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Abstract
Markov random fields on the d-dimensional integer lattice with finite state space are considered,

and the problem of estimation of the basic neighborhood from a single realization observed in a
finite region is addressed. The Optimal Likelihood Ratio (OLR) estimator is introduced. Its nearly
linear computation complexity is shown, and a bound on the probability of the estimation error is
proved that implies strong consistency.
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1. Introduction

This paper considers spatial processes on Zd with values from a finite set A. Modeling
interactions in such random fields by Gibbs fields was primarily motivated by statistical
physics [9], but it proved to be an efficient approach in various other areas [17, 18]. Gibbs
fields involve a potential function to determine the specification, the conditional distribution
at sites in a region given the values at all other sites. Parameter estimation of Gibbs fields
addresses the estimation of coefficients in the potential function from a sample, a single
realization of the random field observed in a finite region, assuming that the interaction
structure is known [15, 16].

If the range of the interactions is finite, then Gibbs fields are equivalent to Markov ran-
dom fields. Markov random fields are characterized by the property that the conditional
distribution at sites in a region given the values at all other sites is determined by a finite
neighborhood of the region. The equivalence, first proved in [1], implies that the structure
of the potential coincides with this Markov neighborhood. The interactions are of finite
range in many applications that simplifies the estimation of the parametrized Gibbs distri-
bution [7, 8, 13, 21].

It can be shown [14] that the specification, the conditional distribution at sites in re-
gions, is determined by the one-point specification, the conditional distribution at single
sites. The basic neighborhood is the region around a site that determines the conditional
distribution at the site. This neighborhood may vary with the values at the surrounding
sites, but if the random field is Markov, then for all configurations it is a subset of a finite
region called the basic neighborhood of the Markov random field. Therefore, instead of us-
ing the potential, the random field can be parametrized by the one-point specification, that
requires less information about the interaction structure and still includes finite number of
parameters for Markov random fields.

In many applications, such as in image analysis [12] and in pattern recognition [10],
there is usually no prior information on the interaction structure. Then the natural way
to construct a Gibbs model is to find the one-point specification; often the nearest neigh-
bor potential is used [11], that corresponds to the Markov random field model with basic
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neighborhood of radius one. Using a larger radius or basic neighborhood leads to a model
selection problem. Focusing on the one-point specification is also motivated by the fact
that the likelihood cannot be calculated explicitly so Besag’s pseudo-likelihood [2] is pop-
ular, which is formulated in terms of the one-point specification. The maximum pseudo-
likelihood (MPL) estimator of the one-point conditional probabilities is tractable and has a
form analog to the maximum likelihood estimator of the transition probabilities of Markov
chain models of time series [23, 3].

For order estimation of Markov chains, the minimum description length (MDL) princi-
ple [22] proved to be an efficient approach, in particular the information criteria provided by
the normalized maximum likelihood (NML) code length [24] and the Krichevsky-Trofimov
(KT) code length [20]. Both information criteria are asymptotically equivalent (for any
Markov order) to the Bayesian information criterion (BIC), which is a penalized maxi-
mum likelihood. Therefore, it is reasonable to consider a penalized MPL to estimate the
basic neighborhood of Markov random fields. Indeed, Smith and Miller formulated this
conjecture [23] and Ji and Seymour proved the weak consistency of the estimator assum-
ing the prior information of a finite set of possible basic neighborhoods [19]. Csiszár and
Talata proved the strong consistency of the estimator without prior information [6]. The
practical relevance of the penalized MPL estimator of the basic neighborhood is limited
by its computational complexity, as it requires to calculate a score for each possible basic
neighborhood. However, the basic neighborhood estimation with feasible computational
complexity has been an open problem [6]. The method presented in this paper provides a
solution to this problem.

