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Abstract
The score function (Rao, 1948) continues to serve a fundamental role in statistical inference. In

the context of analyzing data from high-throughput genomic assays, inference on the basis of the
score, as opposed to the asymptotically equivalent Wald or likelihood ratio tests, usually enjoys
greater stability, considerably higher computational efficiency, and lends itself more readily to the
use of resampling methods. While the score function often depends on a set of unknown nuisance
parameters, which have to be replaced by estimators, the efficient score accounts for the variability
induced by estimating these parameters. We illustrate using symbolic computing with computer
algebra systems to facilitate the derivation of the efficient score. We demonstrate this process within
the context of a standard example, and observe that this approach removes the burden of calculation
and is less prone to error than manual derivations. In addition, the resulting symbolic expressions
can be readily ported to compiled languages for the purpose of developing fast numerical algorithms
for high throughput genomic analysis. We conclude by considering extensions of this approach.
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1. Introduction

The three primary methods of inference for data from high-throughput genomic assays are
the Wald, likelihood ratio, and score tests. Conducting inference on the basis of the score
test is asymptotically equivalent to the other two tests, and offers certain advantages. The
score statistic is more stable, and while the likelihood ratio test requires an estimation of
variability, the score test can be employed where the variability is difficult to estimate. In-
ference on the basis of the score also offers higher computational efficiency, as nuisance
parameters are optimized only once, and the parameters of interest never have to be op-
timized. The score test also lends itself to the implementation of resampling methods.
Though all three methods suffer from the variability induced by the estimation of the nui-
sance parameters, this can be overcome for the score test by the use of the efficient score.
The cost of accounting for this variability is some additional algebraic derivation required
prior to implementation. Computer algebra systems can relieve us of this burden, while
offering benefits of their own.

1.1 The Efficient Score

We begin by establishing notation. We let ~θ be the vector of our parameters, which we parse
into ~β, our parameters of interest, and ~η, the nuisance parameters. We denote L(~θ|~z) to be
our log-likelihood function of ~θ, given our observed variables, ~z. We define Ux(~θ|~z) =
δ
δxL(~θ|~z), e.g. if we knew that the nuisance parameters were orthogonal to ~β, we could use
the naive score, Uβ(~θ|~zi) = δ

δβL(~θ|~zi), to conduct our analysis.
That not being the case, we calculate the efficient score (Tsiatis, 2006) as:

Ueff(θ|~Zi) = Uβ(θ|~Zi)− Cβ,η(θ|~Zi){Vη,η(θ|~Zi)}−1Uη(θ|~Zi) (1)
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where

Cβ,η(θ|~Zi) = E[Uβ(θ|~Zi)UTη (θ|~Zi)], and (2)

Vη,η(θ|~Zi) = E[Uη(θ|~Zi)UTη (θ|~Zi)] . (3)

Deriving the efficient score therefore requires taking multiple derivatives and expected val-
ues, as well as carrying out matrix multiplication and inversion, magnifying the complexity
of the initial likelihood function with each step. Such complications afford many opportu-
nities for errors if these derivations are carried out manually. Symbolic computing offers a
more reliable alternative.

1.2 Symbolic Computation

Computer algebra systems allow software to do the algebraic derivation and manipulation
of equations formerly confined to white boards or pencil and paper. These systems are
able to carry out, to varying degrees, assorted operations used in algebra, linear algebra,
and statistical derivations. The transition from analog to digital offers the same benefits to
algebra as it did for arithmetic. Namely, the steps can be performed faster, repeatably, and
more reliably by a computer than by a person.

