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Abstract 
 
Yates Method is used to compute the effects of k factors each at two levels on a response 
variable.  This calculation includes the sums of squares and coefficients in a factorial 
model for nonreplicated experiments. An overview of the Yates algorithm is presented 
along with different types and uses of Yates inputs and expected outputs. The estimated 
effect estimates are ranked and used to identify potential models which are validated by 
analyzing the residuals.  Graphical techniques are illustrated and the statistical 
performances of different approaches are compared. Various formulas for variances are 
developed using concepts from mathematical statistics. 
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Introduction 
 
Full and fractional factorial designs are common in designed experiments for engineering 
and scientific applications (Wiki).  In these designs, each factor is assigned two levels 
typically called the low and high levels. A full factorial design contains all possible 
combinations of low/high levels for all the factors. A fractional factorial design contains a 
subset of these combinations chosen by using a defining contrast.  A similar algorithm 
can be used for problems where factors have three levels (low, medium, high). 
 
This paper provides an overview of the Yates Method in analyzing unreplicated 
experiments for balanced full factorial experiments and balanced fractional experiments 
with two and three level factors.  The Yates method generates least squares estimates of 
effects for all factors and all interactions of interest. The Yates analysis can be used to 
determine: 
 
1. a ranked list of  important factors   
2. the goodness-of-fit measured by the residual standard deviation for the various 

models  
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Yates order 
 
Before performing a Yates analysis, the data should be arranged in "Yates order". That is, 
given k factors, the kth column consists of 2(k - 1) minus signs (i.e., the low level of the 
factor) followed by 2(k - 1) plus signs (i.e., the high level of the factor). Table 1 describes 
the structure of a design matrix for an experiment with three two level factors.  
 
Table 1. Design Matrix Structure 
 
Column k Column 2k-1   Column Description 
1 1 one negative (–) followed by  one positive (+) sign 
2 2 two negative (–)  followed by two positive (+) signs 
3 4 four negative (–)  followed by four positive (+) signs 

Table 2 presents four different notations used for a design matrix of a full factorial in 
three factors.  Determining the Yates order for fractional factorial designs requires 
knowledge of the confounding structure of the fractional factorial design. 

Table 2. Four Design Matrix Notations 
 
 1   2    3    4  
tc  A B C  A B C  A B C 
(1)  - - -  -1 -1 -1  0 0 0 
a  + - -   1 -1 -1  1 0 0 
b  - + -  -1  1 -1  0 1 0 
ab  + + -   1  1 -1  1 1 0 
c  - - +  -1 -1  1  0 0 1 
ac  + - +   1 -1  1  1 0 1 
bc  - + +  -1  1  1  0 1 1 
abc  + + +   1  1  1  1 1 1 
 
Yates Algorithms.  Two algorithms are presented.  The first is for a 2k design and the 
second is for a 3k design.  Both algorithms have the same purpose -perform the sums of 
squares calculations for an ANOVA table and compute the effects. 

 

Yates algorithm for computing the contrasts in a 2k design 
 
1. Arrange the k factors in standard order. 
2. Successively pair consecutive responses (averages or totals) 
3 . Generate a new column whose first k/2 entries are the sums of the successive pairs of   
     entries and whose next k/2 entries are the differences (second entry – first entry) for   
      the two response entries in each pair. 
4 . Generate a second column from the new column in step 3 by performing the same   
      additions and subtractions on successive pairs of entries in the new column. 
5. Working each newly generated column, continue the patterned addition and   
     subtraction of successive pairs of entries until a total of k new columns have been    
     generated. 
6.  Effects can be normalized (standardized) three different ways. 
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a. After k cycles, divide the kth column by the square root (2k). Milliken and 
Johnson use this approach in Analysis of Messy Data, Volume 2 Nonreplicated 
Experiments (AMD2). 

b. Divide the first entry in the kth column by 2k; divide the remaining entries in this 
column by 2k-1.  This column of values now contains the constant effect (mean), 
the main effects, and interaction effects of the model factors.  The following 
authors have used this approach: Montgomery, Box, Hunter and Hunter, and 
Mason, Gunst, and Hess. 

c. After k cycles, the kth column contains the total of the treatment means and the 
effect contrasts with ± coefficients applied to the treatment means.  These results 
are in standard order.  To get the grand mean and effects, divide column k by 2k 
= n.  Oehlert uses this approach. 

