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Abstract 
We present Bayesian adaptive designs for dose finding of a combination of two drugs in 
cancer phase I clinical trials. The goal is to estimate the maximum tolerated dose (MTD) 
as a curve in the two-dimensional Cartesian plane. Parametric models are used to 
describe the relationship between the doses of the two agents and the probability of dose 
limiting toxicity. We investigate different reparameterizations in terms of parameters 
clinicians can easily interpret. Trial design proceeds using univariate escalation with 
overdose control, where at each stage of the trial, we seek a dose of one agent using the 
current posterior distribution of the MTD of this agent given the current dose of the other 
agent. At the end of the trial, an estimate of the MTD curve is proposed as a function of 
Bayes estimates of the model parameters. We evaluate design operating characteristics in 
terms of safety of the trial design and percent of dose recommendation at dose 
combination neighborhoods around the true MTD curve. We also examine the 
performance of the approach under model misspecifications for the true dose-toxicity 
relationship. 
 
Key Words: Cancer Phase I trials; Maximum tolerated dose curve; Escalation with 
overdose control; Drug combination; Dose limiting toxicity; Continuous dose. 
 
 
 

1. Introduction 
 
Cancer phase I clinical trials are small studies of investigational new agents or 
combination of existing cytotoxic and/or biologic agents. These trials typically enroll 
patients with advanced form of cancer who have exhausted all standard therapy [1]. The 
primary objective of such studies is to estimate a maximum tolerable dose (MTD) of a 
new drug or combinations of drugs for future efficacy evaluation in phase II/III trials. A 
cancer phase I trial design is an algorithm of dose assignment to successive cohorts of 
patients in order to estimate the MTD while minimizing the number of patients 
experiencing severe dose related side effects. A review of single agent dose-finding 
designs can be found in [2-4]. Combining several drugs can help reduce tumor resistance 
to chemotherapy by targeting different signaling pathways simultaneously and improve 
tumor response when using additive or synergistic drugs [5]. Although the majority of 
phase I trials use drug combinations of several agents, most of them are designed to 
estimate the MTD of one drug for fixed dose levels of the other drugs. This approach 
may provide a single safe dose for the combination but it may be suboptimal in terms of 
therapeutic effects. Trials where the dose levels of at least two agents are allowed to vary 
yield more than one MTD, or even an infinite number of MTDs in the case of continuous 
does levels. Estimating the resulting set of MTDs by designing a safe trial is the main 
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goal of phase I trials with dose combinations of several agents. Let Ai, i = 1,…,k be k 
drugs and Si ϲ R+ be the set of all possible doses of drug Ai. Denote by x = (x1,…, xk) a 
dose combination of the k drugs and S = S1×…× Sk. Consider a dose-toxicity model 
 
 ( )Prob DLT | dose ( , ),F= =x x ξ  (1.1) 
 
where F is a known link function and ξ ϵ Rd is an unknown parameter. The MTD is 
defined as the set C of dose combinations x such that the probability of DLT for a patient 
given dose x equals to a target probability of DLT θ: 
 
 { }: ( , ) .C S F θ= ∈ =x x ξ  (1.2) 
 
For k = 2, a number of designs for estimating C have been proposed in the past decade, 
see [6-14]. By design, these methods do not apply to the case of continuous dose levels of 
the two agents. Although the method of [6] can be used for continuous agents in the 
second stage of the trial, the first stage of the design does require a discretization of the 
dose combinations along a diagonal. Except for [6], the methods recommend a single 
dose combination as the MTD. Furthermore, it is not clear how these methods perform in 
the presence of a large number of dose combinations in relation to the sample size in the 
trial, especially if dose escalation by more than one level in either direction is not 
allowed. In this manuscript, we extend the design described by Tighiouart et al. [15] by 
allowing the true MTD curve to lie outside the range of doses available in the trial and 
introduce a new algorithm for dose escalation by treating cohorts of two patients 
receiving different dose combinations simultaneously. Doses are determined according to 
escalation with overdose control (EWOC) principle [16-18]. 
 
