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Abstract 

 
A sieve bootstrap-based method for obtaining prediction intervals for autoregressive 

processes with innovations following a GRACH volatility structure is proposed. Re-

sampling is done on residuals obtained after a two-stage process which fits an AR model 

first and GARCH parameters estimated from the residuals of the AR model. Both the 

orders of the AR and GARCH processes are considered unknown and are estimated using 

the AIC and AICC criterion, respectively. This is in contrast to an existing method for 

ARMA-GARCH processes that assumes both the ARMA and GARCH orders. The 

proposed method produces intervals that are conditional on the observed data and the 

interval width is allowed to vary with the conditional variance predicted for the forecast 

period. A Monte-Carlo simulation study shows that the proposed method produces 

intervals with coverage probabilities reasonably close to the nominal level. 

 

Key Words: Conditional Heteroskedasticity, Forecast Intervals, Residual Bootstrap, 

ARMA-GARCH Models, Volatility

 

1. Introduction 

 
Empirical time series that exhibit conditional heteroskedasticity is quite common in areas 

such as finance. Such behaviour is commonly modelled using the well-known ARCH and 

GARCH models introduced by Engle (1982) and Bollerslev (1986), respectively. GARCH 

processes in particular have drawn the attention of many researchers and diverse 

modified versions of these processes have been introduced. Exponential GARCH 

(Nelson, 1991), Non-linear GARCH (Engle and Ng, 1993), and Integrated GARCH 

(Baillie et al, 1996) are some of the widely available modified versions of the regular 

GARCH process. 

 

For practitioners, one important aspect of modelling empirical time series is obtaining 

point or interval forecasts. Studies which address the problem of point forecasting are 

prevalent in time series literature (for example Baillie and Bollerslev (1992), Anderson et 

al. (2001), Engle and Patton (2001), and Poon (2005)). However, there is relatively less 

work in the area of interval forecasting. This is especially true in the case of processes 

with conditionally varying volatility. Pioneers in developing prediction intervals for 

heteroskedastic processes are Pascual, Romob, and Ruiz (2005). They proposed a 

bootstrap procedure to compute prediction intervals for both returns and volatility of 
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)1,1(GARCH  processes. More recently, Chen et al. (2011) developed a computationally 

faster method to generate prediction intervals for pure GARCH processes. While the 

above processes only looked at pure GARCH processes, Goncalves and Kilian (2007) 

established the asymptotic validity of the bootstrap method to )(AR  processes with 

conditional volatility when the re-sampling is done without modeling the 

heteroskedasticity.  

 

The objective of this study is to propose prediction intervals for autoregressive processes 

with GARCH errors, with the property that the interval width changes with the 

conditional heteroskedasticity found at the time of prediction. Specifically, we would like 

to obtain prediction intervals that are wider when the conditional heteroskedasticity is 

high and narrower when the conditional heteroskedasticity is low. Some work along these 

lines has already been done. For example Shimizu (2013) introduced bootstrap-based 

prediction intervals for ARMA-GARCH processes and the reader is referred to Shimizu 

(2010) for the theoretical justification for this method.  

 

Our proposed procedure differs from Shimizu’s method in two important ways. First, he 

assumes the orders qp, of the ),( qpARMA  process whereas our method uses the AIC 

criterion to estimate the unknown order of the AR portion of an AR-GARCH model. 

Second, we also estimate the orders sr, of the ),( srGARCH  formulation using the 

AICC criterion. In contrast, Shimizu assumes that sr and  are known. Thus, the 

proposed procedure is more general as well as practical compared to Shimizu’s method. 

Moreover, Shimizu reports simulation results for a limited number of AR-ARCH 

processes while the results presented herein cover a larger set of AR-GARCH models. 

 

The rest of this paper is organized as follows. The sieve bootstrap procedure is introduced 

in Section 2. In Section 3 results of a Mote-Carlo simulation are presented. An 

application of the proposed method is presented in Section 4 and we conclude this paper 

in Section 5 with a discussion of the results. 

