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Abstract
The time series model selection problem is strongly rooted in residual analysis. Due to increased

data collection, computing power and public interest, more-and-more important time series models
are fit using iterative computer aided methods. These iterative methods usually fit competing mod-
els and compare residuals or likelihood based criteria to select then best models. The basis of this
work is to improve the iterative methodology.
This paper will discuss current methods used during iterative model fitting; then, introduce a mea-
sure for model residuals that weighs whiteness and marginal distribution concurrently. For example,
if residuals are assumed normal then perfect residuals are Gaussian noise. We seek a single score
that is minimized at uncorrelated Gaussian and grows as residuals deviate from either property. Dis-
tributional theory of such a measure will be described. Finally, empirical studies will be presented
supporting ideas and illustrating the practical uses of such a measure.
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1. Introduction

Many classical methods for fitting stationary time series models perform best when resid-
uals follow a Gaussian distribution. Moreover, when utilizing the Box-Jenkins time series
model fitting procedure, the typical progression (assuming data is already stationary with
no heteroscedasticity) is to fit a model and check if residuals have any correlation present
[1]. Then, one may further look to see if a suitable set of residuals follow the assumed
Gaussian structure. This procedure can lead to a large number of models that all “pass”
the correlation and normality tests. Final decisions are then usually made by experience,
knowledge of the data generating process, parsimony, or a multitude of other facets.

A second way of fitting is to automate the process. One decides on a class of models and
then lets a self-regulating algorithm choose the best model in the class. This is usually done
via AIC (or one of the many AIC variants)[3, 8]. For example, many automated routines
exist to fit ARMA models that, in theory, will have residuals that follow any prescribed
assumptions. These routines conduct a search over possible models within order constraints
given by the user and select a model based on likelihood driven criteria. Many automated
routines are specific to a model class.

Throughout this paper, the premise of the proposed approach to time series modeling
is that better models produce residuals that are more like Gaussian white noise. Questions
we wish to address with this research are very fundamental: given two sets of residuals,
which is closer to Gaussian white noise. This question cannot be answered by performing
separate goodness-of-fit tests on both sample correlation and marginal structure. This is
because such tests rely on finding evidence to refute the proposed characteristics. Hence,
comparing multiple models which return satisfactory test values is not informative. We
strive to produce a test with “black box” capabilities that does not depend on which model
is chosen, i.e. given two sets of residuals, no knowledge of the model is needed to decide
which set of residuals is closer to the idealized set of uncorrelated Gaussian residuals.
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Figure 1: Example plot showing two hypothetical scores from two separate sets of residual
values.

The proposed approach differs from current methods in that it will be able to compare
two vastly different models. Much work has already been done in residual analysis. How-
ever, much of it focuses on only testing for correlation, only testing for marginal structure,
or is model based, i.e. requires knowledge of the model that produced the residuals - possi-
bly requiring them to produce a likelihood, be nested, etc. We create a single powerful test
that can determine which set of residuals (and hence which model) more closely follows
the assumption of uncorrelated Gaussian.

1.1 Simple motivating example

To further outline the goals of our work, consider two sets of hypothetical residuals {εt}
and {δt}, each of which pass a test for serial correlation (ACF plot, Ljung-Box test, Durbin-
Watson test, etc) [5, 2] and a test for Gaussianity (QQ-norm plot, Shapiro-Wilks test,
Kolmogorov-Smirnov test) [7]. We now wish to decide, in an automated manor, whether
{εt} or {δt} is the better set of residuals. The goal of this research is to produce a test statis-
tic, S, that will concurrently measure the amount of correlation present and the amount each
set of residuals deviates from the normal distribution. Let S1 denote the value of S obtained
based on {εt} and S2 be that obtained based on {δt}. This is shown graphically in Figure 1.
In this hypothetical situation, we would conclude that {εt} deviates less from the Gaussian
distribution than {δt} and {δt} has less correlation than {εt}. Most importantly, we see that
{δt} is closer to Gaussian white noise than {εt}. This same idea has been investigated in
independent component analysis (ICA); the decomposition of a random vector [4].

2. Measuring Gaussianity

There are a multitude of well established methods for measuring how close a set of data,
or in our case residuals, is to a set of normally distributed variables. Our initial empirical
work has explored many methods and focused on two: one based on the empirical distri-
bution function and one based on an expansion using Hermite polynomials.While we are
not ready to state conclusively that Hermite polynomials are most fruitful, in our investiga-
tion Hermite expansion based tests performed well. The remainder of this proceedings will
focus on measuring Gaussianity with a Hermite expansion.
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Figure 2: Plot of the first six Hermite Polynomials.