 

Yates algorithm for computing the contrasts in a 3n design.  
 
1. Arrange the factors in standard order. 
2. Successively group response averages into groups of three observations each. 
3. Fill in k columns using Yates algorithm on groups of three.  
    Fill in upper 1/3 of each column with the sum of three entries in a group of three   
    Fill in middle 1/3 of each column with the differences of the 3rd entry in a group  
    – 1st entry in a group of three. (linear component)   
    Fill in lower 1/3 of each column by 1st entry in a group – 2 times 2nd entry in a  
    group + 3rd entry in a group of three.  (quadratic component)     
4 . There are k steps starting with an initial column of responses (raw data).  The column    
     is updated k times. The last (k+1)th  step involves a standardization of each       
     effect in the model.   
 
Parameter estimates as terms are added to a linear model 

In most cases of least squares fitting, the model coefficients for previously added terms 
change depending on what was successively added. For example, the X1 coefficient might 
change depending on whether or not an X2 term was included in the model. This is not the 
case when the design is orthogonal, as is a 23 full factorial design.  

For orthogonal designs, the estimates for the previously included terms do not change as 
additional terms are added. This means the ranked list of effect estimates simultaneously 
serve as the least squares coefficient estimates for progressively more complicated 
models. 
 
Model selection and validation using Yates Method (Wiki) 

An important part of a Yates analysis is selecting the best model from the available list of 
potential models.  Determining the most appropriate model requires balancing the 
following two goals. 

1. We want the model to include all important factors and interactions and to omit 
the unimportant factors and interactions. 

2. We want the model to be parsimonious (as simple as possible). 
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Note that the residual standard deviation alone is insufficient for determining the most 
appropriate model as it will always be decreased by adding additional factors. Instead, 
seven criteria are utilized to define important factors. These seven criteria are not all 
equally important, nor will they necessarily yield identical subsets, in which case a 
consensus subset or a weighted consensus subset must be extracted. In practice, some of 
these criteria may not apply in all situations, and some analysts may have additional 
criteria. These criteria are given as useful guidelines. Most analysts will focus on those 
criteria that they find most useful. 

 Practical significance of effects as determined by a subject matter specialist 
 Statistical significance of effects (1/2 normal plot) 
 Order of magnitude of effects (ranks of important effects by size) 
 Probability plots of effects (normal plot) 
 Practical significance of residual standard deviation 
 Statistical significance of residual standard deviation (various models can be 

compared) 

The first four criteria focus on effect sizes with two numeric criteria and two graphical 
criteria. The last two criteria focus on the residual standard deviation of the model. Once 
a tentative model has been selected, the error term should follow the assumptions for a 
univariate measurement process. That is, the model should be validated by analyzing the 
residuals from various models. 
 

Graphical presentations 

A Yates analysis is often accompanied by a number of graphical techniques. In particular, 
the following plots and charts may be useful: DOE mean plot, QQ plot, normal plot, half-
normal plot and Pareto charts. 

Example 1.An analysis procedure for data obtained in a nuclear pilot plant 
study as seen in Box, Hunter and Hunter's Statistics for Experimenters. 

 
A pilot plant run consists of (1) cleaning the reactor, (2) inserting the appropriate catalyst 
charge, (3) running the apparatus at a given temperature, pressure and feed concentration 
for 3 hours to allow the process to settle down at the chosen experimental conditions, (4) 
sampling the output every 15 minutes during the final hour of running, and (5) combining 
chemical analyses made in these samples into a single response variable conversion (%). 
 
The data is a full fraction in four variables each having two levels (24 design).  Only 
unbiased parameter estimates of model coefficients are used in computing effects; an 
effect = 2 * model coefficient. The variables are seen in Table 3. 
 
A DOE mean plot showing response means at low and high values of the predicting 
variables (Catalyst charge (lb.), Temperature (ºC), Pressure (psi), and Concentration (%)) is 
given in figure 1.   