 

2. Model 
 
2.1 Dose-Toxicity Model 
Consider the problem of identifying a tolerable dose(s) of the combination of two 
cytotoxic agents A and B. We consider the dose-toxicity model of the form 
 
 Prob( 1| , ) ( ),Z x y F x y xyµ β γ η= = + + +  (2.1) 
 
where Z is the indicator of DLT, Z = 1 if a patient given the dose combination (x,y) 
exhibits DLT within one cycle of therapy, and Z = 0 otherwise, x ϵ [Xmin, Xmax] is the dose 
level of agent A, y ϵ [Ymin, Ymax] is the dose level of agent B, and F is a known cumulative 
distribution function. Suppose that the doses of agents A and B are continuous and 
standardized to be in the interval [0, 1]. 
We will assume that that the probability of DLT increases with the dose of any one of the 
agents when the other one is held constant. A sufficient condition for this property to hold 
is to assume β > 0 and γ > 0 and the interaction term η is nonnegative. The MTD is 
defined as any dose combination (x*, y*) such that 
 
 * *Prob( 1| , ) .Z x y θ= =  (2.2) 
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The target probability of DLT θ is set relatively high when the DLT is a reversible or 
non-fatal condition, and low when it is life threatening. Using (2.1) and (2.2), the MTD is 
 

 
1 *

* * 2 *
*

( )( , ) [0,1] : .F xC x y y
x

θ µ β
γ η

− − −
= ∈ = + 

 (2.3) 

 
We reparameterize model (2.1) in terms of parameters clinicians can easily interpret. We 
describe two reparameterizations that accommodate prior or lack of knowledge about 
each drug when used as single agent. 
 
2.1.1 Reparameterization 1 
Model (2.1) is reparameterized in terms of ΓA|0, the MTD of drug A when the level of 
drug B is Ymin, ΓB|0, the MTD of drug B when the level of drug A is Xmin, ρ00, the 
probability of DLT at the minimum available doses of agents A and B, and the interaction 
parameter η. If MTD estimates of single agent trials using A and B are available, then 
these estimates can be used to approximate the prior mean and variances of the 
parameters ΓA|0, and ΓB|0. We will assume that  0 < ΓA|0, ΓB|0 < 1, i.e., the MTD of each 
agent when the other one is held at its minimum available dose in the trial is within the 
range of available doses in the trial. This is the reparameterization used in Tighiouart et 
al. [15]. It follows that 
 

 

1
00

1 1
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1 1
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 (2.4) 

 
The MTD (2.3) can be expressed in terms of these new parameters as 
 

 ( )( )
( )( )

1 1 *
00 |0* * * * *

1 1 *
00 |0

( ) ( ) 1 /
( , ) : 0 , 1, .

( ) ( ) /
A

B

F F x
C x y x y y

F F x

θ ρ Γ

θ ρ Γ η

− −

− −

 − − = ≤ ≤ = 
− +  

 (2.5) 

 
 
2.1.2 Reparameterization 2 
We reparameterize model (2.1) in terms of ρ10, the probability of DLT when the levels of 
drugs A and B are 1 and 0, respectively, ρ01, the probability of DLT when the levels of 
drugs A and B are 0 and 1, respectively, ρ00, the probability of DLT when the levels of 
drugs A and B are both 0, and the interaction parameter η. This reparametrization relaxes 
the conditions that the MTDs ΓA|0 and ΓB|0 described in Section 2.1.1 be bounded within 
the range of doses available in the trial. It can be shown that 
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The MTD (2.3) becomes 
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 ( ) ( )
( )

1 1 1 1 *
00 10 00* * *

1 1 *
01 00

( ) ( ) ( ) ( )
( , ) : .

