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Abstract 
Consider a statistical model with a single outcome that is observed repeatedly under 

different circumstances. In a study employing an oral glucose tolerance test, for example, 

serum glucose and insulin levels may be measured just prior to ingesting a dose of 

glucose and then repeatedly every 30 minutes for a total of 120 minutes. The aim is to 

determine the pattern of change in glucose levels as an indication of how efficiently the 

individual is disposing the glucose from the blood. If an intervention is given and the 

process is repeated under this new condition, the data may be analyzed using a doubly 

repeated measures model. The use of structured patterns in the underlying covariance 

matrix for correlated residuals in statistical models involving repeated measures is well 

documented. In models involving multiple repeated measures, however, use of different 

covariance patterns for different conditions has not been fully discussed. The purpose of 

this paper is to fill that need by presenting an illustrative overview in terms of practical 

examples.  
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1. Introduction 

Repeated measures refer to response outcomes measured on the same experimental unit 

over time or under multiple conditions. The repeated measure factors can be randomized, 

or fixed, such as time or space. Repeated measures designs often enable more efficient 

estimates of residual variability due to a reduction in the number of parameters in the 

error variance, and thus more powerful test statistics. Such designs are widely 

encountered in behavioral science, agriculture, and biology. Despite advantages, the 

analyses of repeated measures are often complicated because there are a large number of 

possible correlation structures among repeated observations made on each experimental 

unit. 

 

Doubly repeated measures are commonly used in research experiments.  Comparing to 

single repeated measures, doubly repeated measures have two within-subject effects and 

thus the analysis may become more complex. Mixed models provide a flexible approach 

for analyzing such data by using a mixture of fixed and random effects and permitting a 

variety of covariance structures with the possibility of missing data and unequally spaced 

assessment times.  
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A single-blind randomized controlled trial was conducted to evaluate the effect of 

intervention on weight loss and insulin tolerance. Forty five participants were randomized 

into two groups, intervention (n=28) and control (n=17). Participants in intervention 

group had reduced food intake aiming to lose 10% initial body weight in the first 6 

months. They were required to maintain their weight after the initial weight loss till the 

study ends at 24 months. Glucose tolerance were measured by a 75g 2-hour Oral Glucose 

Tolerance Test (OGTT) at baseline, month 12, and month 24. All tests were conducted in 

the morning following an overnight fast. After obtaining a fasting blood sample (Time 0), 

participants drank the 75g glucose solution (within 10 minutes) and blood sample were 

collected every 30 minutes for a total of 120 minutes for measurement of glucose and 

insulin. In this study, there is one between-subject factor, the treatment, and two within-

subject factors: the time of clinical visit and the time within each visit (Time 0, +30, +60, 

+90, and +120). Changes from baseline on insulin were analyzed as the response 

variable. The log transformed insulin values were derived to have a normal distribution.  

Missing observations were considered to be missing completely at random.  

 

There have been many publications addressing how to choose the right covariance 

structure for the single repeated data (Moser and Macchiavelli 2002; Kincaid, 2005; 

Littell et al. 2006), but few on how to properly model the data from doubly repeated 

design (Moser, 2004; Han and Johnson, 2012).  In our previous work, we illustrated on 

how to select the best model with a doubly repeated design using PROC MIXED. This 

paper presents the application of both PROC MIXED and PROC GLIMMIX procedures 

to the analysis of a doubly repeated measure in a glucose tolerance study example. Both 

procedures allow users to choose from many different covariance structures. This paper 

studies proper use of the RANDOM and REPEATED statements with GROUP option in 

SAS to illustrate the analytical details on modeling doubly repeated measure. The use of 

different covariance patterns for different conditions is discussed with PROC GLIMMIX. 