 

In preparation for a Yates Analysis the data is put into standard Yates order. The actual 
order of the 16 experiments was randomized.  See table 4 below.   
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Table 3. Variable list –Pilot Plant Study 
 
# Nickname Variable Low (-) High (+) 
1 A Catalyst charge(lb.) 10 20 
2 B Temperature (ºC) 220 240 
3 C Pressure (psi) 50 80 
4 D Concentration (%) 10 12 
 Y Chemical = response   Conversion (%) Continuous random variable 
 
 

                                            
                                   
                                        Figure 1 DOE Main effects Plot 

 

Table 4.Design matrix for Pilot Plant Data in standard (Yates) order 
 

Std Intercept and Factors % 
Conv 

Order of 
 Runs Order I A B C D 

1 1 -1 -1 -1 -1 71 (8) 

2 1 1 -1 -1 -1 61 (2) 

3 1 -1 1 -1 -1 90 (10) 

4 1 1 1 -1 -1 82 (4) 

5 1 -1 -1 1 -1 68 (15) 

6 1 1 -1 1 -1 61 (9) 

7 1 -1 1 1 -1 87 (1) 

8 1 1 1 1 -1 80 (13) 

9 1 -1 -1 -1 1 61 (16) 

10 1 1 -1 -1 1 50 (5) 

11 1 -1 1 -1 1 89 (11) 

12 1 1 1 -1 1 83 (14) 

13 1 -1 -1 1 1 59 (3) 

14 1 1 -1 1 1 51 (12) 

15 1 -1 1 1 1 85 (6) 

16 1 1 1 1 1 78 (7) 
Effect 

Contrast 
1156 -64 192 -18 -44  
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Procedure to find sigma using the half- normal plot (Pilot Plant Data) 

1 . Do a Yates ANOVA on an unrestricted model.  A good estimate of error variance will be    
     obtained by running the half-normal plot two times.   
 
2 . Construct a half-normal plot of the effects using the method described in Analysis of  
      Messy Data, Vol. 2 – Nonreplicated Experiments (AMD2). The method is nicknamed   
      DEJ in this paper. 
 

The significance of an effect is determined graphically using the half normal plot. 
This involves computation of a variable named V.  V is the quantile from a half-normal 
distribution associated with a probability P.  V is constructed using the ranks and 
absolute value of the effects ( |Xi| ) as follows: 
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Each effect has a (P, V) pair.  The absolute value of an effect vs its V value is plotted in 
the half-normal plot.  Significance of an effect is based upon whether the (|Xi|, V) pair 
has a value of V greater than one.  This is discussed in AMD2.  Some pertinent 
relationships are: 
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Significant effects noted in the half normal plot below are B, A, D, BD, and C. These are 
removed and a new half normal plot is run without the significant effects.   See steps 
three and four. 

                                     

                           Figure 2 Half –Normal Plot of the effects 
 
3 .  Remove significant effects from the dataset. (- B, A, D, BD, C) 
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4 .  Construct a second half-normal plot (- significant effects).  As expected the remaining   
      points are close about the fitted regression line. This is a check on whether the correct  
      significant factors are found. 
 

                               
                        Figure 3 Half-Normal plot to estimate sigma. 
 

5.  Find  ߪො.  Estimated sigma is 1.42.  It is found by dropping a vertical line from the   
      intersection of the regression and horizontal lines. 
6 .  Compute ߪොଶ	ሺ = 2.02).  This is an approximation based upon the effects. 
7 .  Compare ߪොଶ= 2.02 to the mean square of the four way interaction term A*B*C*D = .25  
      from a conventional ANOVA.     
8 .  Check results with a half- normal plot using the parameter estimates of the beta vector. 
 
Figure 4 indicates that B, B*D, A and B*C are statistically significant if we use the cutoff 
line of V=1.   

                                   

                       Figure 4 Half- normal plot based upon Parameter Estimates  

The overall ANOVA and type III SS's are the same for models having categorical 
predictors and models having continuous predictors. However the parameter estimates 
differ.  The unbiased estimates of model coefficients obtained using continuous 
predictors are presented in table 5. 
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Standardizing Effects.  In the literature there are different methods of standardizing 
the effects in a Yates analysis. The methods differ in how they standardize the data in the 
final step.  I give the methods the nicknames DEJ, BOX, MONT, OEH, and HT. MGH 
refers to the method of using the parameter estimates from the ANOVA as opposed to 
using Yates Algorithm. Table 5 is the ANOVA with continuous predictors for the nuclear 
pilot plant data. 
 
