
Reliability Block Diagram - Simulate or Calculate?

Peng Liu∗ Rajneesh Rajneesh†

Abstract
Reliability Block Diagram is a visual interface to model a system’s reliability. A system consists

of multiple components, each with a different reliability characteristics, arranged according to a
specific design. It is desirable to estimate a system’s reliability to know its performance measure.
System’s reliability has been studied for decades but it is known to be computationally intensive.
Even with the current computing power, the computation of a system’s reliability has not improved
much for complex networks; for example, telecommunication systems, electric power utility sys-
tems etc. We will discuss the system’s reliability calculation using symbolic expression and Monte
Carlo simulation. Both methods have their merits and demerits. In the current release of our soft-
ware, we implemented the exact computation using symbolic expression. The feature to compute
a system’s reliability by Monte Carlo simulation is through a non-parametric distribution specifica-
tion. We will present the use of that feature in this work.

Key Words: Reliability, System Reliability, Exact Calculation, Simulation, Hybrid Calculation

1. Introduction to System Reliability Computation

Reliability is a perspective, which describes the quality of some product. The measurement
of reliability is often the time to an event when a product is not useable, or needs to be
replaced or repaired. The time measurement is a random variable, whose nature can be
described by some probability functions, such as Weibull, Lognormal, etc. The notation
R(t) is often used in the literature, which is the probability that the event will not occur
before time t. The larger R(t) is at a given time t, the more reliable that product is at that
time. Those well known functions are often used, when the product of interest is treated as
an indivisible entity, or a black box whose inside is not of interest. Many products can be
treated in that way. For example, a cast iron part, which may break, or wear out; or a light
bulb, which may burn out.

The reliability of many other products, which are usually called systems, is more un-
derstandably depended on the reliability of individual parts that aggregate the system. Fur-
thermore, it is more interesting to know that the form of dependencies among individual
parts also contributes to the reliability of the system. Describing the reliability of those
system using simple probability functions, such as Weibull or Lognormal, is usually not
realistic, except a handful of special cases. Many times, a closed form probability function
may not even exist.

Figure 1: Series System Figure 2: Parallel System
∗SAS Institute Inc., 100 SAS Campus Dr, Cary 27513
†SAS Institute Inc., 100 SAS Campus Dr, Cary 27513

JSM 2014 - Section on Physical and Engineering Sciences

3092

There are two basic types of dependence forms, series and parallel; see Figure 1 and
Figure 2. The series dependence is a form that all the parts are mutually dependent, such
that the failure of any individual will lead to the failure of the entire system. Therefore,
the series dependence system is not more reliable than any individual parts, the reliability
of which equals

∏
Ri(t), the product of individual reliabilities. The parallel dependence,

on the other hand, is a form that all the parts are independent, such that the system will
not fail, unless all individual parts fail. Therefore, the parallel dependence system is more
reliability than any individual parts, the reliability of which equals 1−

∏
(1−Ri(t)).

2. Complexity of System Reliability Computation

Figure 3: Series-Parallel System Figure 4: Bridge System

Beyond the basic forms, closed forms often exist, at least in theory, under certain con-
ditions. To exist, the state of any part cannot depend on any randomly occurred events, such
as the failure of another part. In some situations, the system is a composition of series and
parallel sub-systems (Figure 3), such that the reliability function of the system is a compo-
sition of two forms. An algorithm exists to identify whether the system is decomposable in
that way. After decomposing the system, the calculation of the system reliability is of the
order of N , the number of parts. However, other systems cannot be decomposed into either
series or parallel. A well known example is a bridge system (Figure 4). The reliability
function of a bridge system cannot be written in either of the above two forms. A technique
is to write the reliability function of the system as the sum of two conditional reliability
functions, which are conditioned on two mutually exclusive events. For the bridge system,
the two mutually exclusive events are the bridge is working or not. Conditioning on the
two given events, the system becomes series-parallel decomposable. Therefore, a bridge
system’s complexity is of the order 2(N − 1). Although the analysis is elegant, it is less
realistic to identify the key parts in very large systems. Meanwhile, as the number of key
parts increases to make the system decomposable, the complexity order increases dramat-
ically as well. Suppose K out of N parts are the key parts, such as the remaining system
with N −K parts is decomposable, the complexity order is 2K(N −K), which may not
be small.

When the complexity of the above computation reaches the limit of existing compu-
tational power, simulation is mostly suggested in the practice. By simulation, we mean
simulating failure times of individual components, then inspect each failed component,
starting from the earliest failed one, until we find the one, whose failure will cause the
system to be down.