2.1 Hermite Polynomials

There are many variations of Hermite polynomial definitions. We define the Hermite poly-
nomials as

Hn(x) = (−1)ne
1
2
x2 d

n

dxn
e−

1
2
x2 , (1)

for −∞ < x <∞, n = 0, 1, 2, . . . and d
dx is the derivative operator. The first few Hermite

polynomials under definition (1), shown graphically in Figure 2, are:

H0(x) = 1,

H1(x) = x,

H2(x) = x2 − 1,

H3(x) = x3 − 3x,

H4(x) = x4 − 6x2 + 3,

H5(x) = x5 − 10x3 + 15x.

We will use these polynomials to express the density of a given set of residuals. This
particular definition is useful when measuring Gaussianity since under (1) the polynomials
{Hn} are orthogonal in terms of a inner product defined with respect to the standard normal
density function, φ(x). Specifically,

< Hn, Hm >= n! 1(n=m)

where < f, g >=
∫∞
−∞ f(x)g(x)φ(x)dx is an inner product and 1(A) is the zero-one

indicator function of the event A.
We consider two different density representations. First,

f(x) = φ(x)
∞∑
n=0

anHn(x). (2)
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The convention of including φ(x) in the representation (2) assures that f will integrate to
unity. Representation (2) does not guarantee f(x) ≥ 0. However, this is not an issue;
the end goal is not density estimation but a measure of how far f deviates from φ. The
coefficients {an} have a nice form when f = φ. Namely, the sequence is extremely sparse:

a =


a0
a1
a2
...

 =


1
0
0
...

 .

A second choice for density representation will be,

f(x) = e−αx
2
∞∑
n=0

bnHn(x). (3)

where 0 < α ≤ 1
2 . This representation is proportional to (2) when α = 1/2. The reason

for considering two separate representations is as follows. Assume we are given a set of
residuals x1, x2, . . . , xT that has been standardized, i.e. centered about its mean and made
to have standard deviation one. The density of the population that {xt} was drawn from
f(x) can be approximated by calculating estimates of the coefficients in (2) and (3) by
treating the integration as an expectation with respect to the density f . Under the first
representation (2)

an =< φ−1f,Hn >

=

∫ ∞
−∞

φ−1f(x)Hn(x)φ(x)dx

= Ef [Hn(X)].

Which immediately leads to an estimator of

ân = T−1
T∑
t=1

Hn(xt). (4)

Equation (4) provides a particularly simple and interesting representation for the coeffi-
cients. It can be viewed as a method of moments estimator. â0 = 1, â1 = x̄, â2 =
T−1

∑T
t=1 x

2
t − 1, . . . . One issue with this representation (2) is the mean of each estimate

ân is not zero.
Alternatively, under the representation (3), we get

bn =< eαx
2
f(x), Hn(x) >

=

∫ ∞
−∞

eαx
2
f(x)Hn(x)φ(x)dx

=
1√

2π n!
Ef

[
e(α−

1
2
)X2

Hn(X)
]

which again provides a method of moments estimator,

b̂n =
1√

2π n!

1

T

T∑
t=1

e(α−
1
2
)x2tHn(xt). (5)
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To have a similar interpretable coefficients {bn}, it is advantageous to no longer preprocess
the residuals {xt} to have variance one. Instead, consider the normal density with variance
1/(2α),

φσ2=1/(2α)(x) =

√
α

π
e−αx

2
.

Comparing this to (3), we see that for f(x) = φσ2=1/(2α)(x) the coefficients should be
b0 =

√
α
π and bn = 0 for n ≥ 1. It would be more convenient if b0 = 1 and the variance

of the data could be standardized to 1. This is achieved by using the coefficients
√
α/πbn

and setting Y =
√

2αX . For notational convenience, we denote the modified coefficients
as bn. A natural estimator of bn following (5) is

b̂n =
1√

2α n!

1

T

T∑
t=1

e
1
2
(1− 1

2α
)y2tHn

(
yt√
2α

)
(6)

Properties of this estimator are explored in [6]. The term e
1
2
(1− 1

2α
)y2t in (6) acts as an

exponential dampening for outliers.

2.2 Covariance of estimated Coefficients

Our exposition will require the covariance of any two coefficients, b̂n and b̂m. Let b̂ =
(b̂0, b̂1, . . . , b̂J)′ and denote its associated covariance matrix Σb. Our measure of Gaus-
sianity does not assume uncorrelated residuals. As seen, calculation of covariance is done
assuming x1, x2, . . . , xT , a covariance stationary sequence with mean 0 and autocovariance
function γ(·). To devise a test for Gaussianity, we are primarily interested in the null distri-
bution of the test statistic. Hence, we compute the covariance under the null hypothesis of
Gaussian residuals and assume that the residuals follow a Gaussian process where for any
s, t (

xs
xt

)
= N2

((
0

0

)
,

[
γ(0) γ(|s− t|)

γ(|s− t|) γ(0)

])
.