Symbolic computing therefore offers a convenient means of addressing the main draw-
back of using the efficient score, i.e. the sometimes arduous derivation of the score func-
tion. Once the likelihood function has been transcribed to the symbolic language, the rest
of the derivation is implemented programmatically. This makes symbolic computation less
vulnerable to error than manual derivations. Additionally, since the derivation procedure
does not change from implementation to implementation, much of the symbolic computing
code generated for one application can be reused for another. Furthermore, since the equa-
tions exist digitally, various options exist for transferring the formulae to either functional
analytical code, or to a form of markup language for presentation purposes. This makes
symbolic processing useful for rapid prototyping, since it is easy to convert algebraic equa-
tions and formulae into code for simulation and testing. Further, whether in prototyping or
development, the effects of any changes to the initial specifications can easily be carried
forward through the rest of the implementation.

Multiple symbolic processors are currently available; some proprietary, others offered
via general public license. For the purposes of this report, we chose to use SymPy (SymPy
Development Team, 2014), an open-souce module which allows symbolic processing in
Python. SymPy was chosen because the use of Python allows for direct integration with
LATEX via PythonTEX (Poore, 2013). For example, the block below shows actual Python
code which is executed when the report is compiled.

from sympy import *
from sympy.printing import *
from sympy.stats import *

Here we load the SymPy module and the tools necessary for our derivation, below.

2. An Example

We use a standard example in biostatistics to demonstrate facilitating the calculation of
the efficient score using symbolic computing: testing the association of genotype with a
continuous phenotype in high throughput genomic assays in the context of family-based
trio data (Abecasis et al., 2000). Here, Yi represents the phenotype of interest of the ith
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patient. We let Gi represent the genotype of the ith patient at the locus being interro-
gated, where G ∈ {0, 1, 2} represents the number of mutant alleles, and GM,i and GF,i
are the corresponding parental genotypes. We then separate the genotype into between-
and within-family components (Fulker et al., 1999) by defining Gbi =

GM,i+GF,i
2 , and

Gwi = Gi − Gbi. Under such a separation, the within-family component, Gwi, is robust
against confounding due to population stratification. Finally, we define ~Xi, a vector of p
cofactors (possibly including an intercept) also included in the model.

We suppose that, for all patients, the conditional distribution of ~Z givenGb = gb, Gw =
gw and ~X = ~x is normal, with mean ~αT~xi + βbgb,i + βwgw,i and variance σ2, i.e.

Yi|Gbi = gb, Gwi = gw, ~Xi = ~x ∼ N(a0 + a1x1 + a2x2 + bbgb + bwgw, σ
2)

So, under the efficient score notation, ~Zi = (Yi, ~Xi, Gbi, Gwi)
T and ~θ = (a0, a1, a2, bb, bwσ)

T .
Note that, for the purposes of this example, we are restricting the model to two cofactors
and an intercept, though a more complex model could easily be implemented.

Under this model, the null hypothesis is that there is no genetic effect on the phenotype,
i.e. bb = bw = 0, so our parameters of interest are ~β = (bb, bw)

T , but finding the likelihood
of ~β requires estimating the nuisance parameters, ~η = (a0, a1, a2, σ)

T , which may induce
variability, thus necessitating the use of the efficient score.

2.1 Initial Specifications

Having imported the SymPy module above, in order to use symbolic processing, we first
have to declare which expressions will represent algebraic variables.

a0,a1,a2,b_b,b_w = symbols("a0 a1 a2 b_b b_w", real=True)
y, x1,x2,g_b,g_w = symbols("y x1 x2 g_b g_w", real=True)
sigma = symbols("sigma", positive=True)

We can then define our two sets of parameters.

beta = [b_b, b_w]
eta = [a0, a1, a2] + [sigma]

Next, we use SymPy’s built-in probability distributions to initialize the conditional distri-
bution of Y |Gb, Gw, ~X .

distY = Normal("distY",
a0 + a1*x1 + a2*x2 + b_b*g_b + b_w*g_w, sigma)

We can confirm that the density has been properly defined by outputting it:
density(distY)(y) =

√
2

2
√
πσ
e−

1
2σ2

(−a0−a1x1−a2x2−bbgb−bwgw+y)2

Note that the equation above was constructed by SymPy and automatically rendered for
this report by PythonTEX. No LATEX coding was required to include it here.

