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Abstract
A kernel-based Kullback-Leibler divergence is proposed. The proposed Kullback-Leibler diver-

gence are used for tests on nonparametric density alternatives that are developed to be asymptoti-
cally distribution-free. The procedure can be viewed as a nonparametric extension of the traditional
parametric likelihood ratio tests. Simulations of the proposed tests are provided for the small sample
size performance.
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1. Introduction

It is a very common statistical practice to check whether a family of well established para-
metric models fit a particular data set adequately to reduce the risk of misspecification since
it is more and more popular to have allowed flexible and refined models. The traditional hy-
pothesis testing is to use a large family of parametric models with the implicit assumption
that the large family of parametric models specifies the form of the true underlying mod-
els correctly. Though parametric models provide great power of interpretation and ease of
computation due to their parsimonious description, the parametric alternatives is not large
enough to contain the nonparametric models and the erroneous conclusion of testing can
still be drawn (see, e.g., the example in Fan et al. (2007), Ingster(1993, 2002) and Silver-
man (1986). It is the drawbacks of parametric alternatives and the increasing popularity of
flexible nonparametric models that make nonparametric models as an attractive alternative
hypothesis.

The question arises naturally that the traditional maximum likelihood ratio test is not
applicable to the problems with nonparametric models as alternatives in general. The
nonparametric maximum likelihood estimate may usually not exist in a density function
space specifying the nonparametric density alternatives and hence the nonparametric max-
imum likelihood ratio tests are not applicable in general. Some likelihood ratio test pro-
cedures that are distribution-free under parametric alternatives may become dependent on
nuisance parameters under nonparametric alternatives since infinite dimensional neighbor-
hood is around a null hypothesis. To attenuate these difficulties, we propose a kernel-based
Kullback-Leibler divergence for nonparametric density alternatives and investigate its per-
formance in finite sample size. We replace the maximum likelihood estimate under the
nonparametric density alternatives by a reasonable nonparametric estimate to construct our
nonparametric likelihood ratio test statistics.
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2. Kernel-based Kullback-Leibler Divergence

Consider the Kullback-Leibler divengence between two distribution functions given by

I(f, f0; θ) =

∫ ∞

−∞
f(x) log(f(x)/f0(x, θ))dx

= −H(F )−
∫ ∞

−∞
log f0(x, θ)dF (x)

where

H(F ) := −
∫ ∞

−∞
log f(x)dF (x)

is the entropy of the density f(x). Song (2002) presents a general methodology for devel-
oping asymptotically distribution-free goodness-of-fit tests based on the Kullback-Leibler
divergence using the mth-order spacings between order statistics:

Hmn := n−1
n∑

i=1

log
n

2m
(X(i+m) −X(i−m)). (2.1)

Here, the window width m is a positive integer smaller than n/2. The tests are shown to be
omnibus within an extremely large class of nonparametric global alternatives and to have
good local power; The test procedure is a nonparametric extension of the classical Neyman-
Pearson likelihood ratio test based on the mth-order spacings between order statistics cross-
validated by the observed log likelihood. It can also be viewed as a procedure based on sum-
log functionals of nonparametric density-quantile estimators crossed-validated by the log-
likelihood. With its good power properties, the method provides an extremely simple and
potentially much better alternative to the traditional empirical CDF-based test procedures.
The asymptotic theory suggests that m should be chosen adaptively according to the sample
size.

However, there are some limitations to the tests: finding the optimal choice of m is
clearly a difficult problem. To overcome the problem, we extend (2.1) by the kernel smooth-
ing method to

ℓ̂n(f) = −
n∑

i=1

log

∑
j∈Ji

whnijX(j)

 (2.2)

where ωijn:=
1
h2

∫ j
n
j−1
n

k(
i
n
−y

h )dy, Ji = (mi, m̄i] with mi:=⌊i − nh⌋ and m̄i:=⌈i + nh⌉.

The kernel smoothing strategy will provide more flexibility and overcome the drawbacks
of the mth order spacing method. With the kernel smoothing methodology, the selection of
the smoothing parameter h can be made much easier than that of the spacing parameter m.