 

 

1.1 The Sieve Bootstrap (SB) Procedure  

 

This procedure was first introduced by Buhlmann (1997). It re-samples the residuals 

obtained by fitting an  pAR model, and assumes that the order, ,p of the process is 

obtained using some criterion such as AIC from among models with max,...,2,1 pp 

where maxp  as .n Alonso adopted this technique in a sequence of 

publications appearing in 2002, 2003, and 2004 to obtain prediction intervals for ARMA 

processes. Mukhapadhyay et al. (2010) used a modified version of this procedure to 

generate bootstrap-based prediction intervals for invertible time series. Furthermore, 

Rupasinghe and Samaranayake (2012) extended the application of SB prediction intervals 

to FARIMA processes. The primary advantage of the SB method is that it does not require 

knowledge of the orders associated with the underlying process because it always fits an 

 pAR  model with p estimated using some criterion. 
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1.2 Model  

 
The autoregressive model with GARCH innovations we consider in this study is as 

follows:  

                             ,tt uxB   

 

                       )1(and...1where 1
p

p zzz    

 

                                  
,

,,

1 1

22
0

2     



r

i

s

j jtjitit

ttt

buaa

tu




 

 

where  n

tt 1
  is a sequence of independent, identically distributed  dii .. , random 

variables with zero mean, unit variance, with  3 0,tE    and  4

tE k    . 

Additionally we assume that ji baa and,,0 are unknown parameters satisfying 

and,0,00  iaa ,0jb for ri ,...,2,1 and 1,2, ... , .j s Moreover, assume 

that the weakly stationary property of  srGARCH , ,  namely   


m

i ii ba
1

1 , 

presented by Tsay (2002), is satisfied and that   0z  implies .1z  

 

2. The Proposed Procedure 

 

Step 1. Following Alonso (2003), select a maximum order     221

max )log(



r

nncp  

where ,2r  for some .0c Note that this is a large sample order and c  must be 

chosen sufficiently large  20to15~  for the method to work. We used 27,20max p

for 000,1,300n respectively. Then, find the optimal order, ,p̂  using the AIC criterion 

among the values ....,,2,1 maxpp    

 

Step 2. Using Yule-Walker or Least-Squares method, estimate the coefficients p̂1
ˆ,...,ˆ 

of the )ˆ( pAR   process. The Yule-Walker method was employed in this study following 

the example of Alonso et al. (2002, 2003, and 2004) and Rupasinghe and Samaranayake 

(2012). 

 

Step 3. Compute the  pn ˆ  residuals using ),(ˆ~ ˆ

1
XX jt

p

j jt      

where ,1ˆ
0    npt ,...,ˆ , and X is the mean of the process  n

ttX
1
. 

 

Step 4. Center the residuals if using the Yule-Walker method (Thombs and Schucany, 

1990). Denote the centered residuals by  ,,...,ˆ;ˆ nptt  so ,~~ˆ
ttt    

   




n

pt tt pn
ˆ

1 ~ˆ~where  . 
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Step 5. Using the centered residuals and the AICC criterion, estimate the orders 

sr ˆandˆ of the  srGARCH ,  model. 

 

Step 6. Determine the Maximum Likelihood Estimates of the GARCH coefficients 

sr ˆ1ˆ10
ˆ,...,ˆand,ˆ,...,ˆ,ˆ   using the residual process  .ˆ

t  

 

Step 7. Generate the error process  tv  by first creating a conditional variance process

 2ˆ
t , using the estimated GARCH coefficients, sr ˆ1ˆ10

ˆ,...,ˆand,ˆ,...,ˆ,ˆ  , and the 

relationship ;ˆ/ˆ
tttv  for  ˆ , ... , ,t m n where  ˆ ˆ ˆmax , .m r s  

 

 

Step 8. Center the s'tv  to obtain 

                         ˆ ˆ; ,..., ,t t tv v v t m n    where  
1

ˆ
ˆ .

n

t tt m
v n m v




  

 
 

Step 9. Denote the empirical distribution of the centered error process  
ˆ

ˆ
n

t t m
v


by      

                           , ˆˆ
ˆ 1

ˆ ˆ 1 .
t

n

v n v
t m

F





 

 
 

 

Step 10. Obtain a bootstrap GARCH error process   150

1

* 



n

tt  by first creating a bootstrap 

conditional variance process  2*ˆ
t  using the estimated GARCH coefficients in Step 6 

and then using .150:1;ˆˆ 2***  ntv ttt 
 
Here,   150

1

*ˆ




n

ttv is obtained from  
ˆ

ˆ
n

t t m
v


by 

sampling with replacement. 
 

Step 11. Estimate the GARCH parameters 
*

ˆ

*

1

*

ˆ

*

1

*

0
ˆ,...,ˆand,ˆ,...,ˆ,ˆ

sr 
 
of the process 

 *

t  using Maximum Likelihood Estimation. 

 

Step 12. Using the estimates 
*

ˆ

*

1

*

ˆ

*

1

*

0
ˆ,...,ˆand,ˆ,...,ˆ,ˆ

sr   obtained in Step 11 and 

employing a method similar to that in Step 10, create a bootstrap GARCH error process 

and denote it by  **

t .  