The basis of the efficient score is the log-likelihood function for Yi, which we get from
the above formula.

likelihood = simplify(density(distY)(y))
logLikelihood = simplify(log(likelihood))

Which gives us the contribution to the log-likelihood for one observation, ~zi = (yi, gbi, gwi, ~xi),
while the total log-likelihood is given by the sum over all patients.
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2.2 Derivatives

To get the efficient score, we will take the derivative of the log-likelihood,
logLikelihood = − log (σ)− 1

2 log (π)−
1
2 log (2)−

1
2σ2 (a0 + a1x1 + a2x2 + bbgb + bwgw − y)2

with respect to each and every one of the parameters. Depending on the form of the initial
likelihood function and the number of parameters, this could entail extensive amounts of
algebra. Instead, our symbolic processor does the work for us. We define a function to take
the derivative of our equation with respect to a list of parameters,

def U(params):
return [simplify(diff(logLikelihood, var))

for var in params]

and apply our function to get the partial derivatives, Uβ(~θ|~Zi),

Ubeta = U(beta)

Matrix(Ubeta) =

(
− gb
σ2

(a0+a1x1+a2x2+bbgb+bwgw−y)
− gw
σ2

(a0+a1x1+a2x2+bbgb+bwgw−y)

)
and Uη(~θ|~Zi).

Ueta = U(eta)

Matrix(Ueta) =


1
σ2

(−a0−a1x1−a2x2−bbgb−bwgw+y)
− x1
σ2

(a0+a1x1+a2x2+bbgb+bwgw−y)
− x2
σ2

(a0+a1x1+a2x2+bbgb+bwgw−y)
1
σ3
(−σ2+(a0+a1x1+a2x2+bbgb+bwgw−y)2)


Next we note that the efficient score requires E[∂L∂x

∂L
∂y ]. Recall that, for a function f

with parameters x and y, under certain regularity conditions, E[∂f∂x
∂f
∂y ] = −E[

∂2f
∂x∂y ], so we

proceed to calculate the second partial derivatives.
We define a function to take partial derivatives of a vector with respect to a list of

parameters,

def secPar(score, pars):
return transpose(Matrix([[simplify(diff(x, p))

for x in list(score)] for p in pars]))

and apply it to our first partial derivatives.

cmat = secPar(Ubeta, eta)
vmat = secPar(Ueta, eta)

This gives us

cmat =

(
− gb
σ2
− gbx1

σ2
− gbx2

σ2
2gb
σ3

(a0+a1x1+a2x2+bbgb+bwgw−y)
− gw
σ2
− gwx1

σ2
− gwx2

σ2
2gw
σ3

(a0+a1x1+a2x2+bbgb+bwgw−y)

)
and
vmat =

− 1
σ2

− x1
σ2

− x2
σ2

1
σ3

(2a0+2a1x1+2a2x2+2bbgb+2bwgw−2y)

− x1
σ2

− x
2
1
σ2

−x1x2
σ2

2x1
σ3

(a0+a1x1+a2x2+bbgb+bwgw−y)

− x2
σ2

−x1x2
σ2

− x
2
2
σ2

2x2
σ3

(a0+a1x1+a2x2+bbgb+bwgw−y)
1
σ3

(2a0+2a1x1+2a2x2+2bbgb+2bwgw−2y) 2x1
σ3

(a0+a1x1+a2x2+bbgb+bwgw−y)
2x2
σ3

(a0+a1x1+a2x2+bbgb+bwgw−y) 1
σ4
(σ2−3(a0+a1x1+a2x2+bbgb+bwgw−y)2)


which are at the cores of the covariance (2) and variance (3) matrix definitions.
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2.3 Expected Values