3. Simulation Study

The choice of bandwidth h is critical to implementation of a testing procedure. To test H0 :
f0(x, θ) ∈ F0, our asymptotic study suggests that h should be chosen adaptively according
to the sample size and would ensure the distribution-free property and consistency of our
test. The test statistic Tn,h = 2(ℓ̂n(f) − ℓ̂n(f0)) is based on the kernel smoothing method
(2.2), where ℓ̂n(f0) =

∑n
i=1 log f0(X(i), θ̂n). we choose ĥoptn as the estimate of hoptn for
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the given sample size that minimizes the ℓ̂n(f) − ℓ̂n(f0) with respect to h under the null
hypothesis. The following data-driven method of choosing smoothing parameter hoptn in
terms of log-likelihood:

ĥoptn := argmin

O( logn
n

)<h<o(n− 2
3 log−

4
3 n)

{
ℓ̂n(f) : ℓ̂n(f) ≥ ℓ̂n(f0)

}
.

were chosen.
In the simulation study, we considered the problem of testing the composite hypothesis

of normality when both the mean and the variance are unspecified against ten alternatives
for sample size n = 20, n = 50 and n = 100 at the level α = 0.05 using the triweight
kernel. These alternative distributions are standard exponential denoted by Exp(1), gamma
distribution with shape parameter p = 2, and scale parameter λ = 1 denoted by Gamma(2,
1), Uniform distribution on (0, 1) denoted by U(0, 1), Beta(2, 1), Beta(2, 6), Laplace with
density function given by

f(x, θ) =
1

2ϕ
exp(−|x− µ|/ϕ)

where θ := (µ, ϕ) = (0, 1/4) denoted by Laplace(0, 0.25)), log-normal with density func-
tion given by

f(x, θ) =
1

xτ
√
2π

exp(− 1

2τ2
(log x− ν)2)

where θ := (ν, τ) = (2, 1/4) denoted by Lognormal(2, 0.25). The last six alternatives
were added to present various shapes of densities similar to a normal density. To determine
the critical values of the test, we generalized 5000 replicate samples of size 20, 50 and 100
respectively from the standard normal distribution. For each sample, triweight kernel was
used on the regular grid of h ranging in order from .05 to .45 by 0.05 and the corresponding
estimated ĥn. The (1−α)th quantiles of the test statistics were then estimated. Once these
critical values had been determined, the powers of the test were estimated by simulations,
i.e., for each alternative and each hn, 5000 samples of size 20, size 50 and size 100 were
generated from the corresponding alternative distribution and the powers were thus esti-
mated. These Monte Carlo power estimates are given in Table 1-2-3. Note that h ≈ n−1

(i.e., 0.05 for n = 20, 0.02 for n = 50 and 0.01 for n = 100), which corresponds to no
smoothing at all, is included in Table 1-2-3 just for reference. It is not surprising to see
poor performance with the pretty low powers for some alternatives at bandwidth h close to
no-smoothing points.

Table 1: Power Estimates for Various Choices of h and Alternatives (n = 20, replicate=
5000, α = 0.05)

Alternative h=.05 h=.10 h=.15 h=.20 h=.25 h=.30 h=.35 h=.40 h=.45 ĥn

Exp(1) 0.0206 0.2524 0.7030 0.8142 0.8452 0.8594 0.8570 0.8576 0.8518 0.8508
Gamma(2, 1) 0.0000 0.0208 0.2484 0.4018 0.4602 0.4828 0.4790 0.4792 0.4764 0.4670

U(0, 1) 0.0000 0.0004 0.0312 0.1362 0.2576 0.3316 0.3688 0.3966 0.4170 0.3210
Beta(2, 1) 0.0000 0.0000 0.0004 0.0164 0.1322 0.2654 0.3320 0.3826 0.4124 0.2616
Beta(2, 6) 0.0000 0.0010 0.0478 0.1286 0.1702 0.1996 0.2074 0.2148 0.2180 0.1860

Laplace(0, 0.25) 0.0322 0.1532 0.2104 0.1756 0.1360 0.1072 0.0788 0.0640 0.0538 0.1052
Lognormal(2, 0.25) 0.0000 0.0000 0.0050 0.0364 0.0716 0.0948 0.1010 0.1072 0.1102 0.0778

t(3) 0.0310 0.2058 0.2634 0.2340 0.2024 0.1692 0.1442 0.1246 0.1108 0.1686
t(5) 0.0146 0.1006 0.1390 0.1192 0.0980 0.0846 0.0706 0.0654 0.0598 0.0828

Weilbull(2, 0.5) 0.0000 0.0000 0.0250 0.0718 0.1034 0.1234 0.1292 0.1322 0.1338 0.1092
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Table 2: Power Estimates for Various Choices of h and Alternatives (n = 50,
replicate=5000, α = 0.05)

