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Abstract 
The authors have recently shown that an error-based controller design method can be 

used to successfully synchronize general chaotic systems with no inherent time delays. 

This approach employs interval estimates obtained from initial error distributions of the 

response state variables to formulate an interval representation of the original response 

system that provided stability requirements for our controller design. In specific cases 

where the number of controller parameters equals the number of state variables, a system 

of linear constraint equations arose that lead to a direct solution for the required controller 

gains. In the present investigation, we extend this robust approach to hybrid systems 

where the design goal is to synchronize inherently delayed and non-time delayed 

systems. Such mixed designs are encountered in many physical and biological systems.  

Surprisingly, most past studies on coupled oscillator systems have avoided hybrid model 

synchronization. Here it is shown that our statistical error-based controller design method 

can be successfully extended to such time delay systems.   
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1. Overview 

 
This paper focuses on the extension of the statistical error-based controller approach to 

time delay hybrid systems that pair a functional system with a chaotic oscillator.  The 

former system arises in many practical settings where there is a dependence on past state 

information.  Two classical examples of delay systems are the Mackey-Glass (1977) and 

Marcus and Westervelt (1989) equations. Specifically, the aim here is to force a classical 

Lorenz system to track a time delay linear time invariant (LTI) system first proposed by 

Olgac and Sipahi (2002). The global stability of this LTI system was assessed via a 

Rekasius (1980) based methodology that isolated localized pockets (regions) of stability 

that depended upon the time delay value.  Unlike our prior study where global stability of 

each chaotic oscillator persists over the entire phase space, it is localized in this 

functional system. Hence, for an arbitrary time delay, local or global stability is not a 

certainty. Care must be taken to identify those stable zones prior to implementing the 

statistical error-based controller design (SEBCD) strategy. An advantage of SEBCD in 

such cases is that the controller structure is only affected by the response system stability 

.i.e., even if the drive is unstable a stable controller can still be devised for a stable 

response system. The success of present inquiry only requires performing independent 

and separate stability analyzes of the respective drive and response systems. For the 
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Olgac and Sipahi system equation below, these stability pockets were found to lie in the 

intervals                                         
 

 
  

   
  =  A x + B x ( t -  ) 
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Any cases with delays outside these intervals produce unstable drive dynamics. 

Nevertheless, synchronization is achieved in spite of the fact that the response system 

tracks the unstable drive to oblivion. Since the same response model is employed here as 

in Morgan and Morgan (2013) that statistical error-based controller structure is 

applicable.  The present controller study highlights the impact of embedded time delays 

of functional equations on gain specifications and the importance of decoupling the 

controller design via the SEBDC approach.  
 

. 

 

2.  Approach and Preliminary Findings 

 
This new method is based on the premise that an interval approximation model (crisp 

fuzzy system) representation of the system of ordinary differential equations that 

describes an individual chaotic (response) oscillator can be used to determine arbitrary 

‘controller parameters’ for a general hybrid system. The initial step in this process 

involves constructing interval approximations for each nonlinear and/or positive linear 

term in our chaotic model from descriptive statistics of the unsynchronized response 

system. Thus, armed with these interval approximations, (local) stability of each term in 

the model is assessed and used to determine the global stability requirements for a given 

drive-response combination. Under this paradigm, the stability of the drive system is not 

necessary for establishing overall system synchronization, only the response. The drive 

stability can however affect overall closed-loop stability as demonstrated in this study.  

Figure 1 shows the original uncoupled dynamic response of our hybrid system prior to 

any synchronization. The drive for this system is the Olgac and Sipahi LTI that is linked 

dynamically to a classical Lorenz oscillator (response). Figure 2 highlights a 

synchronized state with a  high degree of fidelity between drive and response dynamics. 