In general, we would take the expectation over the joint distribution of Yi, ~Xi, Gbi, and
Gwi. It is at this point that we need to remain aware of the capabilities and limitations of
SymPy, or any symbolic processor. SymPy does not currently have the functionality to take
expectations over a joint distribution. However, by virtue of our model definition, we can
avoid this by taking a double-expectation instead, e.g. E[E[Y |Gb, Gw, ~X]]. We also must
define our own function to take the expectation over the cells of a matrix.

def EV(A):
return transpose(Matrix(map(E,A)))

We can then use the available expectation functionality to take the conditional expectation
of Y |Gb, Gw, ~X using the distribution we specified above.

Cmat = simplify(-EV(cmat.subs(y, distY))).reshape(2,4)

Cmat =

(
gb
σ2

gbx1
σ2

gbx2
σ2

0
gw
σ2

gwx1
σ2

gwx2
σ2

0

)
For the second expectation, we first declare new symbolic variables to stand in the for the
expected values of the remaining random variables and products.

ExGb, ExGbX1, ExGbX2 = symbols(
"ExGb ExGbX1 ExGbX2", real=True)

We then take the expectation of the remaining terms by careful substitution, maintaining
non-separable terms. Note that it can be shown that Gw ⊥ ~X and that E[Gw] = 0.

Cmat = Cmat.subs([(g_b*x1, ExGbX1), (g_b*x2, ExGbX2)])
Cmat = Cmat.subs([(g_b, ExGb), (g_w, 0)])

This gives us our final covariance matrix:
Cmat =

(
ExGb
σ2

ExGbX1
σ2

ExGbX2
σ2

0

0 0 0 0

)
Notice that the cells corresponding to bw (the second row) are all zero, indicating the score
for bw is trivially efficient. Notice also that the cells corresponding to the nuisance parame-
ter σ (the last column) are also zero, from which we conclude that this parameter is in fact
orthogonal to our parameters of interest.

We repeat the same process for the variance matrix (3), first taking the conditional
expectation using our function and the built-in capabilities.

Vmat = simplify(-EV(vmat.subs(y, distY))).reshape(4,4)

Vmat =


1
σ2

x1
σ2

x2
σ2

0

x1
σ2

x21
σ2

x1x2
σ2

0

x2
σ2

x1x2
σ2

x22
σ2

0

0 0 0 2
σ2


Next we make a further simplifying assumption that theXij are normalized, so that E[Xij ] =
0 and E[X2

ij ] = 1. We declare a new symbolic variable for the remaining product, and make
our substitutions to complete the second expectation.
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ExX1X2 = symbols("ExX1X2", real=True)
Vmat = Vmat.subs([(x1**2,1),(x2**2,1),(x1*x2,ExX1X2)])
Vmat = Vmat.subs([(x1, 0),(x2, 0)])

Vmat =


1
σ2

0 0 0

0 1
σ2

ExX1X2
σ2

0

0 ExX1X2
σ2

1
σ2

0

0 0 0 2
σ2


Notice the block-diagonal structure.

We now have all the components we need to compose the efficient score (1). Once
more, symbolic computing makes this process simple.

Vinv = simplify(Vmat.inv())
Ueff = simplify(Matrix(Ubeta)-(Cmat*Vinv*Matrix(Ueta)))

Ueff =(
1

σ2(ExX1X22−1)(−x1(ExGbX1−ExGbX2ExX1X2)+x2(ExGbX1ExX1X2−ExGbX2)+(ExGb−gb)(ExX1X22−1))(a0+a1x1+a2x2+bbgb+bwgw−y)

− gw
σ2

(a0+a1x1+a2x2+bbgb+bwgw−y)

)
In a real world application, the remaining nuisance parameters would be replaced with
MLEs, the expectations replaced with empirical estimators, and, under the null hypothesis,
~β = 0, yielding

Ustar = Ueff[0,0].subs([(b_b, 0),(b_w, 0)])

Ustar =
1

σ2(ExX1X22−1)
(
−x1 (ExGbX1 − ExGbX2ExX1X2) + x2 (ExGbX1ExX1X2− ExGbX2) + (ExGb− gb)

(
ExX1X22 − 1

))
(a0 + a1x1 + a2x2 − y)

We could then sum the U∗ over all observations to arrive at the efficient score for our
hypothesis. To reiterate, no manual derivations were required to execute this example, and
no LATEX coding had to be done to include these equations in this report.