 

2. Methods 

The typical linear mixed model notation is; 

Y = X + Z + , 

where  denotes fixed effects with design matrix X,  random effects with β∼N(0, G) , 

and  random error (var()=R) . So the variance of y, is V = ZGZ ′ + R. The random 

portion of the model is fit by specifying the terms that define the random design matrix Z 

and the structure of covariance matrices G, R, or both. In the MIXED procedure, 

RANDOM statement affects the G matrix and REPEATED specifies the R matrix.    
 

In the generalized linear mixed model, the notation is; 

Y =  + , where g()= X + Z and var()=R. Therefore, the variance of y, is V = 

var() + R ≈ BZGZ ′ B + R, B being a diagonal matrix of variance terms. In the 

GLIMMIX procedure, SAS code only contains a RANDOM statement which defines the 

Z matrix and the structure of G matrix.  One can specify the _RESIDUAL_ option to 

indicate the R-side random component that defined the R matrix. Multiple RANDOM 

statements are possible in GLIMMIX. 

 

2.1 Covariance Structures 
Repeated measures have measurements taken on the same experimental unit the data are 

correlated with each other. The variance covariance structure could be modeled in G or R 

or both.  SAS permits many covariance structures be modeled in PROC MIXED and 
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PROC GLIMMIX, such as CS, AR(1), UN, TOEP, et al. Three commonly used variance 

and covariance structure (CS, UN, and AR(1)) are shown below: 

 

Unstructured (UN): The most complex one is unstructured which allows every term to be 

different. The parameter to fit such structure is k(k+1)/2. 
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Compound Symmetry (CS): The variances in CS are homogeneous and the correlation 

between any two measurements is constant. 
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Autoregressive (1) AR(1): The variances in AR(1) are homogeneous, and correlations 

decline exponentially over time. Measurements made closer are more correlated than 

measurements made farther apart.  
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In repeated measures, there is a tendency for measurements made close together across 

time to be more highly correlated than measurements made farther apart. Covariance 

structures that can accommodate changes in correlation over time, such as first-order 

autoregressive (AR(1)), heterogeneous variance autoregressive (ARH(1)) and 

antedependence structures (TOEPH) (Little et al 2006), may be more appropriate than 

CS. 

 

2.1 Direct Product Covariance Structure 
If A is an m-by-n matrix and B is a p-by-q matrix, then the Kronecker product A ⊗ B is  

the mp-by-nq block matrix.   

      [
         
   

         
] 

The example below shows the Kronecker product of two matrixes, a 2 by 2 unstructured 

matrix and a 2 by 2 compound symmetrical matrix. The final product is a 4 by 4 block 

matrix.   
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Below is another example of the Kronecker product of two matrixes, a 3 by 3 

unstructured matrix and a 2 by 2 unstructured matrix. The final product is a 6 by 6 block 

matrix.   
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3. Illustrative Applications 

3.1 Analysis Example with the MIXED procedure 
First, PROC MIXED has the option to enable direct product covariance structures for two 

repeated factors. Let’s consider the SAS code: 
 

PROC MIXED Data = One;  

  Class Trt Visit Time Subject;  

  Model CFB = Time|Visit|Trt / DDFM = KenwardRoger;  

  Repeated Visit Time / Subject = Subject Type = UN@CS R Rcorr;  

Run;  

 

The analysis invoked using this code assumes an unstructured covariance matrix (UN) for 

the levels of visit and CS for the levels of time. The ‘DDFM = KenwardRoger’ specifies 

using the Kenward-Rogers method for estimating the denominator degrees of freedom for 

some of the relevant test statistics. This is an especially useful method when there are 

missing values for some of the data.  

 

The estimated UN covariance matrix for factor time is given in Table 1a, which contains 

15 variance covariance parameter estimates. The estimated correlation is 0.39 for CS 

structure on factor visit. The final Kronecker product is shown in Table 1b. The diagonals 

of Table 1b are the estimated variances of the errors associated with 5 time measurements 

for 2 follow up visits.  