( ) ( )

F F F F x
C x y y

F F x

θ ρ ρ ρ

ρ ρ η

− − − −

− −

 − − − = = 
− +  

 (2.7) 

 
Figure 1(a) shows some MTD curves under model reparameterization 1 when ρ00 = 0.05, 
ΓA|0 = 0.7, ΓB|0 = 0.7, and three values for the interaction coefficient η = 0, 20, 60. Figure 
1(b) shows MTD curves under reparameterization 2 when ρ00 = 0.05,  ρ01 = ρ10 = 3×10-6, 
and three values for the interaction coefficient η = 20, 40, 60.  
 

 
Figure 1. MTD curves for selected values of the interaction coefficient η. Target probability of 
DLT θ = 0.33 and logistic link F(u) = (1 + e–u)–1. (a) Reparameterization 1,  ρ00 = 0.05, ΓA|0 = 0.7, 
ΓB|0 = 0.7, (b) Raparameterization 2, ρ00 = 10-7,  ρ01 = ρ10 = 3×10-6. 
 
In both cases, the target probability of DLT is θ = 0.33 and the link function is the logistic 
F(u) = (1 + e–u)–1. Figure 1(b) illustrates cases where each drug when used as single agent 
is very safe within the range of doses available in the trial. Let Dn = {(xi,yi,zi), i = 1, …, 
n} be the data after enrolling n patients in the trial. The likelihood function under 
reparameterization 1 is 

 
( )
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00 |0 |0 00 |0 |0
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∏
 (2.8) 

 
where 
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 (2.9) 

 
Under model reparameterization 2, the likelihood is 
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where 
 

 ( ) ( )( )
00 01 10

1 1 1 1 1
00 10 00 01 00

( , , , ; , )

( ) ( ) ( ) ( ) ( ) .
i i

i i i i

G x y
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 (2.11) 

 
2.2 Prior and Posterior Distributions 
Under model reparameterization 1, (2.4) implies that 0 < ρ00 < θ since β > 0. We consider 
the priors ρ0/θ ~ beta(a1, b1), ΓA|0 ~ beta(a2, b2), ΓB|0 ~ beta(a3, b3), η ~ gamma(a, b) with 
mean E(η) = a / b and variance Var(η) = a / b2. Vague priors for these parameters are 
achieved by taking aj = bj = 1, j = 1, 2, 3. A vague prior for η is then achieved by setting 

( )1 1
00 |0 |0( ) 8 ( ) ( ( )) ( ) ( ).A BE F F E E Eη θ ρ Γ Γ− −= −  A large variance is selected for η, see 

[15] for the rationale behind this choice. Using Bayes rule, the posterior distribution of 
the model parameters is proportional to the product of the likelihood and prior 
distribution 
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 (2.12) 

 
Features of this posterior distribution are estimated using WinBUGS[19] and JAGS. For 
model reparameterization 2, we note that (2.6) implies that 0 < ρ00 < min(ρ01, ρ10) since β 
and γ are positive. We assume that ρ01, ρ10, η are independent a priori with ρ01 ~ beta(a1, 
b1), ρ10 ~ beta(a2, b2), and conditional on (ρ01, ρ10), ρ00 / min(ρ01, ρ10) ~ beta(a3, b3). Vague 
priors for these parameters are again achieved by taking aj = bj = 1, j = 1, 2, 3. The 
hyperparameters for η are taken as in reparameterization 1. 
 
2.3 Trial Design 
We describe two algorithms for dose allocation. Both of these use the EWOC principle 
where at each stage of the trial, the posterior probability of overdosing a future patient is 
bounded by a feasibility bound α. The first one is a review of the dose allocation scheme 
described in [15] and the second algorithm enrolls cohorts of two patients simultaneously 
receiving different dose combinations. 
 
