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Abstract

In this article, we construct semiparametrically efficient estimates in a nonparametric
model with side information which can be described by expectation equations of some
known functions. These estimates are given by easy maximum empirical likelihood estimates
(MELEs) of the model that can found as solutions to certain estimating equations, which
extend those of Qin and Lawless (1994) for MELEs from smooth estimating functions to
discontinuous ones. In comparison with the usual MELEs, these are computationally fast
and mathematically tractable. We calculate their computational complexities and derive
easy MELEs for some problems of which the usual MELEs are difficult or even unable to be
obtained. We give asymptotic normality and efficiency for MELEs in general M-estimation
models which allow for discontinuous criterion and estimating functions. We also derive the
MELEs for differentiable statistical functionals, von-Mises functionals, L-estimators, and
U-statistics. Besides, we present several examples about side information.

Key Words: maximum empirical likelihood estimator, semiparametric efficiency, side
information, statistical functional, U-statistics

1. Introduction

The empirical likelihood approach was introduced by Owen (1990, 2001) to con-
struct confidence intervals in a nonparametric setting. Soon it was realized that
it can also be used to construct point estimators. Qin and Lawless (1994) linked
empirical likelihood with generalized estimating equations and investigated maxi-
mum empirical likelihood estimators (MELEs). They established consistency and
asymptotic normality of MELEs under the usual regularity conditions, and demon-
strated that the variance of a MELE will not increase when the number of estimating
equations is increased. Furthermore, they showed that MELEs are fully semipara-
metrically efficient in the sense of least dispersed regular estimators (Bickel, et al.

(1993); van der Vaart (2000)). Peng and Schick (2013) explored MELEs in the case
of constraint functions that may be discontinuous and/or depend on additional pa-
rameters. The later is the case in applications to semiparametric models where the
constraint functions may depend on the nuisance parameter.

Let (Z ,S ) be a measurable space, Q be a family of probability measures on
S , and κ be a functional from Q onto an open subset Θ of Rk. Let Z1, . . . , Zn

be independent and identically distributed (i.i.d.) copies of Z taking value in Z

with an unknown distribution Q belonging to the model Q. We are interested in
statistical inference about the characteristic θ = κ(Q) when side information is
available. Let us now introduce the following condition (K1). Write A⊗2 = AA⊤

for a matrix A.

(K1a) There is a measurable function u : Z → R
m such that

∫

u dQ = 0 and
Wu =

∫

u⊗2 dQ is positive definite.
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(K1b) There is a measurable function v : Z × Θ → R
d, with d ≥ k, such that for

every R in Q,
∫

v(z, κ(R)) dR(z) = 0, and Wv(R) =
∫

v(z, κ(R))⊗2 dR(z) is
positive definite.

(K1c) For every R in Q, the matrix W (R) =
∫

w(z, κ(R))⊗2 dR(z) is positive defi-
nite, where w = (v⊤, u⊤)⊤.

Let u, v satisfy (K1). To construct a confidence set in this setup, Owen confronted
the maximization problem:

Rn(ϑ) = sup
{

n
∏

j=1

nπj : π ∈ Pn,

n
∑

j=1

πjw(Zj , ϑ) = 0
}

, ϑ ∈ Θ,

where Pn denotes the closed probability simplex in dimension n, i.e.,

Pn =
{

π = (π1, . . . , πn)
⊤ ∈ [0, 1]n :

n
∑

i=1

πi = 1
}

.

Qin and Lawless (1994) tackled point estimation for θ = κ(Q) and studied the
maximum empirical likelihood estimator of θ:

θ̂n = argmax
ϑ∈Θ

Rn(ϑ). (1.1)

Arguably, it could be difficult to establish desired properties for a possibly irregular
Rn(ϑ) even if strong assumptions are imposed on the estimating (or constraint)
function w(z, ϑ). In fact, only in a few cases does Rn(ϑ) have explicit formulas, see
e.g. Remark 6 of Peng and Schick (2013). As another example, consider the case
that w(z, ϑ) is convex in ϑ. It would be nontrivial to prove or disprove that Rn(ϑ)
is convex, even for the simple case w(z, ϑ) = z − ϑ.

Let us now consider the M-estimator (or Z-estimator) ϑ̃n of θ, which is defined
to be a solution to the sample equation

v̄n(ϑ) :=
1

n

n
∑

j=1

v(Zj , ϑ) = 0. (1.2)

When side information is available given by expectation equation E(u(Z)) = 0, we
are naturally motivated to look at the empirical likelihood

Rn = sup
{

n
∏

j=1

nπj : π ∈ Pn,
n
∑

j=1

πju(Zj) = 0
}

.

For example, we want to estimate the p-th quantile ϑ when there is the side infor-
mation that the median is zero. In this case, we may take v(z, ϑ) = 1[z ≤ ϑ]−p, p ∈
(0, 1) and u(z) = 1[z ≤ θ]− 1/2. Following Owen, one uses Lagrange multipliers to
derive

πnj =
1

n

1

1 + ζ⊤n u(Zj)
, j = 1, . . . , n, (1.3)

where ζn satisfies the equation

1

n

n
∑

j=1

u(Zj)

1 + ζ⊤u(Zj)
= 0. (1.4)
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These πnj ’s carry the side information. To utilize this information it is very natural
for us to employ πnj ’s as carriers to pass on the information to the estimator of
parameter through equation (1.2). This consideration leads us to estimating the
parameter θ by ϑ̂n as a solution to the equation

v̄vn(ϑ) :=
n
∑

j=1

πnjv(Zj , ϑ) =
1

n

n
∑

j=1

v(Zj , ϑ)

