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Abstract
Quantitative Structure Transcriptional Activity Relationship (QSTAR) involves relating the three

data sources in early drug discovery namely (1) chemical structure (fingerprint features), (2) bioac-
tivity (bio-assay read-outs) data for targets of interest, and (3) transcriptomic (gene expression) data
of a set of compounds. In this paper, a gene-specific and fingerprint feature-specific joint model is
presented as a tool to model the association between gene expression and biological activity taking
into account the chemical structure of the compounds. The model allows to detect genes that are as-
sociated to the bio-assay read-out for which some of the associations are mainly induced by certain
fingerprint feature(s) of compounds. The joint model is applied to two oncology projects. Results
show that a number of compounds’ fingerprint features have differential effects on both bio-assay
read-outs and a set of correlated genes.
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1. INTRODUCTION

Selecting candidate molecules for an already defined biomolecular target in the pre-clinical
stages of drug development involves the analysis of several data sources to get a better
understanding of their chemical properties and biological activities or mechanism of action.
A set of compounds with observed activity may still need structural modifications either
to fit better to the target or to eliminate undesirable chemical features. Biological and
chemical information of compounds can be quantified in various ways. The structural
information of the compounds can be encoded using different molecular descriptors. A
comprehensive discussion of different molecular descriptors in chemoinformatics is given
by Todeschini and Consonni (2009). The Extended Connectivity Fingerprints (ECFPs)
were developed specifically for structure-activity modeling (Rogers and Hahn, 2010). This
is characterized by a vector of binary values, also known as molecular fingerprint that
describes which chemical features are present or absent in the molecule. For the bioactivity
data, typically, the efficacy of the candidate compounds can be measured via the dose-
response experiments wherein a range of compound concentrations is tested in a target-
based assay to assess the concentration or dose dependence of the assay’s readout. This is
usually expressed as an IC50 or as an EC50 in enzyme-, protein-, antibody-, or cell-based
assays.

Another source of biological activity data (including on-target and off-target effects)
in early drug discovery is the use of gene expression profiling (Bai et al., 2013). This
technique measures multiple biological effects of a compound on a whole genome tran-
scriptional level, and thereby gives an information-rich snapshot of the biological state of
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a cell (Göhlmann and Talloen, 2009; Amaratunga, Cabrera, and Shkedy, 2014). Besides
being able to provide information on thousands of genes in one experiment, microarray ex-
periments are also fairly rapid, and relatively low-priced in contrast to assay development
(Fadiel and Naftolin, 2003). It has also been observed that transcriptomic data mostly detect
biologically relevant signals and are often able to help prioritizing compounds beyond con-
ventional target-based assays. Moreover, this enables us to investigate downstream effects
of candidate drugs through pathway-associated gene signatures. This offers the chance of
finding a biological basis for the disease and biomarkers involved in the disease pathway.

Biomarker identification is a major application for microarray experiments in early
drug development which often parallels and facilitates compound selection. Hence, many
studies have been devoted to identify genes that are associated to the biological activity
of interest, the inhibition of a certain enzyme, for instance. It is also equally important to
detect toxicity at the early stages of development. Reliable biomarker for toxicity can be
very helpful in this respect as it allows cost-effective testing of other drug candidates and
leads in compound series under investigation. For example, Lin et al. (2010) and Tilahun
et al. (2010) identified gene-specific biomarkers for continuous outcomes (the distance trav-
eled by a rat under treatment and the HAMD scores for psychiatric patients, respectively).
Van Sanden et al. (2012) identified gene specific biomarkers for toxicity data presented as a
binary response. This paper exemplifies the usefulness of a joint model, a well established
tool in finding genetic biomarkers, applied within the Quantitative Structure Transcriptional
Activity Relationship (QSTAR) framework. Figure 1 displays the biomarker setting where
the joint model can be applied. It shows how the transciptomic variable X is associated
with the clinical outcome of interest Y given that both can be influenced by a condition
Z. It is a highly flexible technique to find a biomarker−endpoint pair that are both driven
by the same factor. The factor can be any binary variable such as treatment/control, ac-

Z

X

Y

effect of Z on the 
 biomarker (X)

association between 
 the biomarker 
 and the true endpoint

effect of Z 
 on the 
 true endpoint (Y)

Figure 1: The Biomarker setting. The arrows represent the association of two continuous
responses (biomarker X and the endpoint Y) and 1 common explanatory variable (Z) that
can be quantified by using a joint model.

tive/inactive compounds, compounds with/without tox effects, binary chemical descriptors,
etc. The joint modeling approach fits in the QSTAR framework wherein it investigates the
relationship between bio-assay data (Y) and transcriptomic data (X) taking into account the
presence/absence of a chemical substructure (Z) of a compound set. The analysis is per-
formed gene-by-gene and fingerprint-by-fingerprint. This approach provides a solution that
is very helpful in extracting relevant information from the high dimensional and complex
microarray and chemical data.