 

Step 13. Re-create an autoregressive (AR) process with GARCH errors,  **

t , created in 

Step 12 and using the relationship          

                          ,ˆ **ˆ

1

**
t

p

j jtjt XXXX       where XX t 
*

for .ˆ,...,2,1 pt    

Note that we generate 150n  **

t  and 
*

tX  values and discard the first 150 to minimize 

the effect of the initial conditions. 
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Step 14. Fit an  pAR ˆ  model to  n

ttX
1

*


using Yule-Walker method and denote the 

estimated AR coefficients by 
*

ˆ

*

1
ˆ,...,ˆ

p . 

 

Step 15. Using the GARCH coefficients 
*

ˆ

*

1

*

ˆ

*

1

*

0
ˆ,...,ˆand,ˆ,...,ˆ,ˆ

sr   estimated in 

Step 11 create k-step ahead bootstrap GARCH error process  **

kn , and then using the 

estimated coefficients ,ˆ,...,ˆ *
ˆ

*
1 p  generate

  
k-step ahead bootstrap observations by 

recursion  as follows: 

       **ˆ

1

*** ˆ
kn

p

j jknjkn XXXX     
  
, where 0k  and ntXX tt  ;*

.  

Note that the bootstrap distribution of knX   should be conditioned on the originally 

observed data rather than on the bootstrap data. Thus, set ,for* ntXX tt  as 

suggested by Cao et al. (1997) and Alonso et al. (2002, 2004). 

 

Step 16. Obtain the bootstap distribution of ,knX  denoted by  ,.*

ˆ *
knX

F


  by repeating 

Steps 10 to 15 B times, where B = 1,000. 

 

Step 17. A  %1100   prediction interval for knX   is then given by:          

                        ,2/1,2/ **  QQ  where    kFkQ
knX

1*

ˆ

*
*

ˆ 



   is the 
thk   percentile of 

the estimated bootstrap distribution of  .tX   

 

3. Monte-Carlo Simulation 

 
A Monte-Carlo simulation study was carried out with two different error distributions       

(  1,0N  and t with 5 degrees of freedom) for sample sizes 300 and 1,000. Following 

models were used in creating the heteroskedastic error structure for GARCH errors: 

                 

           Model I: 

                  
2

1

2 4.01.0  tt  , 

                Model II:              (2) 

                   
2

1

2

1

2 85.01.005.0   ttt  ,
 

                Model III: 

                   
2

1

2

1

2

1

2

1

2 1.025.015.03.005.0   ttttt  .
 

 

Note that the first two of the above models were employed by Chen et al. (2011) in their 

simulation study. 

 

We considered )1(AR  and )2(AR  processes in the simulation study with error structures 

given by Models I, II and III in (2).  
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The AR  models considered were: 

 

      ,11 ttt xx      

                 
,2211 tttt xxx                  

                                                                                                                      
              

with     .6.0,4.0,2.0,0and11.1,9.0,6.0,4.0,0 21  
 

 

For each combination of model, sample size, nominal coverage, and the error 

distribution, N = 1,000 independent time series were generated, and for each series Steps 

1 through 16 were carried out. 

 

When computing the coverage probabilities of these N = 1,000 simulations, R = 1,000 

future observations  knX   per each simulation were generated. 

The coverage for the 
thi  simulation run is given by: 

                      

 
R

r

r

knA QQAixIRiC
1

**1 2/1,2/where,  . 

The bootstrap length and the theoretical length for the 
thi   simulation run are given by: 

                 ,2/2/1and2/2/1 **  r

kn

r

knTB xxiLQQiL  
 

respectively. 

Also, the following equations were used for appropriate calculations: 

             Mean Coverage:    


N

i
iCNC

1

1
,  

             Standard Error of Mean Coverage:        




N

iC
CiCNNSE

1

21
1 , 

             Mean Bootstrap Length:   


N

BB iLNL
11

1
 , 

             Standard Error of Mean Length:        




N

i BBL
LiLNNSE

B 1

21
1 , 

                   Mean Theoretical Length:   


N

TT iLNL
11

1
.  