2.3.1 Algorithm 1 

1. The first patient receives dose (x1, y1) = (0, 0) and suppose the patient has no 
DLT, z1 = 0. 

2. Fix x1 = 0, and calculate the posterior distribution of the MTD of agent B, given 
that the level of agent A is x1 = 0, π(ΓB|A=0 | D1). The dose for patient 2 is (x2, y2) 
where x2 = x1 and y2 is the α-th percentile of this posterior distribution. 
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3. Fix y2, and calculate the posterior distribution of the MTD of agent A, given that 
the level of agent B is y2, π(ΓA|B=y2 | D1). The dose for patient 3 is (x3, y3) where x3 
is the α-th percentile of this posterior distribution and y3 = y2. 

In general, when we move from dose (xi, yi) to (xi+1, yi+1), either xi = xi+1 or yi = yi+1. 
Specifically, if i is even, then 

|

1
1 ( | )

A B yii ix DΓΠ α
=

−
+ = and yi+1 = yi. If i is odd, then xi+1 = xi 

and 
|

1
1 ( | ).

B A xii iy DΓΠ α
=

−
+ =  Here, 

|

1 ( | )
A B yi iDΓΠ α

=

− is the inverse cdf of the posterior 

distribution |( | ).
iA B y iDπ Γ =  

4. Repeat step 3 by fixing either dose xi or yi, depending on whether i is even or odd, 
until n patients are enrolled to the trial subject to the following stopping rule. 

 
Stopping rule: We stop enrollment to the trial if P(P(DLT|(x,y) = (0,0)) >θ+δ1 | data) >δ2, 
i.e. if the posterior probability that the probability of DLT at the minimum available dose 
combination in the trial exceeds the target probability of DLT is high. δ1 and δ2 are design 
parameters chosen to achieve desirable model operating characteristics. 
 
2.3.2 Algorithm 2 

1. Each patient in the first cohort of two patients receives the same dose 
combination (x1, y1) = (x2, y2) = (0, 0). Let D2  = {(x1, y1, δ1), (x2, y2, δ2)}. 

2. In the second cohort of two patients, patient 3 receives dose (x3, y1) and 
patient 4 receives dose (x2, y4), where x3 is the α-th percentile of π(ΓA|B=y1 | 
D2) and y4 is the α-th percentile of π(ΓB|A=x2 | D2). 

3. In the i-th cohort of two patients, if i is even, then patient 2i −1 receives dose (x2i-

1, y2i-3), patient 2i receives dose (x2i-2, y2i), where 

| |2 3 2 2

1 1
2 1 2 2 2 2 2( | ), ( | ).

A B y B A xi ii i i ix D y DΓ ΓΠ α Π α
= =− −

− −
− − −= =  If i is odd, then patient 2i −1 

receives dose (x2i-3, y2i-1), patient 2i receives dose (x2i, y2i-2), where 

| |2 3 2 2

1 1
2 1 2 2 2 2 2( | ), ( | ).

B A x A B yi ii i i iy D x DΓ ΓΠ α Π α
= =− −

− −
− − −= =  

4. Repeat step 3 until n patients are enrolled to the trial subject to the stopping rule 
described in Algorithm 1. 

 
At the end of the trial, we estimate the MTD curve using Bayes estimates of the 
parameters defining this curve. For example, using reparameterization 2, an estimate of 
the MTD curve is obtained using (2.7) as 
 

 ( ) ( )
( )

1 1 1 1 *
00 10 00* * *

1 1 *
01 00

ˆ ˆ ˆ( ) ( ) ( ) ( )ˆ ( , ) : ,
ˆ ˆ ˆ( ) ( )

F F F F x
C x y y

F F x

θ ρ ρ ρ

ρ ρ η

− − − −

− −

 − − − = = 
− +  

 (2.13) 

where 00 01 10ˆ ˆ ˆ ˆ, , ,ρ ρ ρ η  are the posterior medians given the data Dn. 
 

3. Simulation Studies 
 
3.1 Simulation Set-up and Scenarios 
We evaluate design operating characteristics by assuming a logistic link function F(u) = 
(1 + exp(−u))–1 for the working model. DLT responses are generated assuming both a 
logistic link function and three other link functions to assess the performance of the 
method under model misspecification. These are (1) the probit link F(u) = Φ(u), where 
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3.2 Design Operating Characteristics 
We evaluate the performance of the methods by assessing the safety of the trial designs 
and the efficiency of the estimate of the MTD curve. 
 