In this paper a new method is introduced to estimate the basic neighborhood of Markov
random fields. Some of the subsequent results were also presented at the IEEE International
Symposium on Information Theory, Honolulu, Hawaii, June 2014. The complete proofs of
all of the results given in this paper are contained in [25]. The optimal likelihood ratio
(OLR) estimator is defined recursively along a sequence of extending lattice regions and
uses the property that MPL increases at a larger rate in case of underestimation than in
case of overestimation. The OLR estimator can be computed in O(|Λn| log1/d |Λn|) time,
where |Λn| is the sample size, the number of observed sites. The computational complexity
could be strictly linear O(|Λn|) if the rate at which the radius of the hypothetical basic
neighborhoods may increase with the sample size was not calculated from the sample but
it was a deterministic function as in [6]. An explicit bound is proved on the probability
that the OLR estimator does not identify the basic neighborhood correctly, which implies
the strong consistency of the estimator. Stationarity of the random field is not assumed and
phase transition does not affect the results.

2. Markov Random Fields and the Main Results

The elements i of the d-dimensional lattice Zd are called sites. A random field is a set of
random variables indexed by the sites, X = {X(i) : i ∈ Zd}, where each random variable
X(i) takes values from a finite set A. ∥i∥ denotes the maximum norm of the site i ∈ Zd,
and | . | denotes the cardinality of a set. The ball with radius r, that is the cube with sides
of length 2r + 1, is ∆r = {i ∈ Zd : ∥i∥ ≤ r}.

The subset of the random variables with indices in a region Γ ⊆ Zd of the lattice is
denoted by X(Γ). A block g = {ai ∈ A : i ∈ Γ} has the shape S(g) = Γ and the i’th
coordinate g(i) = ai; leaving out the j’th coordinate it is g\j = {ai ∈ A : i ∈ Γ\{j}}. Its
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radius is r(g) = r(Γ) = supi∈Γ ∥i∥, and it is finite if |g| = |Γ| < ∞, and infinite otherwise.
Denote g|Φ the block g truncated to the region Φ ⊆ Zd: g|Φ = {g(i) : i ∈ Γ ∩ Φ}. For
Φ = ∆K , K > 0, we write g|K = g|∆K

. Two blocks g1 ∈ AΓ1 and g2 ∈ AΓ2 are
compatible, denoted by g1 ∼ g2, if g1(i) = g2(i) for all i ∈ Γ1 ∩ Γ2. The set operations
g1 ∪ g2, g1 ∩ g2 and g1\g2 are well-defined for compatible blocks. g1 is smaller than g2
if g1 ∼ g2 and g1 ⊂ g2. The translate of a block g and a region Γ when the origin 0 is
translated to the site i is denoted by gi and Γi, respectively.

The distribution of the random field, the joint distribution of the random var.’s X(i), is
denoted by Q. Its Γ-marginal is

Q(g) = Pr{X(Γ) = g}, g ∈ AΓ.

We assume that its finite-dimensional marginals are positive: Q(g) > 0 for all |g| < ∞.
Under this standard assumption the following conditional probabilities are well-defined.

Q(g|f) = Pr{X(Γ) = g |X(Φ) = f}, f ∈ AΦ, |f | < ∞.

The random field is a Markov random field if the uniform region Γi around the sites i in
which the one-point conditional probabilities actually depend on the values can be reduced
to Γi

0, the basic neighborhood, but not further.

Definition 1. The random field is a Markov random field if there exists a unique finite
region Γ0 ⊂ Zd, called basic neighborhood, such that

(i) for any regions Γ ⊇ Γ0 and Γ′ ⊂ Γ with (Γ\Γ′) ∩ Γ0 = ∅, for all blocks g ∈ AΓ

Q (b |g|Γ′) = Q (b |g) for all b ∈ A{0}, (1)

(ii) for any regions Γ ⊇ Γ0 and Γ′ ⊂ Γ with (Γ\Γ′)∩Γ0 ̸= ∅, there exists a block g ∈ AΓ

such that
Q (b |g|Γ′) ̸= Q (b |g) for some b ∈ A{0}. (2)

Moreover, the one-point conditional probabilities Q(b|g), b ∈ A{0}, g ∈ AΓ0 , are transla-
tion invariant, Q(b|g) = Q(bi|gi) for all i ∈ Zd.

