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Abstract
While split-plot designs have been available for nearly 90 years, interest in this type of
design has spiked during the last 20 years.  Most statistical software packages used in
quality improvement efforts have either recently added or now emphasize this design. 
Although software handles the increased computational demands of the analysis, the
experimental team must recognize when a split-plot design is beneficial and also be aware
that the analysis must reflect any restrictions on randomization during data collection. 
Split-plot designs address a key objection to utilizing statistically designed experiments:
complete randomization, which increases the time and effort to conduct experiments.  If
practitioners aren’t comfortable with these designs, they will not use them.  We need to
simplify the presentation of this family of experiments for quality practitioners who lack
extensive backgrounds in statistical methods.  One approach is to utilize 3-D models to
explore the structural differences between completely randomized factorial designs and
factorial designs with restrictions on randomization.  Once this concept is clear, it is easier
to plan for data collection, understand the software output, and explain the results to others.
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1.Split-Plot Experiments
Split-plot experiments have received increasing coverage in the literature during the past 20
years.  See for example, Box (1996), Dowalski, et al. (2007), Jones and Nachtsheim (2009),
Kowalski and  Potcner (2003), Potcner and Kowalski (2004), Robinson, et al. (2009), and
Vining (2009).  They are a type of factorial design used when some factor levels are
inconvenient, time consuming, or more difficult to change than others.  Total experimental
time and costs are reduced by not having to change factor levels as often as with a
completely randomized design.

Analytical software packages used in Six Sigma deployments, such as Design-Expert,  JMP,
and  Minitab, have added split-plot designs in recent releases, making this design family
readily available to practitioners.  Other than identifying which factors are hard to change,
no knowledge of the structure or analysis of split-plot designs is required to use the
software.

Increased awareness through publications and simplification of calculations via software are
necessary, but not complete conditions for the successful application of split-plot designs. 
All experimenters must understand the fundamentals of how these designs are created and
analyzed so that they can successfully lead problem solving teams and explain results to
interested parties.  Without this knowledge, practitioners may misapply the technique and
misinterpret the software results.

This work utilizes 3-dimensional models of the factor space and the response space to make
split-plot design concepts and basic calculations easier to understand by non statisticians. 
We begin with a notation for split-plot designs and then present five designs, each utilizing
16 runs, to illustrate the basic properties of split-plot designs.
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2. Split-Plot Design Notation

RThe standard 2  factorial notation is well known within the DOE community, see Box,k-p

Hunter, and Hunter (2005), and provides a wealth of information about the design: 
Number of factor levels: 2
Number of factors: k
Design resolution: R
Number of runs 2 (k-p)

Fraction of full design: 2-p

The utilization of a similar notation for split-plot designs is lacking in much of the DOE
literature, with Bisgaard (2000) among the exceptions.  A standard notation to fully describe
a split-plot design is beneficial when comparing and contrasting the different design
configurations.  

The proposed notation is shown in Equation 1.  As with standard factorial notation, the 2
refers to the number of factor levels and the subscript R refers to the design resolution.  In
the exponent, k refers to the number of factors and p is used for fractions in the whole plot
and subplot.  The subscripts w and s refer respectively to the whole plot and subplot
components.

By inserting the values for each k and p into the equation, one can readily determine the
following:

Total number of runs = 

Number of subplots = 

Number of separate randomizations = 

This notation makes the number of factors that are hard to change explicit.  It accommodates
full and fractional designs at both the whole plot and split-plot levels.  The notation
highlights that the allocation of factors to whole plots and split-plots is not commutative. 
That is, a 2  design is not the same as a 2  design.(1) + (2) (2) + (1)

The literature frequently states that split-plot designs require two randomizations and the
reader is left to infer that one randomization is for the whole plot and the other is for the
subplot.  This information is sufficient to understand the reason for two error terms in the
ANOVA calculations, but does not address what happens when one actually plans the
experiment.  Each subplot requires a unique randomization, so this disconnect may be a
source of confusion for new users of split-plot designs. 

3. Visualization to Help Improve Understanding
Most of the split-plot literature assumes that the reader has at least an intermediate statistical
education.  Many Six Sigma practitioners are not at this level, so they benefit from a non
mathematical approach to understand the core concepts.

The remaining sections illustrate the fundamental concepts of split-plot designs using
physical 3-D models.  Physically building the model involves additional senses to aid the

(1)
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learning process, helps the student to visualize how the design is constructed and executed,
and lays the foundation for why there are two measures of experimental error in the
ANOVA calculations.  

To help differentiate split-plot designs from full factorial and blocked factorial designs, each
of the following cases is accompanied by a figure depicting the random run order for that
design.  Minitab version 17 was used to create the random run order, but any other software
package will give equivalent results. 