3.2.1 Safety 
We assess trial safety by reporting the average percent of DLTs across all m = 1000 trials 
and the percent of trials that have a DLT rate exceeding θ + δ, for δ = 0.05, 0.1. The 
threshold θ + 0.1 is usually considered to be an indication of an excessive DLT rate. 
 
3.2.2 Efficiency 
We present an estimate of the MTD curve using the average posterior medians of 
the model parameters. For example under reparameterization 1, the estimate is 
 
 

 ( )( )
( )( )

1 1 *
00 |0* * * * *

1 1 *
00 |0

( ) ( ) 1 /
( , ) : 0 , 1, ,

( ) ( ) /
A

B

F F x
C x y x y y

F F x

θ ρ Γ

θ ρ Γ η

− −

− −

 − − = ≤ ≤ = 
− +  

 (3.1) 

  
where F(·) is the logistic function and 00 |0 |0, , ,A Bρ Γ Γ η are the average posterior medians of 
the parameters ρ00, ΓA|0, ΓB|0, η from all m = 1000 trials. The next measure of efficiency is 
the pointwise average relative minimum distance from the true MTD curve to the 
estimated MTD curve. For i = 1,…,m, let Ci be the estimated MTD curve and Ctrue be the 
true MTD curve. For every point (x,y) ϵ Ctrue, let 

Φ(·) is the cdf of the standard normal distribution, (2) the normal link F(u) = Φ(u/σ), and 
(3) the complementary log-log link F(u) = 1 – exp(−exp(u)). We present four scenarios 
for the true MTD curve, two for each model reparameterization. In all cases, the target 
probability of DLT is fixed at θ = 0.33 and the trial sample size is n = 40 patients. The 
first scenario corresponds to ρ00 = 0.05, ΓA|0 = ΓB|0 = 0.5, η = 20 and the corresponding 
true MTD curve is shown by the solid line in Figure 3(a). In the second scenario, ρ00 = 
0.05, ΓA|0 = 0.5, ΓB|0 = 0.8, η = 10 and the true MTD curve is displayed by a solid line in 
Figure 4(a). Uniform priors were used for ρ00, ΓA|0 , ΓB|0. In scenario 3, we took ρ00 = 10-7, 
ρ01 = ρ10 =3×10-6, η = 10. The corresponding true MTD curve is shown by a solid line at 
the top right corner of Figure 5(a). This is a case where each agent is very safe within its 
range of doses. In the last scenario, ρ00 = 0.01, ρ01 = 0.2, ρ10 =0.9, η = 100, see Figure 
6(a). This is a case where the MTD of agent A when agent B is at its minimum dose level 
is within the range of doses of drug A but the MTD of agent B when drug A is at its 
minimum dose level is above the maximum dose level of agent B. Vague priors for ρ00, 
ρ01, ρ10 were selected as described in Section 2.2. In all 4 scenarios, a vague prior for η 
was selected by taking E(η) = 30 and Var(η) = 900. Many other scenarios were studied 
but are not included here due to space limitation. Algorithm 1 was used for scenarios 1 
and 2 and algorithm 2 was used for scenarios 2 and 3. For each scenario, m = 1000 trials 
were simulated using the logistic link function for the working model and logistic, probit, 
normal with σ = 2, and complementary log-log link functions for the true model. The 
parameter values μ, β, γ, η of these models were selected in such a way that they all have 
the same true MTD curve. The extent of departure of the true model from the working 
model is illustrated in Figure 2(a-c) in the case ρ00 = 0.05, ΓA|0 = ΓB|0 = 0.8, and η = 5.  
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Figure 2. Contour plots from the logistic and probit (a), normal (b), and complementary log-log 
(c) dose-toxicity models. The probabilities of DLT corresponding to the logistic model are shown 
in bold italic. (d) shows the circles for calculating the percent of MTD recommendation for two 
scenarios when the tolerance p = 0.1. 
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where y΄ is such that (x, y΄) ϵ Ci. This is the minimum relative distance of the point (x,y) 
on the true MTD curve to the estimated MTD curve Ci. If the point (x,y) is below Ci, then 