Note the high level of compression that occurs with synchronization and the speed at 

which it is achieved. 
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Figure 1: Dynamic Response of an Unsynchronized System 

 

 

 

 

 

 

 

 

 

 

                

                            

Figure 2: Dynamic Response of a Synchronized System 

 

 

Again, the general SEBCD procedure, as outlined in Morgan and Morgan (2013), is 

employed.  Unlike our prior effort, Morgan and Morgan (2012) that incorporated a design 

procedure suggested by Bhiwani and Patre (2011) for a classical proportional-integral-

derivative (PID) controller, the current approach eliminates a cumbersome optimization 

step encountered with the former. The constraints imposed in the present design are that 

all error-based moment gains must be positive and all generated errors are bounded by 

the initial state errors between the original drive and response systems. Three design 

cases are possible with this approach: under specified, uniquely specified and over 

specified. Here, only the uniquely specified case where the number of controller 

parameters matches the number of state equations was considered. The basic design 

philosophy has been outlined in detail in our prior papers, Morgan and Morgan (2012, 

2013).  Those approaches removed local nonlinearities via construction of fuzzy intervals 

for each nonlinear term appearing in the response system equations. Thus, a system of 

ordinary differential equations are converted, as shown below in Table 1, into a system of 

linear interval equations that can be used to estimate error-based moment controller gains 

and yield a gain-error characteristic polynomial that addresses local and global system 

stability.  
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Table 1. Conversion of Lorenz System to Fuzzy Model 
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The gain-error characteristic equation for the Lorenz system takes the following form     

 

                                     
 
 

The       term appearing in that equation is the maximum value observed in the 

bracketed terms of the interval description of the original Lorenz system.  Two distinct 

solutions are possible based upon the sign of the discriminant associated with the gain-

error characteristic polynomial. Interestingly enough, the sign of the discriminant also 

dictates the type of image produced. A negative value of this quantity generates 

overlapped images while a positive one produces displaced images. It was also observed 

that the k1 gain controlled the error level between synchronized states (Figure 3), as 

reported in Morgan and Morgan (2012), and that the regression model (Figure 4) 

developed in that study was valid for the current investigation as well. There the 

relationship between controller gain and the correlation coefficient revealed the presence 

of two distinct zones (unstable and stable regions) separated by a critical gain value. A 

single regression model was adequate for describing the general dependency of 
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synchronization fidelity to controller gain for a wide class of chaotic oscillators. The size 

of the instability region was found to be bounded by the length of the maximum fuzzy 

interval while the minimum fuzzy interval enclosed the un-entangled (critical) point. The 

histograms of Figure 3 show the decrease in the associated synchronization error with   

increasing k1 gain. Although not readily apparent in Figure 3, in most cases the error 

distributions were invariant to a change in applied controller gain, k1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Histograms of  Errors for a Time Delay of 0.05 
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Figure 4:  Correlation Coefficient versus Controller Gain, k 

 
 

The normal probability plots of these errors also capture those features of the data 

(Figures 5 and 6). The other two gains (k2 and k3) only affected convergence rates and 

image displacements. Table 2 highlights the effect of controller gains on the degree of 

synchronization. The values recorded in this table in parentheses are correlation 

coefficients obtained after the removal of the mean horizontal and vertical displacement 

distances of the stereo images. The high coefficient values in these cases indicate that the 

stereo images are essentially identical even though they are spatially displaced. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                    

 a. Displaced Images                                             b. Overlapped Images 

 

 

Figure 5:    Images Produced by the Discriminant Effect 
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Figure 6:  Normal Probability Plots of Discriminant Produced Images 
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Table 2: Effect of Controller Gains on Degree of Synchronization 
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Conclusions 

 
An error-based controller design method is proven to be successful for synchronizing 

hybrid, as well as, arbitrary chaotic systems. This method uses interval estimates of the 

response state variables to formulate an interval representation of the original response 

system. For the case where the controller parameters and state variables are matched, a 

system of linear constraint equations are directly solvable for the controller gains. A 

unique characteristic equation provides stability requirements for the controller gains that 

can produce two uniquely different solutions that depend upon the sign of the 

discriminant embedded in the gain error characteristic equation. A simple regression 

model devised for predicting the effect of proportional control gains on synchronization 

fidelity in Morgan and Morgan (2012) is also valid for the functional drive system.  

. 
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