Denote qmin = min{Q(b|g) : b ∈ A{0}, g ∈ AΓ0} and note that qmin > 0. The
following lemma shows that the one-point conditional probabilities determine the finite-
block conditional probabilities. This generalization of the Markov property is proved in
[6].

Lemma 1. For any blocks f ∈ AΦ and f̄ ∈ AZd\Φ

Pr
{
X(Φ) = f

∣∣∣X(j) = f̄(j), j ∈ Zd\Φ
}

= Pr

{
X(Φ) = f

∣∣∣∣∣X(j) = f̄(j), j ∈
∪
i∈Φ

Γi
0\Φ

}
,

where the conditional probabilities are translation invariant and determined by the collec-
tion Q(b|g), b ∈ A{0}, g ∈ AΓ0 .
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The concept of Markov random field is equivalent to that of a Gibbs field [14]. Here,
the interaction range is finite as the one-point specification is the collection

QΓ0 = {Q(b|g) : b ∈ A{0}, g ∈ AΓ0}.

Given the one-point specification QΓ0 , the distribution of the random field is not necessarily
unique, Q is one of them. These distributions are called Gibbs distributions and they are
not necessarily translation invariant.

In this paper, we address statistical estimation of the basic neighborhood Γ0 from a
single realization x ∈ AZd

of the random field observed in a finite region Λn, n ∈ N. Thus,
the n’th random sample is Xn = X(Λn) and the sample size is |Λn|.

Let Nk,D
n (h), where k ∈ ∆2D, denote the number of the following non-overlapping

occurrences of the cube h ∈ A∆D in the sample Xn

#
{
i ∈ Zd : hi ⊂ Xn, i = k + (4D + 1)v for some v ∈ Zd

}
.

Above those cubes are considered whose centers are in (4D + 1) distance, that is, whose
centers are in the k’th sieve Λk,D

n . The larger the distance D, the smaller the counts
Nk,D

n (h). The largest D will be used that provides sufficient numbers of occurrences.

max
{
D : Nk,D

n (h) ≥ log3 |Λn| for all h ∈ A∆D , k ∈ ∆2D

}
.

Then the number of occurrences of a block g with r(g) ≤ D(Xn) in the sample Xn is
defined as

Nn(g) =
∑

k∈∆2D(Xn)

Nk
n(g)

where Nk
n(g) is the number of occurrences of the block g in the sample Xn with center in

the k’th sieve Λk
n = Λ

k,D(Xn)
n :

Nk
n(g) =

∑
f :S(g∪f)=∆D(Xn)

Nk,D(Xn)
n (g ∪ f).

Clearly, for any Γ ⊂ Zd with r(Γ) ≤ D(Xn) and g ∈ AΓ∑
b∈A{0}

Nn(g ∪ b) = Nn(g) and
∑
g∈AΓ

Nn(g) ≤ |Λn|.

The shape Λn of the sample region is arbitrary but it must satisfy that it is increasing in n
and that the total number of centers considered for the number of occurrences is asymptot-
ically equivalent to the number of sites in sample region:

|Λn|
/ ∑

k∈∆2D(Xn)

|Λk
n| → 1 as n → ∞.

The following observation follows from the bound derived in the proof of Lemma 3.1
in [6].

Lemma 2. For some absolute constant ν > 0

Pr
{
D(Xn) ≥ C log1/d |Λn|

}
≥ 1− e−|Λn|ν , n ≥ n0,

where C > 0 depends only on qmin.
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Given the sample Xn, the pseudo-likelihood function of a region Γ ⊂ Zd with r(Γ) ≤
D(Xn), regarding Γ as the basic neighborhood of the random field with a hypothetical
distribution Q′, is

PLXn(Γ, Q
′) =

∏
i:∆i

D(Xn)
⊆Λn

Q′(Xn(i)|Xn(j), j ∈ Γi) =
∏

g∈AΓ, b∈A{0}

Q′(b|g)Nn(g∪b).