( )
( , )

i
x yd  is positive. Otherwise, it is negative. Let 

 

 1 ( )
( , ) ( , )

1

.
m

i
x y x y

i
d m d−

=

= ∑  (3.3) 

 
This is the pointwise average relative minimum distance from the true MTD curve to the 
estimated MTD curve and can be interpreted as the pointwise average bias in estimating 
the MTD. Let Δ(x,y) be the Euclidian distance between the minimum dose combination 
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Figure 3. Summary statistics from m =1000 simulated trials under scenario 1. (a) shows the true 
and estimated MTD curve. The grey diamonds represent the last dose combination from each 
simulated trial along with a 90% confidence region, (b) pointwise average bias, (c) pointwise 
percent MTD recommendation for tolerances p = 0.1, 0.2.  
 
(0,0) and the point (x,y) on the true MTD curve and 0 < p < 1. The last measure of 
efficiency we consider is 
 

 ( )1 ( )
( , ) ( , )

1

| | ( , ) .
m

i
x y x y

i
p m I d p x y−

=

= ≤ ∆∑  (3.4) 

This is the pointwise percent of trials for which the minimum distance of the point (x,y) 
on the true MTD curve to the estimated MTD curve Ci is no more than  (100×p)% of the 
true MTD. This statistic is equivalent to drawing a circle with center (x,y) on the true 
MTD curve and radius pΔ(x,y) and calculating the percent of trials with MTD curve 
estimate Ci falling inside the circle. This will give us the percent of trials with MTD  

True model Average  
% DLT 

% w. DLT 
rate > θ + 0.05 

% w. DLT 
rate > θ + 0.10 

Logistic 28 0.5 0.0 
Probit 28 0.3 0.0 
Normal 28 0.3 0.0 
LogLog 28 0.2 0.0 
Table 1. Average percent of DLTs and percent of trials  
with DLT rate exceeding  θ + δ  under scenario 1 for  
various true models. Working model is logistic. 
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Figure 4. Summary statistics from m =1000 simulated trials under scenario 2. (a) shows the true 
and estimated MTD curve. The grey diamonds represent the last dose combination from each 
simulated trial along with a 90% confidence region, (b) pointwise average bias, (c) pointwise 
percent MTD recommendation for tolerances p = 0.1, 0.2. 
 
recommendation within (100×p)% of the true MTD for a given tolerance p. Figure 2(d) 
illustrates the variability of the radius of the tolerance circles for various locations of dose 
combinations on the true MTD curve under two different scenarios ρ00 = 0.05, η = 5, ΓA|0 
= ΓB|0 = 0.2, and ΓA|0 = ΓB|0 = 0.8. Here, p = 0.1. We can see that the farther the true MTD 
is from the minimum dose combination, the larger is the tolerance for estimating the 
percent of MTD recommendation. The MTD curve common to all models is represented 
by a solid line. The probabilities of DLT of the toxicity profiles of the logistic model are 
shown in bold italic below the diagonal and the corresponding probabilities for the other 
models are included above the diagonal. Figure 2(a) is a situation where DLT responses 
are generated from a model with tighter toxicity profiles relative to the working model, 
Figure 2(b) is a case where the working model is tighter relative to the true model, and 

True model Average  
% DLT 

% w. DLT 
rate > θ + 0.05 

% w. DLT 
rate > θ + 0.10 

Logistic 23 0.0 0.0 
Probit 24 0.0 0.0 
Normal 23 0.0 0.0 
LogLog 23 0.1 0.0 
Table 2.  Average percent of DLTs and percent of trials 
with DLT rate exceeding  θ + δ  under scenario 2 for 
various true models. Working model is logistic. 

