorization process breaks up the grid into several vec-
tors.

3. Use the Parametric Spatial Bootstrap method to obtain artificial samples of vectorized
grid. Each vectorized grid represents a sample of size n. The artificial sample has the
same correlation structure as the empirical data. Spatial resamples are

Z∗ = µ̂+ L̂ε∗. (8)

Repeat to obtain at least 1000 artificial samples.

4. Determine empirical cumulative distribution function of the data, Fn(x).

5. Determine D statistic:
D = sup

x
|Fn(x)− F (x)|, (9)

where F (x) is the cumulative distribution function of the χ2(r) distribution; r repre-
sent dimension of data.

6. Repeat previous steps at least 1000 times to obtain at least 1000 D statistic values.

7. Use cumulative probability plots to determine p–values:

p− value = 1− quantile, (10)

where the null and alternative hypotheses are

H0 : D = 0

Ha : D > 0.

6 Simulation Study

This simulation study uses the proposed Kolmogorov–Smirnov test to determine the D–
statistic and p–value for spatially correlated data. The inference for variogram parameters
are found in Table 1. Spatial data are generated using a regular grid of 50× 50 with known
Gaussian semi-variogram parameters, with values of: a partial sill σ2 of 1.9, a nugget of 0.1
and range of 9 units. The corresponding covariance matrix was assembled using these val-
ues, and 2, 500 spatially correlated values were generated. There are 1, 000 samples of size
144 which were taken ignoring the spatial correlation structure, these samples are called
uncorrelated samples due to the fact that we are ignoring the spatial correlation structure.
Using these 1, 000 samples, the Kolmogorov–Smirnov test was performed for each sample
and the corresponding D–statistics and p–values were saved. A second set of samples were
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Table 1: Inference for Variogram Parameters

Parameters Estimates
Nugget 0.1 0.1
Partial Sill 1.9 1.91
Range 9.0 9.53
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Figure 1: Graph depicts spatially correlated data using Equation (6). Inference for vari-
ogram parameters are in Table 1.
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Table 2: Results for Simulation Study

Samples Mean p–values Mean D–satistics
Ignore Spatial Correlation 0.42 0.16
Consider Spatial Correlation 0.61 0.06
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Figure 2: Graph depicts 1000 simulations from obtaining samples with the same correlation
structure using Equation (8).

prepared, this time taking into account the spatial correlation structure. The semi–variogram
parameters were estimated using maximum likelihoods estimation methods in R, as these
values in a real world problem are unknown. The inference for the semi–variogram param-
eters are shown in Table 2. The estimated parameters are very close to the true values used
to generate the original data set. Using the estimated parameters we generated a second
set of 1, 000 samples of size 144 with each one of these samples followed the same semi-
variogram structure imposed by the estimated semi–variogram. The Kolmogorov–Smirnov
test was performed for each one of the 1 spatially correlated samples and the corresponding
D–statistics and p–values were computed and saved.

7 Summary

The simulations results described in the previous section indicate that ignoring the spatial
correlation produces p-values that are smaller than the p–values that were obtained when the
samples were generated with the same correlation structure as the original data set. These
results are in agreement with previous research (Olea, 2009). Therefore, given that obtain-
ing the correlated samples involved more computational effort and time, as we need to infer
the semi-variogram parameters and 1, 000 samples were generated using the same spatial
correlation structure, we can conclude that the additional effort for preparing the correlated
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samples is not necessary in most cases. Specifically, when the p-value ignoring the spatial
correlation structure allows you to reject the null hypothesis for the Kolmogorov-Smirnov
test, preparing the correlated samples that follow the same correlation structure as the orig-
inal data set is not necessary. In another words, preparing the spatially correlated samples
that follow the same spatial correlation as the original data set is not going to change the
conclusion for the Kolmogorov-Smirnov when the null hypothesis was not rejected for the
uncorrelated samples. The null hypothesis is not going to be rejected again by using the
correlated samples for the Kolmogorov-Smirnov test.
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