Although a probability measure Q′ does not necessarily exist for any Q′
Γ = {Q′(b|g) : b ∈

A{0}, g ∈ AΓ} satisfying
∑

b∈A{0} Q′(b|g) = 1, the maximum of the pseudo-likelihood
over all such Q′

Γ is called maximum pseudo-likelihood, and it has the explicit form

MPLXn(Γ) =
∏
g∈AΓ

MPL′
Xn

(g) ,

where

MPL′
Xn

(g) =
∏

b∈A{0}

(
Nn(g ∪ b)

Nn(g)

)Nn(g∪b)
. (3)

In this paper we propose the following estimator of the basic neighborhood Γ0.

Definition 2. Given the sample Xn, the optimal likelihood ratio (OLR) estimator Γ̂OLR(Xn)
of the basic neighborhood Γ0 is defined recursively with respect to the region Θ ⊂ Zd as
follows.

(i) Γ{0} = ∆D(Xn)/2\{0}
(ii) Given ΓΘ with ∆R−1 ⊆ Θ ⊂ ∆R for some R ≥ 1, fix i ∈ ∆R\Θ. If∏

a∈A{i}

MPL′
Xn

(
g\i ∪ a

)/
MPL′

Xn

(
g\i

)
≤ eNn(g\i)

3/4
(4)

for all g\i ∈ AΓΘ∪(∆D(Xn)\Θ\{i}), then let ΓΘ∪{i} = ΓΘ\{i};
and otherwise let ΓΘ∪{i} = ΓΘ.

(iii) Γ̂OLR(Xn) = Γ∆D(Xn)/2

The proposed estimator has the following bounds on error probability and computa-
tional complexity.

Theorem 1. Given a Markov random field, the estimation error of the OLR estimator of
the basic neighborhood is controlled as

Pr
{
Γ̂OLR(Xn) ̸= Γ0

}
≤ 4|Λn|−(1/6) log3/2 |Λn|, n ≥ n0.

Proof. Theorem 1 is proved in [25].

Corollary 1. Given a Markov random field, the OLR estimator of the basic neighborhood
satisfies

Γ̂OLR(Xn) = Γ0

if n is sufficiently large, with probability 1.

Proof. Corollary 1 follows from an application of Borel-Cantelli’s lemma to Theorem 1.
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Corollary 2. Given a Markov random field, the OLR estimator of the one-point specifica-
tion,

Q̂
Γ̂OLR(Xn)

=

{
Nn(g ∪ b)

Nn(g)
: b ∈ A{0}, g ∈ AΓ̂OLR(Xn)

}
converges to the one-point specification QΓ0 as n → ∞, with probability 1.

Proof. It follows from Corollary 1 and Theorem 3 below.

Theorem 2. The number of computations needed to determine the OLR estimator of the
basic neighborhood for a given sample Xn is O(|Λn| log1/d |Λn|), and this can be achieved
storing O(|Λn|) data.

Proof. Theorem 2 is proved in [25].

Remark 1. As the proof of Theorem 2 shows, finding D(Xn) requires O(|Λn| log1/d |Λn|)
computations and after that calculating the OLR estimator requires only O(|Λn|) com-
putations. The former computations could be avoided by setting D(Xn) = D(|Λn|) =
o(log1/d |Λn|), see Lemma 2. Then the computational complexity of the OLR estimator
would be strictly linear O(|Λn|), however, such D(Xn) would not be practical.

The estimation error proof relies upon the following concentration inequality for Markov
random fields, whose proof is included in [25].

Theorem 3. Given a Markov random field and 0 < η < 1/2, with probability at least
1− 2|Λn|−(1/6) log3−6η |Λn|, simultaneously for all i ∈ ∆D(Xn)/2, all b ∈ A{i}, all blocks g
with ∆D(Xn)\{i} ⊇ S(g) ⊇ (∆D(Xn)\∆D(Xn)/2),∣∣∣∣Nn(g ∪ b)

Nn(g)
−Q(b|g)

∣∣∣∣ < (
2d

log |A|

)η
logη |Λn|
Nn(g)η

,

if n is sufficiently large.

Remark 2. The proof uses Lemma 2 and implies that D(Xn) ≥ C log1/d |Λn|, C > 0,
also holds over the event where the claimed inequality holds.
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