(a) 

(b) (c) 
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Figure 2(c) is a situation where the working model is wider relative to the true model 
above the MTD curve but is tighter below the MTD curve. 
 

 
 

 
 
 
Figure 5. Summary statistics from m =1000 simulated trials under scenario 3. (a) shows the true 
and estimated MTD curve. The grey diamonds represent the last dose combination from each 
simulated trial along with a 90% confidence region, (b) pointwise average bias, (c) pointwise 
percent MTD recommendation for tolerances p = 0.1, 0.2. 
 
3.3 Results 
 
3.3.1 Trial Safety 
Tables 1-4 shows that the average percent of DLTs varies between 16% and 34% across 
the four scenarios. In general, the average DLT rate tends to be lower when the true MTD 
curve is farther away from the minimum dose combination. These tables also show that 
the percent of trials with an excessive number of DLTs as defined by a DLT rate 
exceeding θ + 0.1 is very small. Further simulations (results not shown) under scenarios 
where the true MTD curve is close to the minimum dose combination available in the 
trial show that his rate does not exceed 5%. Based on these findings, we conclude that the 
methodology is safe in general.  

True model Average  
% DLT 

% w. DLT 
rate > θ + 0.05 

% w. DLT 
rate > θ + 0.10 

Logistic 16 0.0 0.0 
Probit 16 0.0 0.0 
Normal 16 0.0 0.0 
LogLog 16 0.0 0.0 
Table 3.  Average percent of DLTs and percent of trials 
with DLT rate exceeding  θ + δ  under scenario 3 for 
various true models. Working model is logistic. 

(a) 

(b) (c) 
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3.3.1 Trial Efficiency 
Figures 3-6(a) show the plots of the true and estimated MTD curves. The estimated MTD 
curve shown by a dashed line was obtained using (3.1) or the corresponding equation 
under model reparameterization 2 and DLT responses were simulated using the true 
logistic model. In all cases, the estimated MTD curve is very close to the true MTD 
except at the edges of the curve. This is probably due to the fact that we are using 
uniform priors for ΓA|0 and ΓB|0 with prior means equal to 0.5 for scenarios 1 and 2 and 
uniform priors for ρ01 and ρ10 for scenarios 3 and 4. For each scenario, scatter plot of the 
last dose combinations from each of the m = 1000 simulated trials along with 90% 
confidence region is also included. These statistics are useful for clinicians who plan to 
use the last dose combination in a phase I trial as the recommended phase II dose 
combinations as in [10].  
 
 

 
 

 
 
 
Figure 6. Summary statistics from m =1000 simulated trials under scenario 1. (a) shows the true 
and estimated MTD curve. The grey diamonds represent the last dose combination from each 

True model Average  
% DLT 

% w. DLT 
rate > θ + 0.05 

% w. DLT 
rate > θ + 0.10 

Logistic 34 8.1 0.0 
Probit 33 1.9 0.0 
Normal 34 11.8 0.4 
LogLog 33 3.0 0.1 
Table 4.  Average percent of DLTs and percent of trials 
with DLT rate exceeding  θ + δ  under scenario 4 for 
various true models. Working model is logistic. 

(a) 

(b) (c) 
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simulated trial along with a 90% confidence region, (b) pointwise average bias, (c) pointwise 
percent MTD recommendation for tolerances p = 0.1, 0.2. 
Figures 3-6(b) display the pointwise average relative minimum distance from the true 
MTD curve to the estimated MTD curve as defined by (3.3). This is a measure of 
pointwise average bias of the estimate of the MTD. In scenario 1 (Figure 3(b)), the 
maximum average bias is about 0.025 when DLT responses are generated from the true 
logistic model. This corresponds to 5% of the distance from the minimum dose 
combination (0, 0) to the true MTD dose combination (0, 0.5). Scenarios 2 and 3 also 
show that the maximum average bias is no more than 10% of the distance from (0,0) to 
the corresponding true MTD dose combination. Scenario 4 (Figure 6(b)) show a much 
larger bias when dose level of Drug A is 0. This is due to the fact that the MTD of agent B 
is greater than the maximum dose level of agent B available in the trial. However, the 
pointwise average bias is negligible elsewhere. We conclude that the pointwise average 
bias is fairly small along the whole MTD curve except at the edges of the curve. 
 