Table 5. Nuclear Pilot Plant Study ANOVA with continuous predictors  
 

Source DF Type III SS SS / MS

Unbiased 
Parameter 
Estimate 

Standardized 
Effect 
(DEJ) 

Standardized Effect
(Box, Montgomery, 
Mason, Gunst and 

Hess) 
Model 15 2801.000 186.733    
Intercept    72.250 72.25
A 1 256.000 256.000 -4.000 -16.0 -8
B 1 2304.000 2304.000 12.000 48.0 24
A*B 1 4.000 4.000 0.500 2.0 1
C 1 20.250 20.250 -1.125 -4.5 -2.25
A*C 1 2.250 2.250 0.375 1.5 0.75
B*C 1 6.250 6.250 -0.625 -2.5 -1.25
A*B*C 1 2.250 2.250 -0.375 -1.5 -0.75
D 1 121.000 121.000 -2.750 -11.0 -5.5
A*D 1 0.000 0.000 0.000 0.0 0
B*D 1 81.000 81.000 2.250 9.0 4.5
A*B*D 1 1.000 1.000 0.250 1.0 0.5
C*D 1 0.250 0.250 -0.125 -0.5 -0.25
A*C*D 1 0.250 0.250 -0.125 -0.5 -0.25
B*C*D 1 2.250 2.250 -0.375 -1.5 -0.75
A*B*C*D 1 0.250 0.250 -0.125 -0.5 -0.25
Error 0 0.000
Corrected Total 15 2801.000  
 
The equivalent Yates analysis is given in Table 7. The raw effects computing using Yates 
Method are divided by a constant to compute the equivalent standardized or normalized 
effects.  Divisors seen in six different textbooks that are used with Yates analyses are 
given in table 6 below. Table 7 is an application of these methods for the pilot plant 
study. 
 
Table 6. Normalization (Standardization) Methods 
 
Author Method Nickname Divisor* Stdz effect MS=SS=Effect2 
Dallas E. Johnson DEJ √݊ Contrast / √݊ Yes 
Box, Montgomery and  
Mason Gunst and Hess 

BOX, MONTE, 
MGH 

n , n/2 
Contrast/(n,n/2) No 

Hicks & Turner HT r2f-1 Contrast/(r2f-1 ) No 
Hicks & Turner HT (1/2 fraction) .5r2f-1 Contrast/(.5r2f-1 ) No 
Oehlert OEH    n Contrast/2f No 
* f=number of factors,    r=number of observations per treatment combination (tc),         
   Unbiased parameter estimate=coefficient=effect/2 

JSM 2014 - Section on Physical and Engineering Sciences

2998



 

Table 7.  Pilot Plant Study 
 
%conc    Raw 

Effect 
Box 

Mont 
DEJ 
stdz 

OEH 
Stdz 

HT 
Stdz 

  