1 + ζ⊤n u(Zj)
= 0. (1.5)

We are not the first to use this idea. It was used by Zhang (1995, 1997) in
M-estimation and quantile processes in the presence of auxiliary (side) informa-
tion. He established consistency and asymptotic normality, and proved that the
asymptotic variances of the resulting estimators are smaller than those of the usual
sample M-estimators and sample quantiles. Hellerstein and Imbens (1999) utilized
this idea for the least squares estimators in a linear regression model, while Bravo
(2010) introduced a class of M-estimators based on generalized empirical likelihood
estimation with side information with empirical likelihood as a special case. More
discussions about the latter two can be found in Example 2.2. Relatively recently,
Yuan et al. (2012) explored this idea in U-statistics with side information. Tang
and Leng (2012) employed the idea to construct improved estimators of parameters
in quantile regression. For convenience, we shall refer to (1.5) as empirical likelihood
(EL-) weighted equation and the resulting estimators as EL-weighted estimators.

We show in this article that the M-estimator ϑ̂n defined in (1.5) is asymptoti-
cally equivalent to the MELE θ̂n defined in (1.1) in the sense that both have the
identical asymptotic normal distribution, see Theorem 4.2 – Theorem 4.4 below.
Consequently, the estimator ϑ̂n obtained from (1.5) is the MELE for θ in the model
defined by estimating equations E(u(Z)) = 0 and E(v(Z, θ)) = 0, hence is fully
semiparametrically efficient for θ in the sense of least dispersed regular estimators
as shown in Qin and Lawless (1994). It is noteworthy that if there is no side informa-
tion available, then we simply take u ≡ 0 and the EL-weighted equation v̄vn(ϑ) = 0
boils down to the usual sample equation v̄n(ϑ) = 0, and the MELE ϑ̂n reduces to
the usual sample M-estimator ϑ̃n. In other words, the usual sample M-estimators
are the MELEs for the parameters.

Qin and Lawless (1994) derived the estimating equation for finding the MELE
θ̂n defined in (1.1) under the regularity assumptions including, in particular, the
differentiability of w w.r.t. parameter ϑ. In Section 3 we show that (1.4)-(1.5)
are the estimating equations for the MELE’s even when w is discontinuous, thus
our results extend those of Qin and Lawless to irregular constraints in this case.
We also demonstrate in Section 3 that ϑ̂n is computationally faster than the usual
MELE θ̂n by comparing their computational complexities. We exhibit that ϑ̂n is
mathematically more convenient than the usual MELE θ̂n and explain that the EL-
weight method can be applied to extend the scope of the usual MELEs. We have
obtained MELEs and their asymptotic normality results under general conditions
and, in particular, allow for irregular estimating functions.

We give several examples about the side information in Section 2 to illustrate the
applicability of the method. In Example 2.1, the side information is the knowledge
about marginal distributions, which has a long history, see the discussions therein.
That the side information in census data can be used to improve estimation is
discussed in Example 2.2. That the independence of gene and environment can
increase efficiency is considered in Example 2.3. That raters share similar rating
behaviors in the interrater agreement study is investigated in Example 2.4. That
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the symmetry of random errors in a random-effects model can be used is described
in Example 2.5.

The rest of this paper is organized as follows. Examples about side information
are given in Section 2. In Section 3, we discuss computational complexity and
mathematical simplicity of the easy MELE’s. In Section 4, we first report the
consistency result of EL-weighted M-estimators, followed by asymptotic normality
of EL-weighted M-, GM- and AGM-estimators under general conditions, and ended
up with maximum empirical likelihood estimators. In Section 5, we apply the
obtained results to various situations.

2. Examples of side information

In this section, we give several examples about side information.

Example 2.1. Bickel, et al. (1991) studied efficient estimation of linear functional
θ = E(h(X,Y )) =

∫

h dP of a probability measure P for known h when the marginal
distributions PX of X and PY of Y are known. One of their justifications of known
marginals is as follows. One observes a random sample (Xi, Yi), i = 1, . . . , n from
the joint P . In addition, one also observes random samples X1i : i = 1, . . . , n1
from PX and Y2i : i = 1, . . . , n2 from PY . If n1, n2 are very large relative to n,
we could act as if PX , PY are known and equal to the empirical distributions of
the n1 auxiliary X’s and n2 auxiliary Y ’s. Such a real example is the census data
which provide nearly exact information of moments of the marginal distributions of
economic variables, see e.g. Imbens and Lancaster (1994). Peng and Schick (2005)
investigated the same estimation problem but with equal but unknown marginals.
Haberman (1984) considered minimum Kullback-Leibler divergence -type estimators
for this problem involving a fixed number of side information. Vitale (1979) looked
at a regression version of this problem. All these can be viewed as an extension
of the work on estimation of cell probabilities on contingency tables with known
marginals (Deming and Stephan (1940); Ireland and Kullback (1968)).