In some situations, simulation if probably the only method to solve the problem. One
of such situations is when the characteristics of a component can be altered by randomly
occurred events then the closed forms usually do not exist. An example is a cold standby
system. In a cold standby system, all components are assembled exactly the same as a
parallel dependence system. However, some components are identified as standbys, and

JSM 2014 - Section on Physical and Engineering Sciences

3093

remain inactive, until some active component fails. When the total number of active com-
ponents falls under a requirement, and there are no standbys to activate, the whole system
fails. The reliability function of such a system involves integrals, which has to be evalu-
ated numerically or by using simulation if a closed form does not exist. The computational
complexity will be linear to the number of samples that one wants to simulate. However,
for all simulation approaches, the curse of dimensionality is the evil. That is the dimension
of the simulation is the number of components of the system. The larger the dimension of a
simulation, the more samples are necessary to be drawn in order to expose the most events.
Especially if some time-to-failure events are critical but rare, many simulations may be
required to discover them. For example, early failures due to rare malfunction parts.

All we have mentioned above are called exact solutions to computing reliability func-
tion of a system. Even simulation gives approximate results, their discrepancy from exact
solutions diminish as the simulation runs longer. In literature, there were other approaches,
either also exact, or approximated but cannot be improved to increase precision. We are
not considering them in this current work.

3. Considerations in Software Implementation

As we have discussed, we have two options to implement a software to compute the system
reliability function exactly. One is brute force calculation, if a closed form exists. The
other one is simulation if a closed form does not exist, or the brute force approach is too
expensive. The brute force calculation brings ease to calculations besides the system reli-
ability. Those calculations include the density function of the time to system failure, the
hazard function of the time to system failure, the Birnbaum’s component importance, and
so on. All those calculations can take the advantage of the continuity and differentiability
of the closed form reliability functions. On the other hand, simulation results can very
well describe the time to system failure, they are not direct measurements to the quantities
that those other functions need to describe. Indirect methods must be used to convert the
simulation results to obtain estimates of other functions, which are certainly approximate
again. We think it is graceful if user has a choice whenever possible. The following two
subsections describe the frameworks that can be implemented.

3.1 A Framework of Brute Force Calculation

The framework is prepared for the worst scenario that the system is not series-parallel
decomposable, and it cannot be easily identified similar to the bridge system example. For
that situation, all approaches that we have seen require the computational complexity of
O(2N). Approaches include conditional probability, minimum tie sets, and minimum cut
sets. The conditional probability is much easier to implement, in order to obtain exact
solutions. We choose that approach in our work.

The method is based on the theory that the probability that a system is working can be
written as a sum of probabilities that the system is working given a specific component is
working or not, denoted by the following equation.

Pr[S] = Pr[S|Xi] + Pr[S|Xi],

where S is the event that the system is working; Xi is the event that the component Xi is
working;Xi is the event that the componentXi is not working. Either Pr[S|Xi] or Pr[S|Xi]
can be conditioned on another component Xj , which can be further broken down. In terms
of computer science, the calculation forms a pattern of a binary tree. The data structure and
algorithms associated to that methods have been maturely developed in computer science,

JSM 2014 - Section on Physical and Engineering Sciences

3094

which will facilitate the implementation. It is worth noticing if we can observe that the
system will not work under certain conditions, such as Xi is not working, the calculation
does not need to break further down on that part of the branch. In that situation, the cal-
culation is not a full binary tree, which requires less calculation than the full one. In the
implementation, we expect the worst.

3.2 A Framework of Simulation

Depending on whether the states of components are mutually dependent, simulation can be
extremely simple or dauntingly sophisticated. Because there are many forms of dependence
in practice, in different applications, it is not possible to develop a universal framework.
there are a lot of software on the market that address some of the frameworks. A brief
description about a framework for simulation is described here to illustrate a big picture.

1. At time zero, simulate the life of all running components.

2. Remove the component that fails the first from the system. Test whether the system
is working. If not, go to Step 5.

3. Change the states of dependent components of the failed component.

4. Simulate the life of all running components. Because some components have been
working through that time point, the simulation will simulate the remaining life of
those components. Go to Step 2.

5. Record the time as the system failure time. Go to Step 1, and repeat the process for
desired amount of iterations.

6. Collect the simulated system failure times. Those depict the reliability of the system.

It is the third step that can be filled with boxes of tools for all kinds of dependence
scenarios.

3.3 A Mixed Implementation

Our implementation is flexible to allow user to take advantages from both approaches
whenever it is possible or desired. The overall structure of the implementation is under
the brute force calculation, whose calculation can be optionally switched to simulation at
a near future time. Indeed, any exactly calculation that is possible under brute force cal-
culation can be optionally obtained via simulation, but not vice verse. For parts whose
reliability must be calculated by simulation, we isolate the part as a subsystem, whose re-
liability function R(t) is specified as a non-parametric distribution. The simulation that
obtains that non-parametric distribution is encapsulated.