 
Table 1a: Estimated UN covariance matrix of response on the repeated factor time  

 
Row Col1 Col2 Col3 Col4 Col5 

1 0.16 

    2 0.07 0.22 

   3 0.02 0.06 0.25 

  4 0.00 0.07 0.16 0.45 

 5 0.00 0.09 0.07 0.27 0.41 

 
Table 1b: Estimated covariance matrix for a model using the direct product code 

UN@CS to indicate an unstructured covariance configuration for Time and Compound 

Symmetry for Visit: Row/Column 1-5 correspond to the measurements made across the 5 
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times in follow up visit 1, Row/Column 6-10 correspond to the measurements made 

across the 5 times in follow up visit 2. 

 
PROC MIXED allows three direct product structures for two within-subject factors: 

UN*UN, UN*CS, and UN*AR(1). We can interchange the order of two factors in the 

REPEATED statement to select CS or AR(1) for repeated factor 1, or for repeated factor 

2.  Using three information criteria, Akaike’s information criterion (AIC), AIC corrected 

(AICc), and Bayesian information criterion (BIC), the “best” model can be selected 

among different covariance structures (Moser and Macchiavelli 2002).  

 

Alternatively, PROC MIXED permits specifying a single effect while using “GROUP” 

specification to model doubly repeated measures. The analysis resulting from the 

following SAS code assumes separate covariance structures for different visits, with the 

CS for various time measurements.  

 

PROC MIXED Data = One;  

  Class Trt Visit Time Subject;  

  Model CFB = Time|Visit|Trt / DDFM = KenwardRoger;  

  Repeated  Time / Subject = Subject*Visit Group = Visit Type = CS R Rcorr;  

Run;  

 

The estimated covariance matrices for two visits are given in Table 2. The number of 

estimated covariance parameters is reduced to 4 in this model. Employing another 

approach, PROC MIXED will estimate the covariance structure using information pooled 

over two visits if we leave out the ‘GROUP =’ option. The analysis further assumes 

identical covariance structures among the visits if the ‘GROUP = Visit’ option is omitted.  

The resulting number of estimated covariance parameters will be halved.  We can 

experiment with various covariance structure, like CS, AR(1), or SP(POW), in search of 

improvement in model fitness. 

 

Table 2: Covariance estimates for a model using separated CS structures by two follow 
up visits.  
 

Follow up 

Covariance 

Parameter Subject Group Estimate 

Visit 1 
Variance visit*subjectid Active .24 

CS visit*subjectid Active .08 

Visit 2 Variance visit*subjectid Control .16 

Row Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9 Col10 

1 0.16         

 2 0.07 0.22        

 3 0.02 0.06 0.25       

 4 0.00 0.07 0.16 0.45      

 5 0.00 0.09 0.07 0.27 0.41     

 6 0.06     0.16    

 7 0.03 0.09    0.07 0.22   

 8 0.01 0.02 0.10   0.02 0.06 0.25  

 9 0.00 0.03 0.06 0.17  0.00 0.07 0.16 0.45 

 10 0.00 0.03 0.03 0.11 0.16 0.00 0.09 0.07 0.27 0.41 
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CS visit*subjectid Control .06 

 

3.2 Analysis Example with the GLIMMIX procedure 
 Linear mixed models are a special case in the family of generalized linear mixed models, 

where the conditional distribution is normal and the link function is the identity function. 

The GLIMMIX procedure models all random components of the model through the 

RANDOM statement.  

 There is generally considerable overlap in the covariance structures available through the 

TYPE= option in the RANDOM statement in PROC GLIMMIX.  However, the 

Kronecker-type structures, as we described earlier in the MIXED procedure, are currently 

not supported in the GLIMMIX procedure.  

 Let’s consider the SAS code: 

  

PROC GLIMMIX Data = One;  

Class Trt Visit Time Subject;  

 Model CFB = Time|Visit|Trt / DDFM = KenwardRoger;  

 Random visit time/ subject=subjectid type=cs g v=1 ; 

Run;  

The analysis invoked using this code above has 2 G-side Covance parameters and 1 R-

side parameter estimated. The estimated V matrix for the first subject is listed as Table 3.  