Bickel, et al. constructed efficient estimators based on minimizing modified
chisquare statistic while Peng and Schick used the least squares criterion. We can
use the EL- weight method to construct efficient estimators to the above problem.
In fact, we can directly apply the results for a finite number of constraints while for
an infinite number of constraints this is also doable which is pursued in elsewhere.
Note that if a distribution is discrete and has finite a support then known marginals
or equal marginals are equivalent to a finite number of constraints. Let us illustrate
the EL- weight method with the case of known marginals. Suppose PX and PY

have finite supports xl : l = 1, . . . , L and ym : m = 1, . . . ,M with known proba-
bility distributions pl and qm respectively. Then the side information is given by
E(u(X,Y )) = 0 where u(x, y) = (1[x = xl]− pl,1[y = ym]− qm : l = 1, . . . , L,m =
1, . . . ,M)⊤. By Theorem 4.4 below, an efficient estimator of θ = E(h(X,Y )) is
given by

θ̂n =
1

n

n
∑

j=1

h(Xj , Yj)

1 + ζ⊤n u(Xj , Yj)
,

where ζn is the solution to (1.4) with the above u as side information.

Example 2.2. Let Yi, i = 1, . . . , n be independent with mean E(Yi) = µ(θi) and
variance Var(Yi) = V (θi) for some real parameter θi. Let X1, . . . , Xn be i.i.d.
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covariate vectors. A popular estimate of a regression parameter β is a solution to
the generalized estimating equation (GEE)

n
∑

i=1

Yi − µi(β)

Vi(β)
h′i(β)Xi = 0, (2.1)

where h is a usual inverse link function with hi(β) = h(X⊤
i β), µi(β) = µ(hi(β))

and Vi(β) = V (µi(β)). In GEE models only up to second order moments are used
while higher order moments are replaced by what are called “working matrices”,
the resulting estimators are thus usually not efficient. One can use the EL-weight
method to improve efficiency when side information is available. This was pursued
in Hellerstein and Imbens (1999) and Bravo (2010), the former looked at the least
squares estimators in linear models while the latter studied a general setting which
takes the empirical likelihood as a special case. Side information can be moment
equalities in census data. Examples of such data are the national employment rate,
data on the frequency of unemployment spells of certain length, and aggregate ex-
penditure for various goods, see e.g. Imbens and Lancaster (1994). By reweighing
the least squares estimators in a linear regression model with the empirical likeli-
hood weights where constraints are derived from side information, Hellerstein and
Imbens (1999) gave efficient estimators of the regression coefficients and applied the
results to analyze a real data. Relatively recently Bravo (2010) introduced a class
of M-estimators based on generalized empirical likelihood estimation with side in-
formation and showed that the resulting class of estimators is efficient in the sense
that it achieves the same asymptotic lower bound as that of the efficient GMM
estimator with the same side information. The empirical likelihood is a special case
of the M-estimators.

As in Hellerstein and Imbens (1999), the side information is E(u(X,Y )) = 0
with, for example, u(X,Y ) = Y −m0 for some known m0 or u(X,Y ) = 1[(X,Y ) ∈
C]−u0 where the researcher knows the probability (u0) that (X,Y ) is in a particular
subset C of the sample space. Then an efficient estimate of β is any solution to the
equation

n
∑

i=1

Yi − µi(β)

(1 + ζ⊤n u(Xi, Yi))Vi(β)
h′i(β)Xi = 0, (2.2)

where ζn is the solution to the equation (1.4) with the above u as side information.

Example 2.3. Chatterjee and Carroll (2005) pointed out that a special feature
of the gene-environment interaction problem is that it may often be reasonable
to assume that a subject’s genetic susceptibility (G), a factor which is determined
from birth, is independent of his/her subsequent environmental exposure (E). Stan-
dard logistic regression analysis remains a valid option for analyzing case-control
data. However, the method may not be efficient because it fails to exploit the
gene-environment independence assumption. They gave semiparametric maximum
likelihood estimation to make use of the independence assumption. Here we pro-
pose to use the EL- weight method applied on the standard logistic regression. Let
Al : l = 1, . . . , L be a partition of the range of G and Bm : m = 1, . . . ,M a partition
of the range of E, so that Al ×Bm : l = 1, . . . , L,m = 1, . . . ,M form a partition of
the range of (G,E). Independence implies

E(ulm(G,E)) = 0, l = 1, . . . , L,m = 1, . . . ,M, (2.3)

where ulm(G,E) = 1[(G,E) ∈ Al × Bm] − plqm with pl = P (G ∈ Al) and qm =
P (E ∈ Bm). With a similar argument used in Example 2.1 let us assume pl, qm
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are known, so that we can devote all our attention to the interaction of the genetic
factor G and environmental risk factor E. Thus we take the side information as
E(u(G,E)) = 0 where u = (ulm : l = 1, . . . , L,m = 1, . . . ,M)⊤.

Let D be the binary indicator of presence, D=1, or absence, D=0, of a disease.
Suppose the prospective risk model for the disease given G and E is given by
the logistic regression model P (D = 1|G,E) = h(β0 + β1G + β2E + β3G × E),
where h(x) = (1 + exp(−x))−1 is the inverse logistic link. Suppose that n0 controls
and n1 cases are sampled from the conditional distributions P (G,E|D = 1) and
P (G,E|D = 0), respectively, and let (Gi, Ei) be n0 + n1 denote the corresponding
covariate data of the n0+n1 study subjects. This is a special case of (2.1) and (2.2)
with Y = D, X = (1, G,E,G× E)⊤, the inverse logistic link h, and the above side
information u.