In this particular application, the joint model provides a list of genes that are associated

JSM 2014 - Biopharmaceutical Section

3022



with the bioactivity read-outs, but taking into account that both the gene expression levels
and the bioactivity read-outs could be influenced by a chemical substructure(s) that is(are)
inducing the observed association. In this regard, finding relevant genes that are linearly
related to the biological response is already a valuable information per se but noting that
this linear relationship is caused by the presence or absence of a particular chemical sub-
structure(s) provides another level of information in designing new molecule, in improving
drugs or in prioritizing compounds to carry on in the next phase of drug discovery.

The joint modeling framework that we proposed in this paper allows us to: (1) identify
gene signatures of activity for directing chemistry, (2) determine chemical substructures
(also termed as fingerprint features, FF) of compounds that are related with effects on
the bio-assay data for target(s) of interest and (3) know whether this effect can also be
confirmed by the gene expression changes (either on- or off- target related).

1.1 Graphical illustration of the different types of genetic biomarkers for compounds’
efficacy
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Figure 2: Hypothetical examples of the association between response variable to expres-
sion levels when the response is differentially expressed. Each point represents a com-
pound. Solid blue points and black points represent the presence/absence of a fingerprint
feature , respectively. Upper row: scatterplots for the response versus the gene expression.
Lower row: scatterplots for the residuals after adjusting for fingerprint effects.

Several interesting associations between genes and a response accounting for the effect
of a fingerprint feature can be discovered by using a joint model. The different types of
association are illustrated in Figure 2 using a hypothetical data. Each point in the plot
represents a compound and the solid ones are compounds having the fingerprint feature.

For this application, the interest lies only on the fingerprint feature that shows differ-
ential effects on the bioactivity, the response in this case; thus the four possible scenarios
between the gene expression and response variable of interest presented in the upper panels
of Figure 2(a-d). The lower panels(e-h) display the same data with their respective upper
panels adjusted for fingerprint feature effect for both the response and the gene expression.

In panel (a) the gene is not differentially expressed and has a linear association with the
response irrespective of the presence/absence of the fingerprint feature. Note that the linear
pattern remains after adjusting for the effect of the fingerprint feature as shown in panel
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(e). Panel (b) shows an example in which the gene is differentially expressed, the clouds of
points are clearly separated in both dimensions. Moreover, it can be observed that within
the group, the association between the gene expression and the response does not have a
linear pattern, which is evident in panel (f) after the adjustment. Note that for this pattern,
the association between the gene expression and the response in induced by the chemical
structure. Therefore, when the model is adjusted for the chemical effect the association
disappeared (Figure 2 f).

Panel (c) shows a combination of the previous two patterns. Both the gene expression
and the response are differentially expressed, that is compounds having the fingerprint fea-
ture are inducing higher activity than those that don’t have the feature. In this setting, the
association between the gene expression and the response can be summarized by a straight
line, this can be clearly seen from panel (g) which shows the same example after adjusting
for fingerprint effects.

Lastly, most genes are expected to be uncorrelated with the bioassay as depicted by
panel (d). Within each group of compounds (with and without the fingerprint feature),
linear pattern is not evident; thus, adjusting for this effect also provides a random scattering
of points (panel (h)).

2. Materials and Method

2.1 Data

Data from two drug development projects in oncology are used to illustrate the applicability
of the joint model. For each project, information about the three data sources, transcrip-
tomic, phenotypic and chemical structure data is available for each compound.

The ROS1 dataset consists of eight-nine (89) compounds tested for target inhibition.
The cellular assay provides the inhibitory activity measurements of the compounds given
by the IC50, half-maximal inhibitory concentration. In this analysis, the pIC50 scale (-log
IC50) is used, in which higher values indicate exponentially greater potency. A total of
1289 genes were retained after the pre-processing steps. Moreover, a total of 312 unique
profiles of chemical substructures using Extended-Connectivity Fingerprints with a search
depth of 6 (ECFP6) were identified for this compound set. The chemical structure data is
given as binary variables which denote the presence/absence in a compound of a certain
chemical substructure also termed as fingerprint feature (FF).