 

 

The simulation results show that in most cases the proposed method provides nominal or 

near nominal coverage, with mean interval length close to the theoretical length. The 

coverage probabilities are usually slightly below nominal for one-step-ahead prediction 

for sample size 300 but the coverage improves for sample size 1,000. In fact, the 

coverage is approximately 95% when rounded to two decimal places for lead lengths 

greater than 1 or for sample size 1,000. When one of the roots of the autoregressive 

polynomial is close to unity, however, the coverage falls well below nominal for all lead 

lengths when the sample size is 300 (see Table 5). The coverage does improve when the 

sample size increases to 1,000. 
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Following tables present a subset of the simulations results we obtained in this study: 

 

Table 1: Coverage of 95% intervals for   tt uxB  4.01 with Model I and normal 

errors.  AR Root : 2.5 

    

Lead 

Length 

 

Sample 

Size 

 

 

Theoretical 

Length 

 

Mean  Coverage 

(SE) 

Mean Length 

(SE) 

1 300 1.5492 
0.9434 

(0.0013) 

1.5466 

(0.0250) 

 1000 1.5343 
0.9469 

(0.0005) 

1.5302 

(0.0144) 

10 300 1.6904 
0.9482 

(0.0034) 

1.7689 

(0.0094) 

 1000 
1.6941 

 

0.9486 

(0.0019) 

1.7630 

(0.0036) 

20 300 1.6910 
0.9480 

(0.0037) 

1.7698 

(0.0096) 

 1000 1.6799 
0.9509 

(0.0018) 

1.7609 

(0.0036) 

 
 

Table 2: Coverage of 95% intervals for   tt uxB  9.01  with Model I and normal 

errors. AR Root : 1.11 

 

Lead 

Length 

 

Sample 

Size 

 

 

Theoretical 

Length 

 

Mean  Coverage 

(SE) 

Mean Length 

(SE) 

1 300 1.5559 
0.9416 

(0.0014) 

1.5504 

(0.0251) 

 1000 1.5449 
0.9464 

(0.0005) 

1.5440 

(0.0189) 

10 300 3.3802 
0.9371 

(0.0027) 

3.4032 

(0.0251) 

 1000 
3.3746 

 

0.9466 

(0.0012) 

3.4455 

(0.0091) 

20 300 3.5976 
0.9346 

(0.0037) 

3.6200 

(0.0303) 

 1000 3.5882 
0.9462 

(0.0012) 

3.6514 

(0.0103) 
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Table 3: Coverage of 95% intervals for   tt uxB  2.01 with Model II and normal 

errors. AR Root : 5 

 

Lead 

Length 

 

Sample 

Size 

 

 

Theoretical 

Length 

 

Mean  Coverage 

(SE) 

Mean Length 

(SE) 

1 300 3.8189 
0.9418 

(0.0015) 

3.7924 

(0.0451) 

 1,000 3.8164 
0.9459 

(0.0005) 

3.7980 

(0.0270) 

10 300 3.8938 
0.9458 

(0.0026) 

3.9883 

(0.0355) 

 1,000 3.8848 
0.9487 

(0.0013) 

3.9821 

(0.0196) 

20 300 3.8867 
0.9457 

(0.0030) 

4.0302 

(0.0339) 

 1,000 3.9149 
0.9471 

(0.0016) 

4.0249 

(0.0150) 

 

 

 

Table 4: Coverage of 95% intervals for   tt uxBB  22.04.01 with Model III and 

normal errors. AR  Roots: -3.449, 1.449 

 

Lead 

Length 

 

Sample 

Size 

 

 

Theoretical 

Length 

 

Mean  Coverage 

(SE) 

Mean Length 

(SE) 

1 300 1.8017 
0.9407 

(0.0020) 

1.7966 

(0.0359) 

 1,000 1.7970 
0.9467 

(0.0006) 

1.8023 

(0.0246) 

10 300 2.1442 
0.9438 

(0.0047) 

2.3145 

(0.0240) 

 1,000 2.1337 
0.9494 

(0.0023) 

2.3291 

(0.139) 

20 300 2.1332 
0.9455 

(0.0049) 

2.3553 

(0.0229) 

 1,000 2.1619 
0.9484 

(0.0025) 

2.3387 

(0.0025) 
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Table 5: Coverage of 95% intervals for   tt uxBB  218.011.11 with Model II and 

normal errors. AR Roots: 1.096, 5.071 

 

Lead 

Length 

 

Sample 

Size 

 

 

Theoretical 

Length 

 

Mean  Coverage 

(SE) 

Mean Length 

(SE) 

1 300 3.8297 
0.9396 

(0.0018) 

3.8134 

(0.0289) 

 1,000 3.8393 
0.9459 

(0.0005) 

3.8355 

(0.0289) 

10 300 10.4372 
0.9258 

(0.0029) 

10.0980 

(0.1105) 

 1,000 10.1446 
0.9444 

(0.0011) 

10.4961 

(0.0632) 

20 300 11.3133 
0.9248 

(0.0034) 

11.0979 

(0.1167) 