Example 2.4. Consider the interrater agreement of two raters with two rating
categories yes and no. The widely used Cohen’s unweighted kappa is defined as

κ =
Π0 −Πc

1−Πc
,

where Π0 = P (X = Y ) denotes the measure of agreement and Πc = P (X =
yes)P (Y = yes) + P (X = no)P (Y = no) the measure of agreement by chance.
Clearly −1 ≤ κ ≤ 1. Sinha (2013) recently studied modifications of the kappa to
cope with different issues. One of these is the case that it is apriori known that
there is known agreement between the two raters, i.e., Π0 = P (X = Y ) = π0 for
some known 0 < π0 < 1. This happens in real-life situations that two raters may
exhibit similar rating behavior with certain probability. Thus the side information
can be expressed with the expectation equation E(u(X,Y )) = 0 where u(x, y) =
1[x = y] − π0 and (K1) is met as

∫

u2 dQ = π0(1 − π0) > 0. The MELE for κ is
given by

κ̂ =
π0 − Π̂c

1− Π̂c

,

where Π̂c is the MELE for Πc (we omit the details). It is easy to verify the conditions
of Theorem 4.3, hence κ̂ is an efficient estimator for κ.

Example 2.5. In a balanced one-way random effects model, the response Yij ,
random effect ui and random error ǫij satisfy

Yij = µ+ ui + ǫij , i = 1, . . . , n, j = 1, . . . , J(J ≥ 2), (2.4)

where µ is the mean response, the ǫij ’s are i.i.d. with mean zero and variance
σ2ǫ = Var(ǫij), the ui’s are i.i.d. with mean zero and variance σ2u = Var(uj), and
ǫij ’s and ui’s are independent and have finite fourth moments. Following Arvesen
(1969), put

Xi =

(

Yi·
(J − 1)−1

∑J
j=1(Yij − Yi·)2

)

, i = 1, . . . , n, (2.5)

where Ai· = J−1
∑J

j=1Aij denotes the average of Aij over j. Clearly X1, . . . , Xn

are i.i.d. Suppose there is available additional information about the model, for
instance, ε as an i.i.d. copy of εi = ui + ǫi· is symmetric about zero. In this
formulation, the model (2.4) becomes

Yi· = µ+ εi, i = 1, . . . , n.
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This is the well known symmetric location model. For illustration, let us consider
improved estimation of the variance σ2u of the random effect. Let

h(X1,X2) = 2−1
(

(Y1· − Y2·)
2 − J−1(κ(X1) + κ(X2))

)

,

where κ(Xi) = (J − 1)−1
∑J

j=1(Yij − Yi·)
2. It is easy to see h is a symmetric kernel

and satisfies E(h(X1,X2)) = σ2u. Then an unbiased estimator of σ2u is the U-statistic

Un(h) = T (Fn) =

(

n

2

)−1
∑

i<j

h(Xi,Xj),

where Fn is the empirical distribution of Yi· − µ0, i = 1, . . . , n. We assume µ = µ0
for some known µ0. We are motivated by the fact that if J is big then we take
µ0 = J−1

∑J
j=1 Y1j and work with the observations X2, . . . ,Xn. Otherwise we take

µ0 = Y·· the grand mean of all Yij . This does not fit our theory but one can expect
that the results approximately hold in the sense that the asymptotic variance will
be a bit bigger than when µ0 is known. For B ⊂ R, write −B = {−x : x ∈ B}. Let
{Bk,−Bk : k = 1, . . . ,K} be a partition of the real line R. Then symmetry implies

E(1[Yi· − µ0 ∈ Bk]− 1[Yi· − µ0 ∈ −Bk]) = 0, i = 1, . . . , n, k = 1, . . . ,K.

These suggest us to take

u(Xi) = (1[Yi· − µ0 ∈ Bk]− 1[Yi· − µ0 ∈ −Bk], k = 1, . . . ,K)⊤.

Assume pk = P (Y1· − µ0 ∈ Bk) 6= 0, k = 1, . . . ,K. Then Wu =
∫

uu⊤ dQ =
2diag(p1, . . . , pK) is nonsingular. Thus the EL-weighted estimator of σ2u is given by

T (Fn) =
1

n2

∑

i<j

h(Xi,Xj)

(1 + ζ⊤n u(Xi))(1 + ζ⊤n u(Xj))
.

where ζn satisfies n−1
∑n

j=1 u(Xi)/(1 + ζ⊤n u(Xi)) = 0.

3. Computational complexity and mathematical tractability

In this section, we explain why the estimating equations for the MELEs of Qin
and Lawless (1994) still holds for discontinuous constraint functions, calculate the
complexities and discuss the possibilities of breaking the limitations of the usual
MELEs.

Under the regularity conditions on the constraint function w(z, ϑ) such as the
differentiability of w w. r. t. ϑ, Qin and Lawless (1994) in their Lemma 1 derived
that the MELE θ̂n defined in (1.1) can be found as the solution to the estimating
equations for ϑ and t,

1

n

n
∑

j=1

w(Zj , ϑ)

1 + t⊤w(Zj , ϑ)
= 0,

1

n

n
∑

j=1

ẇ⊤(Zj , ϑ)t

1 + t⊤w(Zj , ϑ)
= 0. (3.1)

Under the current setting, ẇ = (v̇⊤, 0⊤)⊤. Substituting this in the second equation
of (3.1) and partitioning t = (t⊤1 , t

⊤
2 )

⊤, one finds t1 = 0. Now substituting this
in the first equation, one derives exactly the estimating equations (1.4) and (1.5).
However, when w is discontinuous, equations (3.1) can’t be applied. Thus our result
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that the solution ϑ̂n of (1.4)-(1.5) is the MELE extends equations (3.1) to discon-
tinuous constraint functions. Apparently what happens here is that the solution
t1 = 0 leads v̇(z, ϑ)t⊤1 = 0, which holds even if v hence w is not differentiable (at
least heuristically and we justify this in Section 4). Moreover, equations (1.4)-(1.5)
reduces the computational burden of equations (3.1) as we explained below.