The EGFR dataset focuses on inhibition of the epidermal growth factor receptor. Thirty-
five compounds with a macrocycle structure were profiled in order to identify compounds
with similar biological effects as the current EGFR inhibitors, gefitinib and erlotinib, serv-
ing as the reference compounds. Gene expression profiles are available for 3595 genes after
pre-processing. For this project, a total of 138 unique profiles of fingerprint features across
35 compounds was generated.

2.2 The Statistical Model

Let X be the gene expression matrix where Xi j is the jth gene expression j = 1, . . . ,m, of
the ith compound, i = 1, . . . ,n, and denote the measurement for the bioassay by Yi. Both
gene expression and bio-assay read-outs are assumed to be normally distributed. Let Z be
the fingerprint feature matrix where Zki be an indicator variable representing the kth finger-
print feature. Note that the three data sources are connected by compounds. For a given
fingerprint feature, the gene-specific joint model that allows testing for which gene is also
differentially expressed and which gene is predictive of the response irrespective of the ef-
fect of the fingerprint feature is given as follows:
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Xi j = µ jk +α jkZki + εi jk

Yi = µY k +βkZki + εki
(1)

or equivalently formulated as(
Xi j

Yi

)
∼ N

[(
µ jk +α jkZki
µY k +βkZk

)
,Σ jk

]
(2)

where the error terms have a joint zero-mean normal distribution with FF-specific and
gene-specific covariance matrix, Σ jk.

Σ jk =

(
σ j jk σ jY k
σ jY k σYY k

)
(3)

The parameters α jk and βk are the ML estimates of the kth fingerprint feature effects for the
jth gene and the response, respectively, and µ jk and µY k are gene- and fingerprint-specific
and the response-related intercepts, respectively.

Thus, the gene-specific association with the response can be obtained using adjusted
association (Buyse and Molenberghs, 1998; Amaratunga, Cabrera, and Shkedy, 2014), a
coefficient that is derived from the covariance matrix, Σ jk, of gene-specific joint model
(Eqn. 3):

ρ jk =
σ jY k√

σ j jkσYY k

. (4)

Indeed, ρ jk = 1 indicates a deterministic relationship between the gene expression and the
response after accounting for the effect of the kth fingerprint feature.

2.2.1 Testing for differentially expressed genes

The model allows testing for differentially expressed genes, hence for each gene, we test
the hypotheses

H0 jk : α jk = 0,
H1 jk : α jk 6= 0.

(5)

For a microarray with m genes, there are m null hypotheses to be tested, which implies that
an adjustment for multiple testing should be applied. Throughout this paper, we apply the
FDR approach proposed by Benjamini and Hochberg (1995).

2.2.2 Testing for the association between the gene expression and the bioactivity data
after accounting for the effect of achemical structure

In order to make inference about ρ jk, there is a need to test whether the expression level of
a gene and the bio-assay read-out are correlated, specifically, whether the expression level
of a gene can predict the bio-assay read-out. Thus, in addition to the hypotheses in (5), one
needs to test the hypotheses

H0 jk : ρ jk = 0,
H1 jk : ρ jk 6= 0.

or equivalently
H0 jk : σ jY k = 0,
H1 jk : σ jY k 6= 0.

(6)

Under the null hypothesis, the joint model in (2) is reduced to(
Xi j

Yi

)
∼ N

[(
µ jk +α jkZik
µY k +βkZk

)
,Σ j =

(
σ j jk 0

0 σYY k

)]
(7)
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Consequently, the inference for the adjusted association can be based on a likelihood
ratio test by comparing models in (2) and (7). Asymptotically, the likelihood ratio statistic
follows a χ2 distribution with one degree of freedom. Benjamini and Hochberg (1995)
procedure is used to adjust for false discovery rate when testing for the null hypotheses of
H0 j : ρ jk = 0 for all the genes simultaneously by fingerprint feature.

3. Results

Given that the chemical structure effect upon the activity data is present, the different types
of genetic biomarkers for compound efficacy presented in Figure 2 can be obtained from
the hypothesis testing in (5) and (6). In this early drug development set up, the interest
lies on two gene classes where the chemical structure has a significant effect on both the
gene (α 6= 0) and the response as shown in Figure 2 b and c. For the first group of genes,
the association is driven by the FP effect whilst for the second group of genes the associ-
ation between the gene expression and pIC50 exists regardless of the effect of a chemical
substructure of the compound.