 

Table 3: Estimated covariance matrix for a model with CS configuration for Time and 

Visit using GLIMMIX procedure: Row/Column 1-5 correspond to the measurements 

made across the 5 times in follow up visit 1, Row/Column 6-10 correspond to the 

measurements made across the 5 times in follow up visit 2. 

 

We can define R-side structure by modifying the above SAS code slightly. This is easily 

achieved by adding “RESIDUAL” option, as shown in SAS code below. Now one 

additional R-side parameter is required comparing to SAS code above.   

 

PROC GLIMMIX Data = One;  

Class Trt Visit Time Subject;  

 Model CFB = Time|Visit|Trt / DDFM = KenwardRoger;  

 Random visit / subject=subjectid type=CS RESIDUAL g v=1 ; 

 Random time / subject=subjectid type=CS g v=1 ; 

Row Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9 Col10 

1 0.28         

 2 0.08 0.28         

3 0.08 0.08 0.28        

4 0.08 0.08 0.08 0.28       

5 0.08 0.08 0.08 0.08 0.28      

6 0.08     0.28     

7 0.03 0.08    0.08 0.28    

8 0.03 0.03 0.08   0.08 0.08 0.28   

9 0.03 0.03 0.03 0.08  0.08 0.08 0.08 0.28  

10 0.03 0.03 0.03 0.03 0.08 0.08 0.08 0.08 0.08 0.28 
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Run;  

Furthermore, we tried to fit the different covariance structure for each treatment group in 

GLIMMIX procedure, for exploration purpose.  An indicate variable of group assignment 

(group 1 vs group 2) is required, as shown in the SAS code below.  Unless the data 

clearly shows the need to fit different covariance structures by each group, it’s not 

recommended to fit in such complex model.   

 

PROC GLIMMIX data = One; 

Class Trt Visit Time Subject;  

 Model CFB = Time|Visit|Trt / DDFM = KenwardRoger;  

 Random visit*g1 / subject=subjectid type=CS; 

 Random visit*g2 / subject=subjectid type=AR(1); 

 Random time / subject=subjectid type=CS g v=1 ; 

Run; 

 

3.3 Multiple Repeated Measures 
Occasional, some research designs study with more than 2 repeated factors.  In order to 

simplify the modelling process, one can start with the data reduction, such as calculating 

the area under the curve for the 3
rd

 repeated factor.  After that, PROC MIXED and PROC 

GLIMMIX can be used to analyses the data as we described earlier from designs with 

two repeated factors.  

 

3.4 Selecting the Covariance Structure 
There are a few considerations when selecting the covariance structure. Rules of thumb 

are by parsimony, by meaning, and by Information Criteria (Kincarid, 2005).  Often time, 

complex model with too many parameters doesn’t gain much efficiency and makes it less 

generalizable.  In practice, it’s not recommended to fit all possible structures and rely on 

the information criteria to pick the best one for you.  Instead, with the consideration of 

the study design, treatment structures, and the meaning of the covariance structures, a few 

candidate structures can be safely decided. Information criteria can be further compared 

but comparable results from different structures should be expected.  

 

4 Concluding Remarks 
 

Much analytical efficiency can be gained by taking advantage of underlying covariance 

matrix in repeated measures. This paper discussed some model fitting strategies and the 

unique covariance structures in the example of a glucose tolerance study. PROC MIXED 

enables doubly repeated measures analysis with direct product covariance structures. 

Both MIXED and GLIMMIX can specify a single effect while using group statement to 

handle doubly repeated measures.   

 

This paper has not dealt with the many diagnostic analyses that should be incorporated 

into the use of the repeated measures analyses.  Residuals could be examined for the bell 

shaped distribution. The effects of influential observations and outliers on results should 

be examined as well.  Further work will be done with simulation study in the future. 
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