The preceding equations can numerically be solved by the iterative newton
method such as the commonly used elm algorithm. Let us now look at the time
complexity. The execution time of a program depends on the number of floating-
point operations (FLOPs) and the processor speed of the computer used which is
defined by FLOPs/sec. Specifically,

Time required (sec)=Number of FLOPs / Processor speed (FLOPs/sec).

It is well known that the number of FLOPs using the newton method to solve the
two equations in (3.1) is O(nL1(d+m)3) +O(nL2d

3), where L1, L2 are the desired
numbers of loops of the first and second equation in (3.1) and d + m, d are the
dimensions of w, ϑ. Let L = max(L1, L2). Then the number of FLOPs for solving
equations (3.1) is FL0 = O(nL(d+m)3). Likewise, the number of FLOPs for solving
equations (1.4) and (1.5) is O(nLm3) + O(nLd3) = O(nLmax(d,m)3). Thus the
FLOPs are reduced from FL0 = O(nL(d+m)3) to FL1 = O(nLmax(d,m)3).

The results about the MELE’s of statistical functionals in Section 5 break the
limitations of the usual empirical likelihood. For example, the usual empirical likeli-
hood for U-statistics involve the quadratic products πiπj of the probability weights.
This causes difficulty to obtain explicit formulas for πi as we have for the usual
case when the πi’s are linear in the empirical likelihood ratio. Our results beat this
difficulty and show that the plug-in estimates of the statistical functionals with the
MELE of the distribution are also MELE’s. Besides, it might worth to mention
that the EL-weighted estimating equation (1.5) is generally not more difficult to
deal with than the usual sample estimating equation (1.2), but is a lot easier to
deal with than the maximization problem (1.1).

4. Asymptotic Efficiency

Recall in the Introduction (Z ,S ) denotes a measurable space, Q is a family of
probability measures on S , and κ is a function from Q onto an open subset Θ of
R
k. We are interested in statistical inference about θ = κ(Q) when side information

is available.
Throughout this article, we assume that u satisfies (K1a). Let v be a function

from Z ×Θ to Rd such that condition (K1b) is met, where Θ is a nonempty subspace
of Rk. In the usual M-estimation, typically the number of parameters is equal to
the number of estimating equations, i.e. d = k. From now on, we shall assume this
for v unless otherwise indicated.

The usual sample M-estimator of θ is defined as a solution to the sample es-
timating equation (1.2), where the identical probability weight n−1 is assigned to
every observation Zj . When side information is available via equality E(u(Z)) = 0
about the underlying distribution, this assignment does not make use of the side
information. Based on the empirical likelihood theory, each distinct observation Zj

must be assigned a distinct EL-probability weight, which is the πnj given in (1.3).
Then find an estimator of θ as a solution to (1.5). We shall refer this to as the
principle of maximum empirical likelihood.
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Following the definitions in Chapter 7 of Bickel, Klaassen, Ritov and Wellner
(1993), a solution ϑ̂n of (1.5) is called an EL-weighted generalized M-estimator
(EL-weighted GM-estimator for short). If ϑ̂n satisfies

v̄vn(ϑ̂n) =
1

n

n
∑

j=1

v(Zj , ϑ̂n)

1 + ζ⊤n u(Zj)
= op(n

−1/2),

then it is called an EL-weighted asymptotic generalized M-estimator (EL- weighted
AGM-estimator for short).

Let us first address consistency. There are numerous results in the literature.
One can use these results to derive the consistency of the EL-weighted estimators.
As an illustration, we present the following consistency result based on Theorem 5.9
of van der Vaart (2000), and omit the proof due to the page limit. Here as usual,
a well separated zero point of the criterion function (i.e. (4.3)) plays the key role.
Denote by ‖a‖ the euclidean norm of a vector a.

Theorem 4.1. Let v be a measurable function from Z ×Θ to R
k such that

sup
ϑ∈Θ

1

n

n
∑

j=1

‖v(Zj , ϑ)‖2 <∞, and (4.1)

sup
ϑ∈Θ

∥

∥

∥

1

n

n
∑

j=1

(

v(Zj , ϑ)− E(v(Z, ϑ))
)

∥

∥

∥
= op(1). (4.2)

If for every ǫ > 0,

inf
ϑ:‖ϑ−θ‖≥ǫ

‖E(v(Z, ϑ))‖ > 0 = ‖E(v(Z, θ))‖, (4.3)

then any sequence of estimators ϑ̂n such that v̄vn(ϑ̂n) = op(1) converges in probability
to the true value θ of parameter.

We now study asymptotic normality. As in the case of consistency, there are
numerous results about asymptotic normality of M-estimators in the literature.
We can use these results and apply our method to obtain asymptotic normality
results for the EL-weighted estimators. Here for illustration, we are satisfied with
the aforementioned EL-weighted AGM-estimators which cover irregular constraint
functions such as indicator functions. Our results are formulated in the framework
of the master theorem for asymptotic generalized estimates, see e.g. Theorem 1
(page 514) of Bickel, et al. (1993).

Recall v̄n(ϑ) and v̄vn(ϑ) defined in the Introduction. From now on, we shall
write ūn = n−1

∑n
j=1 u(Zj) and C(v) = E(v(Z, θ) ⊗ u⊤(Z)), where ⊗ denotes

the Kronecker product. Recall the Wu given in (K1a), the Wv(R) in (K1b) and set
Wv =Wv(Q) = Var(v(Z, θ)) andM =Wv−C(v)W−1

u C(v)⊤. Note that the positive
definiteness of W = W (Q) given in (K1c) implies M is also positive definite. We
omit the proof due to the page limit.