3.1 Color Code Key for 3-D Models
In the following figures, the corner nodes and connecting struts are color coded based on
their role.  Not all colors are used in each figure.

3.2 The 2  Design4

Figure 1 shows the 3-D model for this base design: two cubes with eight nodes for a total
of  2  = 16 nodes, where each node represents an experimental run.  Each node is both an4

experimental unit and an observational unit.

Figure 2 shows the random run order for this experiment.  All 16 values are allocated
between the two cubes, indicating a single randomization.  This single randomization results
in a single estimate for experimental error. 

Element/color Role
Black node Whole plot experimental unit
White node Whole plot observational unit
Black strut Whole plot structure
White strut Links whole plot experimental unit to whole plot observational unit
Yellow strut Links whole plot observational unit to subplot observational units
Grey node Subplot experimental unit and observational unit
Blue strut Subplot structure
Blue node Structural connector: no role in the statistical design 

Table 1.  Legend for node and strut colors in the figures.

Figure 1.  3-D model for full factorial design.
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3.3 The 2  Design in Blocks4

Split-plot designs are sometimes described as a factorial design run in blocks.  However, a
blocked design is not necessarily a split-plot design.  It is important for those new to split-
plot designs to recognize this difference.

To illustrate, Figure 3 shows a four-factor design run in two blocks.  There are four cubes,
with the top two representing block one and the bottom two representing block two.  One
block is randomly selected and all runs within that block are completed before switching to
the second block.  In this model, each corner point does not necessarily represent an
experimental run.  Recall from Table 1 that the grey nodes are the both experimental units
and observational units.  The blue nodes are structural connectors for the physical model.

Using standard factorial notation, there are 2  = 16 total runs, with eight runs per block.4

Unlike the single randomization of the full 2  design, each block requires a unique4

randomization for run order, as shown in Figure 4.  Note that the values 1- 8 appear in each
block.  All factors are varied without respect for difficulty in changing levels in the blocked
design.

Figure 2.  Random run order for the full factorial design.

Figure 3.  Full factorial design run in two blocks.  Block one consists
of the top two cubes, block two consists of the bottom two cubes.
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3.4 Summary of the Basic Cases
In the full factorial design, all experimental treatments are run in each replicate.  In the
present case, there was a single replicate.  All factor effects can be determined free of
confounding.  There are no restrictions on the random order of the runs; thus a single
randomization sequence suffices, resulting in a single estimate for experimental error.

In a blocked design, the blocking variable is not a factor in the experiment and is beyond the
experimenter’s control.  To maintain 16 runs for consistent comparison with the other cases,
the blocking factor could be considered a potential fifth factor.  Blocking reduces
experimental error by making the blocks as homogeneous as possible.  Every treatment
combination does not appear in each block, but there is a symmetry and balance between the
blocks.  In the case of two blocks, the highest order interaction, in this case the ABCD
interaction, is confounded with blocks.  A design with blocks requires each block to be
randomized independently with all factors (but not all factor levels) appearing in each block. 

3.5 The 2  Design(1) + (3)

We now examine three variants of a 16 run split-plot design, beginning with a single hard
to change factor and three easy to change factors.  Using the proposed split-plot notation,
there are 2  = 2  = 16 runs, 2  = 2 subplots, and 2  +1 = 3 separate randomizations: one(1) + (3) 4 (1) (1)

for the whole plot and one for each subplot. 

Physically building the model in Figure 5 helps to visualize the split-plot design structure
and run order.  The model contains attributes of both the full factorial and the blocked
designs from the previous two sections.

We begin with the whole plot (the black nodes and struts at the bottom of the figure), since
it literally supports the subplots, represented by the two cubes at the top of  Figure 5.  The
grey nodes represent both the experimental unit and the observational unit.  The white nodes
represent the whole plot observational unit and connect to the black nodes (whole plot
experimental units) with a white strut.  The yellow struts show the connection between the
whole plot observational unit and the subplot observational units. 

The whole plot portion of the design is similar, but not identical to the blocks in the
priordesign.  Randomization is restricted within the subplots of each whole plot treatment. 

Figure 4.  Random run order for blocked design.
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That is, one whole plot treatment is selected and all subplot treatments within that treatment
are run before moving to the next whole plot treatment.  Unlike the blocked design, the
whole plot factor is under experimenter control.  Also, the highest order interaction term is
not confounded.  Each subplot factor within each whole plot combination appears at all
levels, as contrasted with the blocked design, where not every combination appeared in each
block.  The whole plot nodes represent experimental units, the physical unit to which the
experimental treatment is applied. 