step0 step1 step2 step3 step4 Step5 Step6 Step7 Step8 SS / Mean Square Effect 

71 132 304 600 1156 72.25 289 72.25 144.5 2801=162+482+22+…(-.5)2 Total | Mean 

61 172 296 556 -64 -8 -16 -4 -8 256=(-16)2 A 

90 129 283 -32 192 24 48 12 24 2304=(48)2 B 

82 167 273 -32 8 1 2 0.5 1 4=(2)2 AB 

68 111 -18 78 -18 -2.25 -4.5 -1.125 -2.25 20.25=(-4.5)2 C 

61 172 -14 114 6 0.75 1.5 0.375 0.75 2.25=(1.5)2 AC 

87 110 -17 2 -10 -1.25 -2.5 -0.625 -1.25 6.25=(-2.5)2 BC 

80 163 -15 6 -6 -0.75 -1.5 -0.375 -0.75 2.25=(-1.5)2 ABC 

61 -10 40 -8 -44 -5.5 -11 -2.75 -5.5 121=(-11)2 D 

50 -8 38 -10 0 0 0 0 0 0 AD 

89 -7 61 4 36 4.5 9 2.25 4.5 81=(9)2 BD 

83 -7 53 2 4 0.5 1 0.25 0.5 1 ABD 

59 -11 2 -2 -2 -0.25 -0.5 -0.125 -0.25 .25=(-0.5)2 CD 

51 -6 0 -8 -2 -0.25 -0.5 -0.125 -0.25 .25=(-0.5)2 ACD 

85 -8 5 -2 -6 -0.75 -1.5 -0.375 -0.75 2.25=(-1.5)2 BCD 

78 -7 1 -4 -2 -0.25 -0.5 -0.125 -0.25 .25=(-0.5)2 ABCD 

 
(Step) 
(0) = raw data 
(4) = the grand total in 1st row followed by contrasts in std order    
(5) = estimated effects using Box and Montgomery's  approach 
(6) = DEJ Standardized Effects 
(6)2  =     SS (DEJ)        DEJ standardized effect squared  
(4)2/24  = SS (Box)       Raw effect squared divided by 2f 
 
It is to be noted that we can compute the SS by squaring the unstandardized effects in step4 and dividing by 24 or by squaring the 
standardized effect computed using the DEJ method. 
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Estimation of the mean square error (MSE). 
 
Estimation of the mean square error (MSE) is done in one of three ways.  Pooling 
methods used described by Box and Montgomery give different results than those of 
Natrella. 

1. Graphical method using the half-normal plot described above was developed by   
     Milliken and Johnson (AMD2). 
 
2.  Pooling to find a good estimate of σ2 as described by both Box and Montgomery.   

If we assume all three and four factor interactions are negligible we can compute an 
estimate for the mean square error by first summing the squares of these effects and   
then dividing by the number of assumed negligible terms. The estimated standard error 
of an effect is computed as the square root.  The pilot data set is pooled in table 8. 

3. Computational method seen in Experimental Statistics by Mary Gibbons Natrella    

This approach involves finding the sum of the squares of the effects corresponding to 
interactions of three or more factors.  Divide the sum of squares by v*2n where v is the 
number of interactions included to find s2.  Taking the square root gives an estimate of 
the standard error (RMSE).  See table 8 below. 

Complete factorial experiments having fewer than six factors should be analyzed by the 
half-normal plot technique while those with six or more factors should be analyzed by 
pooling the higher-order interactions to estimate the experimental error variance.   

The pooling method of Natrella is illustrated below with only four factors to illustrate its 
use and to compare it to results obtained using Box's technique. 
 
Table 8. Estimation of the mean square error (MSE) for the pilot plant data  

Effect Name Raw 
Effect 

Box Stdz  
Effect 

Raw  
Effect2 

Box and 
Montgomery 

MSE 

Natrella 
MSE 

ABC -6 -.75 .5625   
ABD 4 .50 .2500   
ACD -2 -.25 .0625   
BCD -6 -.75 .5625   

ABCD -2 -.25 .0625   
SUM   1.500   

Divisor    5 5x24=80 
MSE    1.5 / 5=.30 1.5 / 80 = 018745 

RMSE    0.5500 sqrtሺ.018745ሻ ൌ 0.1369 
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Significance testing of main effects and interactions. 

Significance testing of main effects and interactions can be done by computing ݓ ൌ

ሺ2௡ሻ
భ
మ	ݐ௩,ଵିఈ/ଶݏ where v = error degrees of freedom. If the absolute value of any main 

effect or interaction estimate obtained using Yates > w, it is concluded that the effect is 
different from zero. 

Three level experiments. 

Example 2.  Yates Algorithm for the 32 battery design study as seen in Montgomery, 
Design and Analysis of Experiments -8th edition, Example 5.1 table 5.4.  

Table 9.   Life Data (in hours) for the Battery Design Experiment 

 Temperature(°F)  
Material Type 15  70    125  yi.  