Theorem 4.2. Suppose (K1) holds with d = k. Suppose also E(v(Z, ϑ)) is dif-
ferentiable with respect to ϑ for every ϑ ∈ Θ such that its negative gradient A at
ϑ = θ = κ(Q) with Q ∈ Q is nonsingular. Assume as εn ↓ 0,

sup
‖ϑ−θ‖≤εn

{√
n‖v̄n(ϑ)− v̄n(θ)− E(v(Z, ϑ)− v(Z, θ))‖

1 +
√
n‖ϑ− θ‖

}

= op(1), (4.4)
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sup
‖ϑ−θ‖≤εn

{

n−1
∑n

j=1 ‖v(Zj , ϑ)− v(Zj , θ)‖2

1 + n‖ϑ− θ‖2

}

= op(1). (4.5)

Let ϑ̂n be an EL-weighted AGM-estimator of θ on Q. If ϑ̂n is consistent, then it
satisfies the stochastic expansion,

ϑ̂n = θ +A−1 1

n

n
∑

j=1

(

v(Zj , θ)− C(v)W−1
u u(Zj)

)

+ op(n
−1/2). (4.6)

Accordingly,
√
n(ϑ̂n − θ) =⇒ N (0, A−1MA−⊤).

It may worth to note that the uniform convergence in (4.2), (4.4) and (4.5)
is commonly used in the literature and can be proved using such as exponential
inequalities.

Qin and Lawless (1994) derived the asymptotic results for the MELE θ̂n of
parameter θ defined in (1.1) for constraint functions which possess continuous sec-
ond order differentiability. Here we give the asymptotic results of the MELE for
constraint functions which may be discontinuous. The results can be obtained as
a special case of Theorem 1.2 in Peng and Schick (2013), which is stated below.
Notice here that d ≥ k is allowed. We need the following conditions.

(K2) For every finite constant C,

Dn(C) = sup
‖t‖≤C

1

n

n
∑

j=1

‖v(Zj , θ + n−1/2t)− v(Zj , θ)‖2 = op(1).

(K3) There is a d× k matrix A of full rank k such that

sup
‖t‖≤C

‖ 1√
n

n
∑

j=1

[v(Zj , θ + n−1/2t)− v(Zj , θ)] +At‖2 = op(1)

for every constant C.

Typically, A = −E[v̇(Z, θ)], where v̇(z, ϑ) denotes the derivative of v(z, ϑ) with
respect to parameter ϑ for z ∈ Z . These assumptions are modifications of (K0) –
(K2) in Peng and Schick (2013). Under (K3), a consistent estimate of A is given by
Â = (Ârs) with

Ârs = − 1

cs
√
n

n
∑

j=1

[vr(Zj , θ̂n + csn
−1/2es)− vr(Zj , θ̂n)], (4.7)

where cs is a constant and es denotes the unit vector with the s-th component being
one.

Theorem 4.3. Suppose (K1) – (K3) hold. Assume that the random function Rn(ϑ)
is upper semicontinuous on Θ. Then there is a local maximizer θ̂n such that

θ̂n = θ + J−1A⊤M−1 1

n

n
∑

j=1

(

v(Zj , θ)− C(v)W−1
u u(Zj)

)

+ op(n
−1/2), (4.8)

where J = A⊤M−1A. Accordingly
√
n(θ̂n − θ) =⇒ N (0, J−1).
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Remark 4.1. Under the conditions of Theorem 4.3, a consistent estimate of J is
given by Ĵ = Â⊤M̂−1Â, where Â is given in (4.7) and M̂ = Ŵv − ĈŴ−1

u Ĉ⊤ with
Ŵu = n−1

∑n
j=1 u(Zj)

⊗2, Ŵv = n−1
∑n

j=1 v(Zj , θ̂n)
⊗2 and Ĉ = n−1

∑n
j=1 v(Zj , θ̂n)u(Zj)

⊤.

Note that the MELE θ̂n given in Theorem 4.3 possesses the identical asymptotic
variance-covariance matrix as that of the EL-weighted estimator ϑ̂n in Theorem 4.2
when A is nonsingular. Consequently, we obtain our main result below.

Theorem 4.4. Suppose u : Z 7→ R
m and v : Z × Θ 7→ R

k with Θ ⊂ R
k satisfy

all the assumptions in Theorem 4.2 and Theorem 4.3. Then ϑ̂n is the MELE for θ
in the model defined by E(u(Z)) = 0 and E(v(Z, θ)) = 0. In particular, the usual
sample M-estimator is the MELE for θ if no additional information is available.

Remark 4.2. Zhang (1995) investigated the M-estimation with auxiliary informa-
tion and his estimators are the same as ours. Our results show that his estimators
are in fact the MELEs for the parameters.

5. MELEs for statistical functionals

5.1 The MELEs for linear functionals of a probability measure

Consider efficient estimation of the expectation θ = E(ψ(Z)) =
∫

ψ dQ for some
known measurable function ψ from Z to R

k such that the variance-covariance ma-
trix Var(ψ(Z)) is (componentwise) finite and positive definite, when side information
is available expressed via E(u(Z)) = 0. We take v(z, ϑ) = ϑ − ψ(z), z ∈ Z , ϑ ∈ Θ
for some compact subset Θ of Rk. The EL-weighted M-estimator θ̂n of θ is then the
solution to the equation

v̄vn(ϑ) =
n
∑

j=1

πnjv(Zj , ϑ) =
n
∑

j=1

πnj (ϑ− ψ(Zj)) = 0, ϑ ∈ Θ,

where πnj are the EL-weights given in (1.3). This has an explicit solution, yielding
the following natural estimator of θ,

θ̂n =
n
∑

j=1

πnjψ(Zj). (5.1)

We have proved the following result with the proof omitted.