Alternative h=.05 h=.10 h=.15 h=.20 h=.25 h=.30 h=.35 h=.40 h=.45 h=.50 ĥn

Exp(1) 0.0108 0.9970 0.9986 0.9994 0.9990 0.9990 0.9990 0.9978 0.9968 0.9954 0.9992
Gamma(2, 1) 0.0000 0.7652 0.8630 0.9220 0.9174 0.9144 0.8942 0.8714 0.8330 0.7992 0.9200

U(0, 1) 0.0000 0.3626 0.8372 0.9266 0.9486 0.9638 0.9694 0.9724 0.9738 0.9746 0.9248
Beta(2, 1) 0.0000 0.0252 0.7940 0.8994 0.9370 0.9428 0.9438 0.9412 0.9386 0.9348 0.9058
Beta(2, 6) 0.0000 0.2166 0.3922 0.5594 0.5680 0.5786 0.5656 0.5486 0.5230 0.5032 0.5528

Laplace(0, 0.25) 0.0256 0.4128 0.3040 0.2278 0.1302 0.0666 0.0324 0.0190 0.0116 0.0084 0.2280
Lognormal(2, 0.25) 0.0000 0.0302 0.0978 0.2314 0.2156 0.2204 0.1946 0.1780 0.1564 0.1454 0.2242

t(3) 0.0266 0.4792 0.3868 0.3162 0.2288 0.1556 0.1042 0.0682 0.0468 0.0326 0.3156
t(5) 0.0130 0.2148 0.1534 0.1134 0.0690 0.0470 0.0312 0.0236 0.0176 0.0136 0.1136

Weilbull(2, 0.5) 0.0000 0.0916 0.1974 0.3210 0.3276 0.3394 0.3306 0.3186 0.2992 0.2822 0.3144

Table 3: Power Estimates for Various Choices of h and Alternatives ( n = 100,
replicate=5000, α = 0.05 )

Alternative h=.05 h=.10 h=.15 h=.20 h=.25 h=.30 h=.35 h=.40 h=.45 h=.50 ĥn

Exp(1) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 1.0000
Gamma(2, 1) 0.8404 0.9972 0.9982 0.9976 0.9952 0.9900 0.9816 0.9692 0.9444 0.9150 0.9980

U(0, 1) 0.1562 0.9980 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Beta(2, 1) 0.0000 0.9932 0.9996 0.9996 0.9998 1.0000 0.9998 0.9996 0.9996 0.9994 0.9996
Beta(2, 6) 0.1050 0.8556 0.9138 0.9132 0.8974 0.8784 0.8524 0.8254 0.7988 0.7708 0.9144

Laplace(0. 0.25) 0.6974 0.6000 0.4374 0.2446 0.1004 0.0324 0.0094 0.0032 0.0024 0.0020 0.2888
Lognormal(2, 0.25) 0.0006 0.3398 0.4376 0.4026 0.3494 0.2952 0.2426 0.2078 0.1764 0.1578 0.4164

t(3) 0.7606 0.6786 0.5154 0.3248 0.1788 0.0914 0.0498 0.0270 0.0140 0.0086 0.3630
t(5) 0.3672 0.2526 0.1464 0.0708 0.0282 0.0134 0.0054 0.0034 0.0028 0.0016 0.0812

Weilbull(2, 0.5) 0.0184 0.5692 0.6724 0.6718 0.6416 0.6042 0.5658 0.5332 0.4996 0.4736 0.6770

These power simulations show that for a fixed n, there does not exist an h which is
optimal uniformly for all alternatives considered. This makes quite sense in the situation
of goodness of fit testing against all nonparametric density alternatives, since alternatives
are vague and the choice of the bandwidth h is designed to guard against all nonparamet-
ric density alternatives, and it is natural not to expect that the chosen ĥn would beat all
other choices of h in terms of power. Our simulation results are very encouraging. From
Tables 1-2-3, we can see that the powers for ĥn are far greater than or as close as median
powers for all choices of h for sample size n = 100 and the powers for ĥn are far greater
than or as close as median powers for all choices of h for sample size n = 20 and n = 50.
These results suggest that the data-driven method of choosing h is a very promising proce-
dure of overcoming the dependence problem of the power of the test on h. These results
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also suggest one possible way of choosing the optimal h in the situations where one has in
mind a particular alternative being tested against, i.e., if a specific alternative is of special
interest then the best way of choosing h would be to choose h that yields the highest power
in the direction of this alternative for the given sample size and level α. Furthermore, these
results suggest another way to improve power against all nonparametric density alterna-
tives or a particular alternative in mind is to increase the sample size by its own nature in
nonparametric setting. This was shown from our simulations that all the powers increases
as sample size increases.
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