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Abstract: Detection of differential expression in RNA-seq experiments  
offers an exciting opportunity in biomedical research to investigate the 
regulatory mechanisms that control cellular processes in organisms 
giving insight into diseases and developmental processes.   However, due 
to the comprehensive nature of the data, there are many challenges in 
identifying lists of transcripts that are differentially expressed between 
two or more conditions.  Several approaches have been developed but 
there is no consensus on the best approach.  This research compares four 
different statistical methods for identifying differentially expressed genes 
in RNA-seq experiments. 
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1.  Introduction 
 
High-throughput sequencing technology has helped researchers obtain more accurate 
assessments of how cellular networks may be altered by disease.  The introduction of 
RNA-seq has had a revolutionary impact on biomedical research by enabling researchers 
to investigate more complex aspects of the transcriptome (Lee et al., 2011; Guo et al., 
2013).  However, this rich genetic data is accompanied by complications at the analysis 
phase (Guo et al, 2013).  Presently, researchers have not agreed on the best approach for 
analyzing RNA-seq data to determine the lists of transcripts that are differentially 
expressed between two or more conditions. 
 

2.  Background 
 
2.1 RNA-seq experiments 
 
In RNA-seq experiments the following process is used to identify differential expression 
of genes between two or more conditions. First, mRNA is isolated from each sample, 
randomly fragmented into small pieces, reverse transcribed into cDNA, amplified using a 
polymerase chain reaction (PCR), and finally sequenced into millions of reads (DNA 
bases) that are aligned with a reference genome, refer to Figure 1 (Li et al., 2012). 
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The number of reads that match the reference is tabulated and statistical testing is used to 
decide if, for a given feature or gene, an observed difference in read counts for each 
sample is significant (Anders and Huber, 2010), as shown in Figure 2.  RNA-seq has 
recently become the preferred method for gene expression profiling but the 
comprehensive nature of the data poses challenges at the analysis stage (Guo et al., 2013; 
McGettigan, 2013). Although there are RNA-seq statistical analysis tools available, there 
is an opportunity to improve RNA-seq analysis (Guo et al., 2013) 
 

 
 
 
 
 
 

2.2 Differential expression analysis in RNA-seq data 
 
Two main components of the statistical analysis for identifying differential expression in 
RNA-seq data are parameter estimation for the fitted statistical model of the counts and 
testing for differential expression for each of the thousands of genes (Rapaport et. al, 
2013).  In order to detect differential expression of genes from the count table (or 
normalized count table), the counts are assumed to follow an underlying data distribution.  
Once the parameters of the underlying distribution of the counts have been estimated 
from the data, statistical testing is used to decide whether, for a given gene or feature, an 

Figure 1. A representation of an RNA-seq experiment.  Image adapted from Li et al., 2012. 
 

Figure 2. In this overview of RNA-seq differential expression analysis, the Treatment sample has a 
much larger count of reads for Gene A than in the Control sample, thus Gene A is said to be 
differentially expressed between the two samples.  Image adapted from 
http://rafalab.jhsph.edu/688/lec/lecture-9-intro-to-seq.pdf.  
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observed difference in read counts between conditions is significant (Anders and Huber, 
2010).  If there is a significant difference in the counts, that gene is said to be 
differentially expressed among the conditions.  Since there are thousands of genes or 
transcripts that are being tested at once, multiple testing issues arise; therefore, each 
methodology uses a technique to control the False Discovery Rate (FDR) (Li et al., 
2012).  After a list of differentially expressed genes is generated, gene ontology 
enrichment tools can be used to gain biological insight into the regulatory mechanisms of 
the cell. 
 
Typical approaches for modeling count data are the Poisson and the negative binomial 
distribution.  Without modifications, both these distributions cannot address some of the 
biases in RNA-seq count data.  Each methodology needs to account for the differences in 
library depth and gene length.  In addition, each model adjusts parameter estimation to 
control for overdispersion in the data, greater amount of spread in the values than what 
would be expected in a statistical model.  
 
The objective of this study is the comparison of the four methodologies of statistical 
analysis of RNA-seq data with a focus on the statistical methods used to approximate the 
parameters of the underlying distribution of the count data.  The statistical test used to 
determine the p-value for detecting differential expression is characteristically a direct 
result of the method used to model the count data. While the focus will be on the 
estimation of parameters for the statistical model of the counts, at each stage of the 
analysis, both components will be examined in depth for the four methodologies. 
 

3. Methods 
 
3.1  Four methodologies for the analysis of differential expression 
 
The four methodologies that are compared are PoissonSeq (Li et al., 2012), edgeR 
(Robinson et al., 2010), DESeq (Anders and Huber, 2010) and Cuffdiff (Goff et al., 
2012). These approaches are a subset of some of the most commonly used parametric 
methodologies (McGettigan, 2013). 
 