Theorem 5.1. Suppose ψ is a measurable function from Z to R
d such that W (ψ)

is positive definite. Then θ̂n given in (5.1) is the MELE for θ = E(ψ(Z)) and
satisfies the stochastic expansion,

θ̂n = ψ̄n − C(ψ)W−1
u ūn + op(n

−1/2),

where ψ̄n = n−1
∑n

j=1 ψ(Zj). Thus
√
n(θ̂n − θ) =⇒ N (0,Σ(ψ)).

5.2 The MELE for a distribution function

As an application of Theorem 5.1, take ψ(Z) = 1[Z ≤ z], Z ∈ R
r for a fixed z. The

resulting expected value is the cdf F (z) = P (Z ≤ z). When side information is
available via E(u(Z)) = 0, the MELE Fn(z) for F (z) is given by

Fn(z) =
n
∑

j=1

πnj1[Zj ≤ z] =
1

n

n
∑

j=1

1[Zj ≤ z]

1 + ζ⊤n u(Zj)
, z ∈ R

r,
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where πnj are the EL-weights given in (1.3).
Let us now consider the case of r = 1 and view a cdf F as a member of

the usual Skorohod space D[−∞,∞], the set of functions h which are right con-
tinuous with left limits, equipped with the uniform norm ‖ ‖∞, i.e. ‖h‖∞ =
supz∈[−∞,∞] |h(z)|. According to van der Vaart (2000), an estimator Tn of a param-
eter ψ(Q) in D[−∞,∞] is asymptotically efficient at Q if

√
n(Tn−ψ(Q)) converges

under Q in distribution to a tight limit and d∗Tn is asymptotically efficient for es-
timating d∗ψ(Q) for every d∗ in the dual space. It is not difficult to establish that
uniformly in z ∈ R̄ (the extended real line),

Fn(z) = Fn(z)−
1

n

n
∑

j=1

1[Zj ≤ z]u(Zj)
⊤ζn + op(n

−1/2). (5.2)

By the Dvoretsky-Kiefer-Wolfowits inequality,

sup
n
P (‖

√
n(Fn − F )‖∞ > M) ≤ 2 exp(−2M2) → 0, M → ∞.

This shows that the empirical process (EP)
√
n(Fn − F ) is asymptotically tight

(bounded in probability). Noticing ζn = Op(n
−1/2), it can be seen that the second

term on the right side of (5.2) hence
√
n(Fn − F ) is also asymptotically tight.

Clearly the cdf F (z) as a functional of the probability P is differentiable (as a
statistical parameter on the model) with derivative 1[Z ≤ z] − F (z). Also, the
EL-weighted estimator Fn(z) is asymptotically efficient at Q for estimating the
coordinatewise projection F (z) of F . Thus an application of Lemma 25.49 in van der
Vaart (2000) yields that

√
n(Fn −F ) is asymptotically efficient at Q for estimating

F . As a consequence, by the continuous mapping theorem,
√
n‖Fn−F‖∞ converges

in distribution. Summarizing our preceding discussion, we have proved the following
theorem. For a fixed z ∈ R

r, let W1(z) be the matrix when ψ(Z) = 1[Z ≤ z] and
set

C1(z) = E(1[Z ≤ z]⊗ u(Z)⊤), σ2F (z) = F (z)(1− F (z))− C1(z)W
−1
u C1(z)

⊤.

Theorem 5.2. If W1(z) is positive definite for fixed z ∈ R
r, then the EL-weighted

Fn(z) is the MELE for the cdf F (z) and satisfies the expansion,

Fn(z) = Fn(z)− C1(z)W
−1
u ūn + op(n

−1/2), z ∈ R
d.

Hence
√
n(Fn(z) − F (z)) =⇒ N (0, σ2F (z)). Furthermore, the EL-weighted EP√

n(Fn − F ), viewed as a process over D[−∞, ∞], is asymptotically efficient at Q
for estimating F .

5.3 The MELEs for differentiable statistical functionals

Suppose that T is a functional T : F → R, where F is a convex set of probability
distribution functions on R

r including all point masses and F . Suppose also that T
is Gâteaux differentiable at F with derivative LF representable as an integral, i.e.,

LF (G− F ) =
∂

∂t
T (F + t(G− F ))|t=0 =

∫

ψF (z) dG(z), G ∈ F , (5.3)

where necessarily
∫

ψF (z) dF (z) = 0. Suppose we have available side information
expressed by E(u(Z)) = 0 for some known function u. We are interested in efficient
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estimation of T (F ). Naturally, we estimate the cdf F by the EL-weighted cdf Fn and
wish that the plug-in estimator T (Fn) of T (F ) is efficient under suitable conditions.
This is pursued next. To this end, we take G = Fn, and obtain the following
stochastic expansion,

T (Fn)− T (F ) =

∫

ψF (z) dFn(z) =
n
∑

j=1

πnjψF (Zj) +Rn,

where Rn is the reminder such that Rn = op(LF (Fn − F )). Suppose the matrix
W (ψF ) when ψ = ψF is (componentwise) finite and positive definite, so that (K1)
is met and σ2F := Var(ψF (Z)) − C(ψF )W

−1
u C(ψF )

⊤ is positive definite. Thus one
can derive

n
∑

j=1

πnjψF (Zj) =
1

n

n
∑

j=1

(

ψF (Zj)− C(ψF )W
−1
u u(Zj)

)

+ op(n
−1/2), (5.4)

where C(ψF ) = E(ψF (Z)⊗ u⊤(Z)). Thus,

√
n(T (Fn)− T (F )) =⇒ N (0, σ2F ), (5.5)

if Rn satisfies
Rn = op(n

−1/2). (5.6)

Sufficient conditions for these to hold can be found e.g. in Serfling (1980) (page
293). Summarizing the above discussion, we have the following result about plug-in
estimators with the proof omitted.