Each Hermite polynomial is given the representation

Hn(x) =

J∑
j=0

ξn,jx
j

where J is the maximum power of any Hermite polynomial used and ξn,j are Hermite
polynomial coefficients. The convention of a fixed J is used as opposed to letting J depend
on n, leading to many ξn,j being zero. For example, if J = 10 we would express H4(x) =
x4 − 6x2 + 3 =

∑10
j=0 ξ4,jx

j where ξ4,4 = 1, ξ4,2 = −6, ξ4,0 = 3 and all other ξ4,j equal
zero.

The estimated coefficients following (6) can be written as

b̂n = T−1
T∑
t=1

gn(xt)

where gn(x) = 1√
2αn!

eαx
2
Hn(x/

√
2α). We are interested in calculating
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Cov(b̂n, b̂m) = Cov

(
T−1

T∑
t=1

gn(xt), T
−1

T∑
s=1

gm(xs)

)

= T−2
T∑
t=1

T∑
s=1

Cov(gn(xt), gm(xs)).

Expanding the Hermite polynomials we get

Cov(gn(xt), gm(xs)) =
1

2αn!m!

J∑
j=0

J∑
k=0

(2α)−
j+k
2 ξn,jξm,kCov(eαx

2
txjt , e

αx2sxks)

=
1

2αn!m!

J∑
j=0

J∑
k=0

(2α)−
j+k
2 ξn,jξm,k E[eαx

2
txjt , e

αx2sxks ]︸ ︷︷ ︸
θj,k,t,s

.

To get an explicit expression for θj,k,t,s the residuals are scaled to unit variance.

θj,k,s,t = E[eαx
2
txjt , e

αx2sxks ]

= γ(0)
j+k
2 E

[
eβx

2
eβy

2
xjyk

]
where β = γ(0) α and

(
x
y

)
∼ N

(
0,

[
1 ρ
ρ 1

])
, for ρ = ρt,s = γ(|t − s|)/γ(0). A

formal derivation of E
[
eβx

2
eβy

2
xjyk

]
is given in the Appendix and expressing the sums

in quadratic form we have,

Σb = T−2
T−1∑
h=0

ΞQhΞ′

where [Ξ]nj = ξn,j/n! and [Qh]jk = (2α)−
j+k+2

2 E
[
eα(x

2
t+x

2
t+h)xjtx

k
t+h

]
. The notation

[A]ij gives the (i, j)th element of the matrix A.

2.3 A measure of Gaussianity

Under Gaussianity, the value of the true coefficient vector b is e1 = (1, 0, . . . , 0)′. Thus , a
natural measure of Gaussianity could be based on the distance between b̂ and e1. Since the
different entries of b̂ have different variance, we consider a weighted distance as proposed
measure of Gaussianity,

G0 = (b̂− e1)
′Σ−1b (b̂− e1) (7)

where Σb = V ar(b̂). We are now ready to state the main theorems that yield relevant
distribution theory and can be used to set up a test of Gaussianity based on J .

Theorem 2.1 Assuming {Xt} is a mean zero stationary Gaussian process,
√
T (b̂− e1) −→ N(0,Σb).

where e1 = (1, 0, 0, . . . , 0).
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Figure 3: Histogram of 10000 simulations of standardized b̂3 coefficient estimates from
T = 5 residual values.
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Figure 4: Histogram of 10000 simulations of standardized b̂3 coefficient estimates from
T = 25 residual values. Over-plotted with the standard normal density

Theorem 2.2 Assuming {Xt} is a mean zero stationary Gaussian process,
√
T (b̂− e1)′Σ−1b (b̂− e1) −→ χ2(J + 1).

where χ2(ν) represents that chi-squared distribution with ν degrees of freedom.

Under the above assumptions that residuals follow a stationary process, we propose
a test of non-Gaussianity as G0 that rejects the null hypothesis of Gaussian residuals if
G0 > χ2

α(J + 1) where χ2
α(J + 1) is the upper α percentile of the χ2(J + 1).

3. Simulation

We perform a limited simulation study to check the validity of the asymptotic approxima-
tion in Theorems 2.1 and 2.2. Figures 3 and 4 are histograms of a single component from
Σ
−1/2
b b̂ with T = 5 and T = 25 for 10000 simulations of residuals that are IID standard

normal. For simplicity we have only plotted a histogram for the third coefficient. The stan-
dard normal density is added to the plot when T = 25. All other coefficients have a similar
looking shape. After the transform Σ−1/2b̂ all histograms are standardized.