PoissonSeq  

• Models gene counts as a Poisson random variable. 
• A goodness-of-fit estimate is used to define a gene set that is the least 

differentiated to compute the library normalization factor (Rapaport et. al., 2013). 
• To account for overdispersion, the model transforms the read counts to account 

for the variability and uses a log-linear relationship to estimate the mean (Li et 
al., 2012).   

• A score statistic based on the chi-square distribution is used for identifying 
differential expression. 

• A novel estimation of the FDR based on permutations is used (Rapaport, 2013). 
 
edgeR  

• Models gene counts with the negative binomial distribution.  
• Uses the Trimmed Means of M values (TMM), a scaling factor between two 

experiments after excluding genes with large counts or differences in gene 
expression (Rapaport et al., 2013).  

• Assumes that the mean and variance are related by a dispersion factor to account 
for overdispersion (Rapaport et al., 2013; Robinson et al., 2010).  
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• The Fisher Exact Test adapted to the negative binomial distribution is used to 
detect differentially expressed genes. (Rapaport et al., 2013; Robinson et al., 
2010).  

• The FDR can be controlled with standard methods such as the Bonferroni 
correction or the Benjamini–Hochberg (BH) procedure. 

 
DEseq  

• Models gene counts with the negative binomial distribution.  
• Uses scaling factor for a given sample by computing the median of the ratio, for 

each gene, of its read count over its geometric mean across all samples. 
(Rapaport et al., 2013).  

• Assumes that the mean and variance are related by a dispersion factor to account 
for overdispersion (Rapaport et al., 2013; Robinson et al., 2010).  

• The Fisher Exact Test adapted to the negative binomial distribution is used to 
detect DEGs (Rapaport et al., 2013; Robinson et al., 2010).  

• The FDR controlled for by standard methods (Bonferroni correction or BH 
procedure). 
 

Cuffdiff  
• Models gene counts with the negative binomial distribution.  
• Uses the Reads per Kilobase per Million reads (RPKM) to normalize the data 

(Rapaport et al., 2013).  
• Uses a separate variance model for single-isoform and multi-isoform genes 

(Rapaport et al., 2013).  
• Uses a test statistic based on the ratio of counts between two conditions that is 

shown to follow the normal distribution (Rapaport et al., 2013).  
• The FDR controlled for by standard methods (Bonferroni correction or BH 

procedure). 
• CummeRbund is an R package that is designed to aid and simplify the task of 

analyzing Cufflinks RNA-Seq output (Goff et al., 2012).  
 
3.2 Comparison of methodologies 
 
All four methods are evaluated on real-world data. Sun et al. (2011) used RNA-seq to 
examine gene expression in 8 commonly used breast cancer cell lines. Studies have 
shown that ER+ and ER- breast cancers have very different gene expression profiles that 
may be useful in diagnosis and treatment. In this study, samples were differentiated by 
ER status where 4 were ER+ and 4 were ER-.  The data are also available from the Gene 
Expression Omnibus database (GSE27003). (Sun et al., 2011) 
 
Further analysis can be done using established benchmark datasets that contain cases with 
known outcomes to provide suitable evaluation measures (Vihinen, 2012). Data sets that 
have spiked-in synthetic oligonucleotides are mixed into samples, have  known outcomes 
that yield a true measure of positive and false rates to perform an analysis to compare the 
performance of the four methods (Rapaport et al., 2013).  Receiver operating 
characteristic curves (ROC) plot these two rates against each other for each method and if 
one ROC curve is above another or the area under the curve (AUC) is larger, this 
indicates the superiority of one method over the other (Auer and Doerge, 2010).  
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4.  Conclusions 

 
For the Sun et al. data, PoissonSeq and edgeR had the largest intersection of 
differentially expressed genes; whereas DESeq and Cuffdiff shared the least 
number of differentially expressed genes (Figure 3).   There were many 
differences in the lists of differentially expressed genes among the four 
methodologies.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Rapaport et al. used the area under the receiver operating characteristic (ROC) curve 
(AUC) to evaluate the performance of the different techniques for the detection of 
differentially expressed genes.  They found that edgeR and DESeq had a slight advantage 
in detecting differentially expressed genes reporting AUC for both methods 0.894; 
whereas, AUC for PoissonSeq was 0.878 and for Cuffdiff 0.865for an established 
benchmark dataset.   
 
No single method is clearly superior for differential expression analysis, since each has 
particular strengths that may be suitable for specific RNA-Seq datasets (Rapaport et al., 
2013). All four tools perform much better when there are biological or technical 
replicates available. Consistent with previous studies it suggests that biological replicates 
are a key factor for differential expression analysis in RNA-Seq datasets (Rapaport et al., 
2013). 
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Figure 3. The intersection of the differentially expressed genes identified by the four different 
methodologies.  The adjusted p-value cut-off was 0.05.   
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