1 130 155  
539 

34 40  
229 

20 70  
230 

  
 74 180 80 75 82 58  998  
2 150 188  

623 
136 122  

479 
25 70  

198 
  

 159 126 106 115 58 45 1300  
3 138 110  

576 
174 120  

583 
96 104  

342 
  

 168 160 150 139 82 60 1501  
Totals   1738   1291    3799 = y… 

   y.j.         
 

This 3
2 

design investigates the effect of material type (A) and temperature (B) on the life 
of a battery in hours. There are r = 4 replicates. The Yates algorithm for three level 
factors described earlier is used.  The sums of squares (SS) seen in the conventional 
ANOVA analysis are subdivided using orthogonal polynomials.  See table 10 below. 

Table 10. Battery Design ANOVA with Orthogonal Polynomials  

Source (dependent 
variable is hour) 

DF SS MS F Pr > F R-
Square 

CV Mean 

Model 8 59416.22 7427.03 11.00 <.0001 0.765 24.624 105.528 
         
Material Type A 2 10683.72 5341.86 7.91 0.0020    
  AL 1 10542.04       
  AQ 1 141.68       
         
Temperature B 2 39118.72 19559.36 28.97 <.0001    
  BL (1) 39042.67       
  BQ (1) 76.06       
         
Material 
Type*Temperature 
AB 

4 9613.78 2403.44 3.56 0.0186    

  ALBL 1 351.56       
  ALBQ 1 6510.02       
  AQBL 1 1963.52       
  AQBQ 1 788.67       
Error 27 18230.75 675.21      
Corrected Total 35 77646.97       
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Table 10 gives the following SS breakdown: 
 
A = AL + AQ = 10542.04+141.68 = 10,683.72   
B  = BL + BQ = 39042.66 + 76.06 = 39,118.7  
A*B = ALBL+ALBQ+AQBL+AQBQ = 2351.56+1963.52+6510.02 + 788.67 = 9613.77 
 
Orthogonal polynomial contrasts are used to measure the linear, quadratic, cubic, etc. 
effects of the quantitative levels.  Material type (A) is qualitative; thus, the linear and 
quadratic partitioning of A is not appropriate.  However by coding it numerically we can 
compute linear and quadratic components which match the Yates analysis. Only the main 
effect of material type A is of interest here.  

A simpler and faster way to do this is to use the Yates procedure as displayed in Table 
11.  The treatment combinations are written down in standard order; that is, the factors 
are introduced one at a time, each level being combined successively with every set of 
factor levels above it in the table.  
 
The divisors are computed using the fact that four (n) replicates are in each treatment 
combination. Using this fact we have two methods of standardizing a three level design. 

1. Dallas Johnson in AMD2 standardizes by dividing all effects by	√4	d. where d 
corresponds to the sum of products of the individual effect contrast coefficients.   The 
square of DEJ standardized effects are equal to the SS from the conventional ANOVA as 
before.  A half-norm plot is appropriate for this data since the standardized effects are 
normally distributed.   

2. Montgomery, Douglas C. (2013) in Design and Analysis of Experiments 
Supplementary Material Chapter 9 recommends: 

The entries in the divisor column are found from 2r3tn where r is the number of factors in 
the effect considered, t is the number of factors in the experiment minus the number of 
linear terms in this effect, and n is the number of replicates.  For example, BL has the 
divisor 21 x 31 x 4= 24.       
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Table 11.   Yates Algorithm for the 32 Battery Design  
 
tc  (0) 

 
Data 

(1) (2) (3) 
 

Effect 

  (4) 
Montgomery 

Divisor 
 

2r3tn 

  (5) 
Montgomery

StdzEffect 
 

(2) / 2r3tn 

(6) 
DEJ 

Divisor 
 

d 

(7) 
DEJ 

StdzEffect 
| ሺ૛ ሻ|

࢔√ ࢊ
ൌ
| ሺ૛ ሻ|

√૝ ࢊ
 

(8) 
SS 

00 539 1738 3799 Total 2 3 41 2  =36 
 

3799/√36= 
    633.17 
   (Mean) 

9 3799/√(4 x 9)= 
           633.17 
          (Mean) 

 