It remains to verify that calculating Σb under the assumption of a stationary process
is necessary and the weighted distance between b̂ and e1 (instead of euclidean distance)
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Figure 5: Histogram for 10000 simulations of G0 statistic. Calculated under the assump-
tion that residuals are a stationary process.
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Figure 6: Histogram for 10000 simulations of G0 statistic. Calculated under the assump-
tion that residuals are uncorrelated.

is the appropriate measure to use. For this we simulated residuals from an autoregressive
AR(1) process with φ = 0.5. The sample autocovariances were used in our estimate of Σ̂b.
This process was repeated 10000 times, the resultingG0 values are shown in Figure 5. This
was done using J = 5 and the results fit Theorem 2.2 well. This same procedure was then
repeated under the assumption that residual values were uncorrelated using the Euclidean
distance between b̂ and e1 (all calculations are omitted from this report). The resulting G0

values are plotted in Figure 6. Clearly, a very heavy tail indicates violation of a chi-squared
distribution.

4. Concluding Remarks

In this proceedings, we have presented part of our ongoing research for developing a single
statistic that can measure the departure of sample residuals from the idealized set of residu-
als following Gaussian white noise. We have only described a test for Gaussianity under the
assumption residuals are possibly correlated. Further work must be done to both quantify
the amount of correlation present and merge with ideas from section 2. In essence, we need
to combine our test for Gaussianity under possibly correlated residuals with a test for serial
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correlation of possibly non-Gaussian residuals. An initial power study of the test for nor-
mality yielded another interesting fundamental question. Namely, how can we generate a
sample time series from a given marginal distribution with known ACVF γ(·)? The answer
is well known for the stationary Gaussian case, let Z = (Z1, Z2, . . . , ZT )′ ∼ NT (0, I)
then

X = Γ
−1/2
T Z

where [Γ]ij = γ(|i− j|) will be a stationary Gaussian time series with ACVF γ(·). This is
not so easy for other marginal distributions. Our future work will also aim to make progress
in this related area.

This report also focused on Gaussian marginals. While in practice this is the most
widely utilized assumption, there are many interesting time series applications that have
different marginal assumptions on residual values. As this research matures, other types of
distributions will also be considered.

5. Appendix

In this appendix we provide explicit expressions forE[eβx
2
eβy

2
xjyk] where

(
x
y

)
∼ N

(
0,

[
1 ρ
ρ 1

])
.

Let

E
[
eβx

2
eβy

2
xjyk

]
=

∫
xjeβx

2

∫
yk

1
√

2π
√

1− ρ2
e
− 1

2(1−ρ2)
[y2−2ρxy+x2]

eβy
2
dy︸ ︷︷ ︸

ζk,t,s

dx.

The idea of the remaining calculation is to write ζk,t,s as a normal density with mean
ρx/A and variance (1− ρ2)/A (with A given later) by completing the square i.e.

ay2 + by + c = a

(
y +

b

2a

)2

− b2

4a
+ c.

Let A = 1− 2β(1− ρ2) and D = 1−ρ2/A
1−ρ2 . Then
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E
[
eβx

2
eβy

2
xjyk

]
=

1

2π
√

1− ρ2

∫
eβx

2
xj
∫
yke

{
− 1

2(1−ρ2) [(1−2(1−ρ
2)β)y2−2ρxy+x2]

}
dydx

=
1

2π
√

1− ρ2

∫
eβx

2
xj
∫
yke

{
− A

2(1−ρ2)

[
y2− 2ρx

A
y+ 4x2ρ2

4A2 −
x2ρ2

A2 +x2

A

]}
dydx

=
1

2π
√

1− ρ2

∫
eβx

2
xj
∫
yke

{
− A

2(1−ρ2)

[
(y−xρA )

2
+x2

A

(
1− ρ

2

A

)]}
dydx

=
1√

2π
√
A

∫
e{βx2}xje

{
− 1

2(1−ρ2)
(1−ρ2/A)x2

} ∫
yk

√
A

√
2π
√

1− ρ2
e

{
− A

2(1−ρ2)(y−
xρ
A )

2
}
dydx

=
1√

2π
√
A

∫
xje

{
− 1

2

(
1−ρ2/A
1−ρ2

)
x2
}
E

[
N

(
xρ

A
,

1− ρ2

A

)k]
dx

=
1√

2π
√
A

∫
xje

{
− 1

2

(
1−ρ2/A
1−ρ2

)
x2
}

k∑
`=0

(
k

`

)(ρx
A

)k−`
(`− 1)!!

(
1− ρ2

A

)`/2
1(` even)dx

=
1√

A
√
D − 2β

k∑
`=0

(
k

`

)
ρk−`(1− ρ2)`/2A`/2−k(`− 1)!!1(` even)

∫
xj+k−`

√
D − 2β√

2π
e{−

1
2
(D−2β)x2}dx

=
1√

A
√
D − 2β

k∑
`=0

[(
k

`

)
ρk−`(1− ρ2)`/2A`/2−k(`− 1)!!1(` even)(D − 2β)−

j+k−`
2

(j + k − `− 1)!!1(j + k − ` even)]
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