This paper covers the results obtained from the joint model using a fingerprint feature
that is most responsible for the variation in compound activity. Specifically, FF-442307337
and FF-2086493472 are ranked first based on a feature-by-feature two-sample t-test of
bioactivity data for the EGFR and ROS1 projects, respectively. These substructures are
prominent on less potent compounds, i.e. those with pIC50 values less than 6.5 (Figure 3).
Figure 4a shows the chemical structure of FF-442307337, an oxygen in ortho position of
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Figure 3: Top fingerprint feature differentiating bioactivity.

the aniline (highlighted in red). This structure is not present in two reference compounds
gefitinib and erlotinib (Figure 4b,c) as well as in potent compounds. However, there are
also some less potent compounds that do not have this feature which could mean that this
substructure is probably not the sole reason for compounds’ lower activity. For the ROS1
project, most of the differentially expressed genes belong to the first gene class, that is
the correlations observed between the pIC50 and gene expression can be attributed to this
substructure as the correlation disappears after adjusting for this chemical feature (239
versus 139 genes, see Table 1). The top 5 genes for this gene class are displayed in Figure
5 where it can be clearly seen that the slope of the lines in the upper panels significantly
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Figure 4: Chemical structures of a) identified less potent compound; and the two reference
compounds in EGFR project b) erlotinib and c) gefitinib.

Table 1: Testing the null hypotheses in (5) and (6) for the ROS1 project for FF -2086493472
at 5% FDR.

ρ j

H0 is rejected H0 is not rejected

α j
H0 is rejected 139 239

H0 is not rejected 382 529

dropped to around zero after the adjustment of the effect of the chemical structure as shown
in their corresponding lower panels. For this group, the joint model indicated very low
adjusted correlation between the genes and the activity.

Table 2: Testing the null hypotheses in (5) and (6) for the EGFR project for FF -442307337
at 5% FDR.

ρ j

H0 is rejected H0 is not rejected

α j
H0 is rejected 396 61

H0 is not rejected 1099 2039

For the EGFR project, results show that most of the differentially expressed genes are
still associated with the bioactivity data upon adjustments of the effect of the chemical
structure (396 versus 61, see Table 2). Figure 6 shows the 5 most differentially expressed
genes with the adjusted association remaining high after adjustment of the chemical struc-
ture. The plots in the lower panels still follow the same linear patters with their respective
upper panels. Most of these genes are known to participate in biological processes involv-
ing cell proliferation (positive and negative), survival and differentiation.
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Figure 5: Scatterplot of the expression level and bioactivity data given by the pIC50 (upper
panel) and their corresponding residuals from the joint model (lower panel) of the top 5
differentially expressed genes with low adjusted correlation. The correlation between the
gene expression and the inhibitory activity against ROS1, of the compounds (represented
by points in the plots) can be explained by the substructure FF-2086493472.
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Figure 6: Scatterplot of the expression level and bioactivity data given by the pIC50 (upper
panel) and their corresponding residuals from the joint model (lower panel) of the top 5
differentially expressed genes with high adjusted correlation for the EGFR project.
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4. Discussion and Conclusion

Identification of transcriptomics biomarkers is not limited only for classification problems
but can be applied for prediction problems as well. In this paper, we have shown that
the joint model can identify genes that are predictive of compound activity, measured by
pIC50, and can therefore serve as genetic biomarkers for compounds efficacy. In addition,
we have shown that the effect of a particular chemical substructure on the expression level
of each gene and/or its influence on the observed transcriptomic-phenotypic association
can be estimated.

The joint modeling approach, although implemented using only one feature at a time
for every data source, facilitates the extraction of valuable insights on compounds structural
and biological mechanisms. Although, we focused in this paper on one fingerprint feature
and on-target assay per project, this method can easily be run in loops. In the pharma-
ceutical pipeline implementation, this model is applied to all or to a number of interesting
chemical substructures, genes and biological assays (efficacy or toxicity related). The large
amount of output can then be collated and filtered for vital information that can help the
research team, especially, the medicinal chemist and biologist in taking the next step in the
drug development process.

The joint modeling of bioactivity and gene expression data not only confirms the un-
derlying biological mechanisms of candidate compounds but also models the association
existing between the responses when accounting for the effect of a chemical substructure.
It would be interesting from a lead optimization angle, if a structure is actually responsible
for driving the association. The effect of a promising fingerprint feature could be exper-
imentally validated to determine whether chemical modification of compounds involving
this substructure may improve compounds’ activity. In addition, the datasets in early drug
development experiments are typically of high dimension and a multivariate approach that
integrates all these datasets could be performed. Even then, the joint model proposed in this
paper could still be very helpful in extracting relevant information from the high dimen-
sional and complex microarray and chemical data and providing an answer to the relevant
research questions posed by drug development teams in the pharmaceutical companies.
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