Figures 3-6(c) show the pointwise percent of trials for which the minimum distance from 
the true MTD curve to the estimated MTD curve is no more than  (100×p)% of the true 
MTD for p = 0.1 and p = 0.2. This can be interpreted as the percent of MTD 
recommendation for a given tolerance p. With a tolerance of p = 0.1, the percent of trials 
with correct MTD recommendation varies between 40% and 95% under scenarios 1, 2, 
and 3. Under scenario 4, the percent recommendation is low (Figure 6(c)) at the 
minimum dose level of agent A, consistent with the bias found at this dose level. The 
percent increases as we move away from this dose level. Based on these results and 
others from scenarios not shown here, we conclude that the design is practically efficient 
in general in recommending the MTD curve estimate. 
 
3.3.1 Model Robustness 
 
The average DLT rates and percent of trials with DLT rate > θ + δ shown in Tables 1-4 
when the true model is misspecified are very close. Furthermore, differences in the 
pointwise average bias between the different models and the logistic model shown in 
Figures 3-6(b) are negligible relative to the dose range of both agents. Similar conclusion 
holds for the pointwise percent of MTD recommendation shown in Figures 3-6(c). The 
largest difference of about 10% is observed under scenario 2 (Figure 4(c)) when the true 
model is the complementary log-log and the dose of agent A is between 0.3 and 0.5 and 
the tolerance is p = 0.1. We conclude that our method is fairly robust to model 
misspecifications under the dose-toxicity family of models of the form Prob(DLT | x,y) = 
F(μ + β x + γ y + η x y) for some selected link functions F(∙). 
 

4. Discussion 
 
We described Bayesian adaptive designs for cancer phase I clinical trials using two drugs 
with continuous dose levels. The goal is to estimate the MTD curve in the two-
dimensional Cartesian plane. We reviewed the reparameterization proposed in [15] which 
assumes that the MTDs ΓA|0 and ΓB|0 are within the range of doses available in the trial 
and introduces a new reparameterization that relaxes these conditions. In each case, 
vague priors were used for quantifying the toxicity profile of each agent a priori. We also 
introduced another algorithm for dose escalation where cohorts of two patients are 
enrolled simultaneously and the patients receive different dose combinations. We studied 
design operating characteristics of the method under a large number of practical scenarios 
(only four of them are included due to space limitation) and under several model 
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misspecifications. In all simulations, we used a sample size of n = 40 patients. We found 
that in general, the methodology is safe in terms of the probability that a prospective trial 
will results in an excessively high number of DLTs. Under scenarios where the true MTD 
curve is near the minimum dose combination or below it using reparameterization 2, 
there is a high probability of stopping the trial. We used several measures to assess the 
efficiency of the estimate of the MTD and in the majority of scenarios, the percent of 
MTD recommendation is good and increases as the true MTD curve drifts away from the 
minimum dose combination. We recommend that clinicians select dose combinations 
around the middle of the MTD curve for efficacy evaluation since the percent of 
recommendation is high and dose combinations where the level of one of the agents is 
very low may not be of interest for efficacy studies. We also showed that the method is 
practically robust with respect to trial safety and efficiency under a reasonable class of 
model misspecification. We also plan to study the performance of the proposed design 
under a class of models which allow synergistic and antagonistic relation between the 
drugs as described in [20]. Finally, we plan to assess the performance of the method 
when the doses of the two agents are discretized using the method discussed in 
[16, 18] and compare the performance of the resulting design with the methods 
described in [8, 10, 11]. 
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