4. A Warm Standby Example

We illustrate our approach in this hypothetical example (Figure 5). This reliability block
diagram models an air exhaustion system. The system has two identical sets of controls, C1
and C2, both are active. The purpose of that is to avoid unexpected electronic or mechanical
difficulties, such as a malfunction chip or a broken switch on a control board. The system
also has two blowers, B1 and B2. One is activated and runs under full capacity. The other
one is also activated, but runs under a very low capacity, which will run at full speed if
the other one fails. The reason of doing so is to reduce the stress of turning the backup

JSM 2014 - Section on Physical and Engineering Sciences

3095

C1

C2

B1

B2

Figure 5: Two-Blower Exhaustion System

C1

C2

B

Figure 6: Two-Blower Exhaustion System

blower to full speed from zero speed, which is more likely to fail, if it is not gradually
speed up. The system will not operate if both controls fail or both blowers fail. Therefore,
the system can be modeled as a series diagram of controls and blowers. Two controls can
be represented by a parallel sub-diagram. In this example, they are represented by a single
parallel block. Two blowers cannot be trivially represented. We represent the two blowers
by a single block, whose reliability function is represented by a non-parametric distribution
(Figure 6).

Suppose the reliability function of a control unit is an Exponential distribution, with
mean time to failure 5000 hours. The control unit is considered as a very reliable com-
ponent, the failure rate of which stays constant. And the reliability function of a blower
running under full speed is a Weibull with the shape parameter β = 3, and mean time to
failure 2000 hours. The parametrization that we refer to is R(t) = exp[−(t/η)β]. There-
fore, the characteristic life parameter η = 2240. The blower is considered to be more likely
to fail if it continuously runs longer and longer, which can be illustrated by a hazard func-
tion plot. The reliability function of a blower running under backup speed, which is much
lower, is assumed to have the same shape parameter, but much longer mean time to failure,
which is 10000 hours. That means the characteristic life parameter η = 11200.

The reliability function of the whole system is (1 − (1 − RC(t))
2) × RS(t), where

RC(t) is the reliability function for a control unit, and RS(t) is the reliability function of
the sub-system of two blowers. The calculation of RS(t) is described by the following
equations.

RS(t) = Pr[T ≥ t] (1)

= Pr[T1 ≥ t] + Pr[T1 < t and T2 ≥ t] (2)

= R(t) +

∫ t

0
f(τ)Pr[T2 ≥ t|τ]dτ, (3)

where R(·) is the reliability function of the time to the failure of the running blower; f(·)
is the density function of that event. Moreover, the part Pr[T2 ≥ t|τ] inside of the integrand
is conditioning on τ , the time to the failure of the first blower. The computation of Pr[T2 ≥
t|τ] is not trivial. We give its expression here without further explanation.

Pr[T2 ≥ t|τ] = R(t− τ + q(1−R∗(τ))),

where q(·) is the percentile function of the time to the failure of a running blower; R∗(·) is
the reliability function of the time to failure of the standby blower under standby condition.
The calculation of above expression can be done by a numerical integration, which is only
feasible for some problems. The calculation can also be done by Monte Carlo integration,
or simulation in another word. Simulation is more general, and universally feasible, as long
as the computational resources allows. A sample of time to failure of the above two-blower
subsystem can be done using the following steps:

JSM 2014 - Section on Physical and Engineering Sciences

3096

1. Generate a random sample t1 from Weibull(x; η = 2240, β = 3) and a random
sample t2 from Weibull(x; η = 11200, β = 3).

2. If t1 ≥ t2, let t = t1 be the time to the failure of the subsystem, then go to previous
step. Otherwise, go to next step.

3. Compute the probability that the standby blower has survived through t1, which is
1−R∗(t1).

4. Compute the equivalent life of the standby blower has been through if it ran under
normal stress, which is t∗ = q(1−R∗(t1)).

5. Generate a random sample t2 from conditional distribution Weibull(x; η = 11200, β =
3|x > t∗). Let t = t2 be the time to the failure of the subsystem. Go to the first step
and repeat the process.

5. Conclusion

We explored the choices of calculating system reliabilities. To achieve the precision, we
can either use the brute force calculation, or simulation. We only have to use simulation
if the closed form formula does not exist. We may prefer simulation, if the brute force
calculation is too expensive. The choice between brute force and simulation does not need
to be at the whole system level. A sub-system can be isolated to simulate, and weaved
into the bigger system by deriving proper functions from the simulation results using a
nonparametric distribution.

REFERENCES

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2008) “Introductions to Algorithms,” MIT Press,
Cambridge, MA.

Elsayed, E. (1996), “Reliability Engineering,” Addison Wesley, Reading, MA.
Meeker, W. Q., and Escobar, L. A. (1998) “Statistical Methods for Reliability Data,” John Wiley & Sons, Inc.,

New York.
Nelson, W. (1982) “Applied Life Data Analysis,” John Wiley & Sons, Inc., New York.
Tobias, P. A., and Trindade, D. C. (2012) “Applied Reliability,” Chapman & Hall/CRC.
West, D. B. (2006) “Introduction to Graph Theory,” Pearson Education, Inc., New Jersey.

JSM 2014 - Section on Physical and Engineering Sciences

3097