 1,000 11.3447 
0.9431 

(0.0014) 

11.5197 

(0.0548) 

 

 

Table 6: Coverage of 95% intervals for   tt uxB  4.01 with Model I and t distributed 

errors. AR  Root : 2.5 

 

Lead 

Length 

 

Sample 

Size 

 

 

Theoretical 

Length 

 

Mean  Coverage 

(SE) 

Mean Length 

(SE) 

1 300 1.5584 
0.9437 

(0.0014) 

1.5593 

(0.0312) 

 1,000 1.5195 
0.9476 

(0.0006) 

1.5305 

(0.0152) 

10 300 1.6760 
0.9491 

(0.0034) 

1.7856 

(0.0154) 

 1,000 1.6761 
0.9507 

(0.0017) 

1.7658 

(0.0049) 

20 300 1.6653 
0.9497 

(0.0031) 

1.7880 

(0.0153) 

 1,000 1.6696 
0.9509 

(0.0017) 

1.7605 

(0.0050) 

 

 

JSM 2014 - Business and Economic Statistics Section

3292



Table 7: Coverage of 95% intervals for   tt uxB  2.01 with Model II and t distributed 

errors. AR  Root : 5 

 

Lead 

Length 

 

Sample 

Size 

 

 

Theoretical 

Length 

 

Mean  Coverage 

(SE) 

Mean Length 

(SE) 

1 300 3.8589 
0.9412 

(0.0019) 

3.8684 

(0.0844) 

 1,000 3.7716 
0.9468 

(0.0006) 

3.7928 

(0.0375) 

10 300 3.9667 
0.9431 

(0.0032) 

4.1218 

(0.0702) 

 1,000 3.8838 
0.09476 

(0.0016) 

4.0075 

(0.0264) 

20 300 3.8988 
0.9445 

(0.0037) 

4.1695 

(0.0648) 

 1,000 3.9115 
0.9463 

(0.0017) 

4.0578 

(0.0220) 

 

 

Table 8: Coverage of 95% intervals for   tt uxBB  22.04.01 with Model III and t 

distributed errors. AR  Roots : -3.449, 1.449 

 

Lead 

Length 

 

Sample 

Size 

 

 

Theoretical 

Length 

(SE) 

Mean  Coverage 

(SE) 

Mean Length 

(SE) 

1 300 1.8015 
0.9414 

(0.0020) 

1.8029 

(0.0551) 

 1,000 1.7095 
0.9483 

(0.0006) 

1.7359 

(0.0221) 

10 300 2.1216 
0.9381 

(0.0051) 

2.2745 

(0.0417) 

 1,000 2.0811 
0.9467 

(0.0025) 

2.2433 

(0.0116) 

20 300 2.0705 
0.9450 

(0.0052) 

2.2956 

(0.0351) 

 1,000 2.1126 
0.9472 

(0.0027) 

2.2731 

(0.0098) 
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When the underlining error obeys a t-distribution with five degrees of freedom, the 

coverage probabilities do not show much difference from what is obtained under standard 

normal errors (for example see Tables 3 and 7). This shows some evidence that the 

proposed method works well under heavy-tail error distributions. This is validated further 

by simulation results not reported in this paper. 

 

 

4. Application to S&P 500 Data 

 
The proposed method was applied to a real data set obtained from S&P 500 index. S&P 

500 is a popular stock market index among econometricians and statisticians as it 

provides a broad snapshot of the overall U.S. equity market. In fact, this index tracks over 

70% of all U.S. equity market. For our study we used S&P index data from 2010 to 2014. 

Note that the log returns of the closing prices were used for generating prediction 

intervals. 

 

The following figure shows one-step-ahead prediction intervals we generated for this 

S&P data using the proposed method: 

 

 

 
           Figure 1: One-step-ahead prediction intervals for S&P 500 data 

Clearly, the intervals change width based on existing volatility. For example the method 

yields wider intervals at lag 30 when predicted volatility is large but provides relatively 

narrower intervals at lags 10 and 60 when the volatility is low. 
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5. Conclusion 

 

A bootstrap-based method for obtaining prediction intervals for AR-GARCH models was 

presented and its finite sample properties were investigated using a Monte-Carlo 

simulation study. In contrast to an existing method, the proposed method does not assume 

the knowledge of the orders of the AR or the GARCH portions of the model. Simulation 

results show that the model performs well under most situations providing coverage 

probabilities close to the nominal level. Further extensions to this procedure are possible, 

such as using finite Autoregressive approximations to obtain prediction intervals for 

ARMA-GARCH processes using the sieve-bootstrap. 
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