3. Discussion

With the help of symbolic processing, we were able to derive the efficient score for our
model. The effort saved through the use of symbolic computing is significant. By manipu-
lating our equations symbolically, our task was reduced to the application of the theory. In
fact, much of the process (all of section 2.2) is agnostic to the model being used, so that, ex-
cepting the specification of the likelihood function and expected values, the code is reusable
across applications. Add to this the potential time which might have been spent finding and
correcting arithmetic or algebraic errors in a manual derivation, and the benefits are even
more compelling. This was a simple example with a straightforward likelihood function,
but benefits scale dramatically as the complexity of the likelihood function increases.

Though we were spared the encumbrance of the algebraic calculations, we still had
to remain vigilant that the symbolic processing was being performed accurately. As we
saw, SymPy does not offer all of the functionality we need “right out of the box”. To
ensure that errors are not allowed to blindly propagate, it was necessary to confirm that
each manipulation of the equations gave reasonable results. However, in practice, if an
error had been discovered after the fact, or a correction needed to be made, the alterations
to the consequent calculations could be carried out instantly by simply re-executing the
subsequent portion of the script.

For this example, we used SymPy, though other symbolic processors are available.
SymPy, despite its limitations, was chosen for the readability of its code, its ease of integra-
tion with LATEX via PythonTEX, and because it has the added benefit of being free and open
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source. Another computer algebra system currently available is Mathematica (Wolfram Re-
search, Inc., 2012). While not freely available like SymPy, it is far more highly developed;
for example it has the capability to compute expectations over joint distributions. NCAlge-
bra (Helton et al., 1996), an independently developed package for Mathematica, adds the
capability to perform non-commutative (i.e. matrix) algebra. In our example, this would
have given us the option to keep the equations in vector format. However, Mathematica’s
lack of LATEX integration would have made reporting more difficult. Maple (Maplesoft,
a division of Waterloo Maple Inc., 2014), another proprietary software package, shares
the depth and robust capabilities of Mathematica, and has the option of exporting code
to LATEX. It also has the distinct ability of being able to generate optimized code based
on user-specified equations. In case a resulting score function is not as straightforward
as our example, Maple can produce optimized functions for several compiled languages,
including Python and C, which could then be used in simulation or analysis.

The portability of code also makes symbolic processors useful for rapid prototyping.
Equations can quickly be generated by the computer algebra system, and then used in sim-
ulations to explore the operating characteristics of a statistic, or to check the implications
of something like our normalizing assumption for the covariates.

4. Conclusion

Inference on the basis of the score has many advantages. When conducting inference on
high-throughput genomic assays, the score has greater computational efficiency and more
stability than the Wald and likelihood ratio tests, while being asymptotically equivalent. It
offers a convenient implementation of resampling methods. The use of the efficient score
accounts for the variability induced by the estimation of unknown nuisance parameters,
at the cost of a sometimes complicated derivation. Symbolic computing simplifies and
streamlines this derivation, removing the burden of calculation and reducing the potential
for arithmetic error. Much of the code for the derivation is reusable and it is entirely re-
producible. Depending on the choice of software, this approach can even offer automatic
conversion into optimized code, to easily apply the inferential method, or direct integration
into LATEX for reporting and presentation. Symbolic computing removes the complications
of an attractive but potentially complex analysis, inference on the basis of the score, and
allows code to flow directly from derivation, to analysis, to reporting.
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