Theorem 5.3. Suppose that T is a functional from F to R which is Gâteaux
differentiable such that (5.3) holds. Suppose W (ψF ) is positive definite. If the
remainder Rn satisfies (5.6), then T (Fn) satisfies (5.5). Furthermore, if T (G) is
Hadamard differentiable at F in D[−∞, ∞], then T (Fn) is asymptotically efficient
at F for estimating T (F ).

von-Mises functionals. We shall not pursue general considerations here but
focus on the simplest von Mises functional:

T (G) =

∫ ∫

ω(x, y) dG(x)dG(y), G ∈ F , (5.7)

where w(x, y) = w(y, x), x, y ∈ R and T is such that T (G) is well defined. The usual
empirical estimator of T (F ) is the plug-in estimator given by

T (Fn) =
1

n2

n
∑

i=1

n
∑

j=1

ω(Zi, Zj).

This is related to the U-statistic of order 2 defined by

Un(ω) =

(

n

2

)−1
∑

i<j

ω(Zi, Zj)

by the relationship

Un(ω) =
n

n− 1
T (Fn)−

1

n(n− 1)

n
∑

i=1

ω(Zi, Zj).
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Thus their asymptotic behaviors are equivalent under suitable conditions. Naturally,
we would like to replace Fn with the EL-weighted Fn and estimate T (F ) by T (Fn)
given by

T (Fn) =
n
∑

i,j=1

πniπnjω(Zi, Zj) =
1

n2

n
∑

i,j=1

ω(Zi, Zj)

(1 + ζ⊤n u(Zi))(1 + ζ⊤n u(Zj))
.

Suppose ω satisfies
∫

ω2(x, x) dF (x)dF (x) +

∫

ω2(x, y) dF (x)dF (y) <∞. (5.8)

Then T (G) is Gâteaux differentiable such that (5.3) and (5.6) are met with

ϕF (x) = 2

{
∫

ω(x, y) dF (y)− T (F )

}

.

It is well known that if (5.8) holds then

√
n(T (Fn)− T (F )) =⇒ N (0, v2F ),

where v2F = 4
{∫

{
∫

ω(x, y) dF (y)
}2

dF (x) − T 2(F )}. Suppose the matrix W (ϕF )
when ψ = ϕF is finite and positive definite. In a similar fashion to the above
discussion, we derive

√
n(T (Fn)− T (F )) =⇒ N (0, σ2F ), (5.9)

where σ2F = v2F − C(ϕF )W
−1
u C(ϕF )

⊤.

Theorem 5.4. Let T be the functional defined in (5.7). Suppose that (5.8) holds
such that W (ϕF ) is positive definite. Then T (Fn) satisfies (5.9). If, furthermore,

sup
G∈F

|
∫ ∞

−∞

∫ ∞

−∞
ω(x, y) dG(x)dG(y)| <∞, (5.10)

then T (Fn) is asymptotically efficient at F for estimating T (F ).

Obviously, if ω is bounded then (5.10) is satisfied.
L-, M-, R-estimators and rank statistics. Let F be a cdf on R and J be

a function on [0, 1]. An L-functional is defined as

T (G) =

∫

zJ(G(z)) dG(z), G ∈ F . (5.11)

The usual L-estimator of T (F ) is T (Fn). Naturally, we would replace the ecdf Fn

by the EL-weighted cdf Fn and estimate T (F ) by the plug-in estimator T (Fn). For
an L-estimator T , one derives (details can be found on page 297 in Serfling (1980))

T (G)− T (F ) =

∫

φF (z) d(G− F )(z) +R(G,F ),

where

φF (x) = −
∫

(δx − F )(z)J(F (z)) dz,

R(G,F ) = −
∫

WG(z)(G(z)− F (z)) dz,
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and

WG(z) =

{

(G(z)− F (z))−1
∫ G(z)
F (z) J(t) dt− J(F (z)) G(z) 6= F (z)

0 G(z) = F (z).

Thus by Theorem 5.3, Theorem 5.6 in Serfling (1980) and in view of the fact T is
also Hadamard differentiable, we obtain the following result. LetW (φF ) denote the
matrix when ψ = φF and set σ2F = Var(φF (Z))− C(φF )W

−1
u C(φF )

⊤.

Theorem 5.5. Let T be an L-functional defined in (5.11). Suppose that J is
bounded, J(t) = 0 when t ∈ [0, α] ∪ [β, 1] for some α < β, and that the set
{z : J is discontinuous at F (z)} has Lebesgue measure zero. Assume W (φF ) is pos-
itive definite. Then

√
n(T (Fn)−T (F )) =⇒ N (0, σ2F ), and T (Fn) is asymptotically

efficient at F for estimating T (F ).
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