The subplot behaves like the full factorial design.  All subplot factors appear at all levels and
there is no restriction on randomization within each subplot.

Figure 6 shows the random order for this experiment.  One of the whole plot levels is
randomly selected and then all points in the corresponding subplot are run.  Each subplot
has a separate random run order, resulting in a total of three randomizations for this
experiment. 

3.6 The 2  Design(2) + (2)

This design contains two hard to control factors in the whole plot and two easy to control
factors in the subplots.  In this design, there are 2   = 2  = 16 runs, 2  = 4 subplots, and(2) + (2) 4 (2)

2  +1 = 5 separate randomizations; one for the whole plot, and one for each of the four(2)

subplots.   

We begin by building the two factor whole plot square (in black) at the bottom of Figure 7,
then add the two factor subplots (also squares) at each whole plot treatment.  The run order

Figure 5.  Split-plot design with one hard to change factor and
three easy to change factors.

Figure 6.  Random run order for  2  design.(1) + (3)
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of the four whole plot combinations is determined first, then a separate run order for each
corresponding subplot is determined, as shown in Figure 8.

3.7 The 2  Design(3) + (1)

The final case considers three hard to change factors in the whole plot and one easy to
change factor in the subplot.  There are 2  = 2  = 16 runs, 2  = 8 subplots, and 2  +1(3) + (1) 4 (3) (3)

= 9 separate randomizations for run order; one for the whole plot, and one for each of the
eight subplots.

As with the other split-plot designs, we begin with the whole plot factors to create the black
cube in Figure 9.  Each cube corner point supports a single factor subplot, which are shown
as blue struts with grey nodes.

Figure 10 shows the run order for this experiment.  Each whole plot is selected in the order
indicated, then the corresponding subplot is run before moving onto the next whole plot.

Figure 7.  3-D model for the 2  design.(2) + (2)

Figure 8.  Random run sequence for the 2  design.(2) + (2)
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3.8 Split-Plot 3-D Model Summary
The 3-D models in the previous three sections help illustrate why a standard split-plot
notation is essential for effective communication.  All three cases utilized 16 runs, but the
allocation of factors between the whole plots and split plots resulted in vastly different
structures.  The models clearly demonstrate that a 2  design is not the same as a 2(1) + (2) (2) + (1)

design.

In split-plot designs, the method used to build the 3-D models mimics how the actual
experiment is run.  The whole plot experimental units come first.  In the physical model,
they serve as the support base for the subplot components.  In an experiment, the whole plot
treatments are applied to the experimental units first.  Next the subplot treatments are
applied to each whole plot experimental unit.  Randomization takes place first at the whole
plot level, and then individually within each subplot.

Figure 10. Random run order for the 2  design. (3) + (1)

Figure 9.  3-D model of the 2  design.(3) + (1)
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4. Response Space Calculations
Thus far, the 3-D models represented the design factor space.  The response space of the
design is represented with white struts with a scale on them.  Figure 11 shows the scaled
white struts added to the 2  design.  For clarity, these new struts are shown for only one(2) + (2)

subplot.  

For subplots, the response is measured directly at the grey nodes.  Recall that the
observational and experimental units are the same in the subplot, just as in the standard
factorial design.  The subplot effects are calculated as the difference between the average 
high and low level responses for the factors.

The whole plot effect calculations are more involved.  The whole plot response space is
shown in Figure 12, with white scaled struts attached to the white nodes (observational
units) of the whole plot.  A plain white strut connects the black node to the white node,
linking the experimental unit to the observational unit.  Unlike the factorial design, the
whole plot observational units (white nodes) are not the same as the experimental units
(black nodes).  

The whole plot observational unit is connected by yellow struts to the subplot
observational/experimental units.  The response at each whole plot treatment is the average
of the connected subplot responses.  These values are then used in the traditional way to
determine the whole plot effects.

The effect calculations for the subplot and whole plot effects rely on different randomization
schemes, different methods of calculation, and thus different degrees of freedom.  The result
is two different estimates of experimental error, one for the whole plot and another for the
subplot.  

Figure 11. Response space for a single subplot in a 2(1) + (2)

design.
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5. Summary
3-D models provide students with insights into the structure and analysis of split-plot 
designs.  They provided a readily understandable framework to compare and contrast split-
plot designs with the more familiar full factorial and blocked factorial designs.  They help
highlight the experiment-within-an-experiment structure of split-plot designs by showing
that the whole plot portion separates the experimental unit from the observational unit. 
They are especially helpful in distinguishing between experimental and observational units,
and how that difference affects the ANOVA calculations in split-plot designs.
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