10 623 1291 503 AL 21  x 31 x 4 =24 503/√24 
=102.67    

6 503/√(4x6) 
=102.67      

10542 

20 576 770 -101 AQ 2 3 41 2  =72 -101/√72 
=-11.90    

18 -101/√(4x18) 
=-11.90     

141.68 

01 229 37 -968 BL 21  x 31 x 4 =24 -968/√24 
=-197.59  

6 
 

-968/√(4x6) 
=-197.59   

39042.70 

11 479 354 75 ABLXL 2 3 42 0  =16 75/√16 
=18.75     

4 
 

75/√(4x4) 
=18.75       

351.56 

21 583 112 307 ABQXL 2 3 42 1  =48 307/√48 
 =44.31   

12 307/√(4x12) 
=44.31    

1963.52 

02 230 -131 -74 BQ 2 3 41 2  =72 -74/√72 
 =-8.72    

18 -74/√(4x18) 
=-8.72        

76.06 

12 198 -146 -559 ABLXQ 2 3 42 1  =48 -559/√48 
 =-80.68   

12 -559 /√(4x12) 
=-80.68 

6510.02 

22 342 176 337 ABQXQ 2 3 42 2  =144 337/√144 
  =28.08 

36 337/√(4x36)=28.08 788.67 

 
*r is the number of factors in the effect considered,   t is the number of factors in the experiment minus the number of linear terms 
in the effect considered and  n is the number of replicates. 
(0) = raw data (totals) 
(2) = the grand total is in first entry followed by contrasts in standard order    
(5) = estimated effects using Montgomery approach  
(7) = DEJ Standardized Effect 
(8) =  (7)2  = SS (DEJ)       
(8) =  (2)2  / (4)  = SS  (MONT) 
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Concluding Discussion 
 
When working with Yates method it is assumed that the datasets are balanced and the 
contrasts are orthogonal. The sums of squares are additive in the analysis of variance 
computed using Yates method. 
 
It is important to use the correct form of the variance. The equations can be classified by 
design type (unreplicated, replicated). 
 
Unreplicated Designs 
 
An expression given by Dallas Johnson for a simple effect of the difference of two means 
in a 2k unreplicated experiment is  
 

                2
2 2

1 1

V(effect)=V(difference in 2 means)                     SE(effect)

ˆ ˆ1 1 2 σ σ
ˆ ˆ               = + σ = σ                     =

2 2 2 2 2
k k k k k 

   
 

 

 
Note that when there is no replication it is appropriate to use pooling to find a good 
estimate of σ2 or use the half-normal plots. 
 
Replicated Designs. 
 
Montgomery in the Design and Analysis of Experiments develops the theory behind the 
computation of an estimate of the variance of an effect for a 2k factorial with n replicates 
at each run.  
 
At each of the 2k experimental conditions assume that there are n independent 
observations with variance estimate.  These are pooled to obtain an overall variance 
estimate. 

   
   

2
2 2 2 22 2

1 1 1 1 1

1 1 1
=  =  

2 2 1 ( 1)2

k k kn n
ij i

i ij ik k k
i i j i j

y y
s s y y

n n    


 

     

 
This estimate is used to find the variance and estimated standard error of an effect. The 
standard errors of all the model coefficients are equal because the design is orthogonal. 
 

 
2

k 2 2 2
2k-1 2 2k-2 k kk-1

contrast 1 1 2 4
ˆ ˆ ˆV(effect)=V = (contrast) n2 σ = σ σ

n2 n 2 n2 n2n2
V

    
 

 

 

Estimated s.e. (effect) 
k

= 2
n2

s
k-1

=
n2

s ˆ2 . .( )effects e   in a regression model for the 

2k design.                  
                                    
A variation of this is discussed in Ledolter and Hogg in Applied Statistics for Engineers 
and Physical Scientists. Using the same data assumptions as given above, his approach uses 
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the overall variance s2 in the computations.  n2k is used as the divisor for all of the effects 
and the overall mean.   

 
   

 
2 2 22

k
2 2 kk k

1

1 1
V(effect)=V average = 2

22 2

k

i

s s s

n n n

   

Thus the theory and data assumptions are important and must match when computing 
these variances.  With repetition in the use of Yates procedure, there is a marked increase 
of speed in doing these analyses. 
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