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Abstract

Let m(z, ϑ) be a criterion function convex in parameter ϑ for every z. For a random sam-
ple Z1, . . . , Zn, the M-estimate ϑ̃ of ϑ minimizes the criterion function

∑n

j=1
n−1m(Zj , ϑ).

Suppose side information is available given by E(u(Z1)) = 0 for some square-integrable
function u. In this article, we are concerned with the use of side information and pro-
pose to estimate ϑ by ϑ̂n which minimizes the criterion function

∑n

j=1
πnjm(Zj , ϑ) with

πnj = n−1(1 + ζ⊤n u(Zj))
−1 for some random variable ζn determined by u(Zj)’s. We show

ϑ̂n is asymptotically normal and more efficient than ϑ̃. As applications of the results, we
construct efficient estimates of quantitles, parameters in quantitle regression and in the
Cox proportional hazard (PH) regression. A simulation was run to illustrate the use of side
information in the Cox PH model to improve the efficiency of maximum partial likelihood
estimates.

Key Words: Cox hazards regression, maximum empirical likelihood estimator, quantile
regression, semiparametric efficiency, side information

1. Introduction

Owen (1990, 2001) introduced empirical likelihood to construct confidence intervals
in a nonparametric setting. Soon Qin and Lawless (1994) used it to construct point
estimates and studied maximum empirical likelihood estimates (MELEs). They
proved many properties for MELEs such as MELEs are fully semiparametrically
efficient in the sense of least dispersed regular estimators (Bickel, et al. (1993); van
der Vaart (2000)). The empirical likelihood approach is particularly convenient to
incorporate side information. Just like parametric maximum likelihood estimates,
nevertheless, MELEs involve highly nonlinear equations. Thus it is not a trivial task
to find MELEs. Peng and Schick (2013) explored MELEs in the case of constraint
functions that may be discontinuous and/or depend on additional parameters and
employed one-step estimates to construct MELEs. Peng (2014) has identified a class
of easy maximum empirical likelihood estimators, while the idea for determining the
class was in fact already used by Zhang (1995, 1997) in M-estimation and quantile
processes in the presence of auxiliary information. Hellerstein and Imbens (1999)
utilized this idea for the least squares estimators in a linear regression model and
applied the results to analyze real data. Relatively recently, Yuan et al. (2012)
explored this idea in U-statistics with side information. Tang and Leng (2012) uti-
lized the idea to construct improved estimators of parameters in quantile regression.
Bravo (2010) introduced a class of M-estimators based on generalized empirical like-
lihood estimation (empirical likelihood is a special case) with side information and
showed that the resulting class of estimators is efficient in the sense that it achieves
the same asymptotic lower bound as that of the efficient GMM estimator with the
same side information. These authors assumed that the available side information
can be expressed in a finite number of expectation equations and does not depend on
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the parameters of interest. Under this setting Peng (2014) demonstrated that these
estimates are the MELEs which are semiparametrically efficient and mathematically
simpler and computationally faster than the usual MELEs.

Let us now briefly detail the easy MELEs. Let (Z ,S ) be a measurable space,
Q be a family of probability measures on S , and κ be a functional from Q onto
an open subset Θ of Rk. Let Z1, . . . , Zn be independent and identically distributed
(i.i.d.) copies of Z taking value in Z with an unknown distribution Q belonging
to the model Q. We are interested in statistical inference about the characteristic
θ = κ(Q) when side information is available.

Suppose w(z, ϑ) is a measurable function such that
∫

w(z, ϑ) dQ(z) = 0 for every
ϑ ∈ Θ. To construct a confidence set for θ, Owen confronted the maximization
problem:

Rn(ϑ) = sup
{

n
∏

j=1

nπj : π ∈ Pn,
n
∑

j=1

πjw(Zj , ϑ) = 0
}

, ϑ ∈ Θ,

where Pn denotes the closed probability simplex in dimension n, i.e.,

Pn =
{

π = (π1, . . . , πn)
⊤ ∈ [0, 1]n :

n
∑

i=1

πi = 1
}

.

Qin and Lawless (1994) tackled point estimation for θ and studied the maximum
empirical likelihood estimator (MELE):

θ̂n = argmax
ϑ∈Θ

Rn(ϑ). (1.1)

Consider now w(z, ϑ) = (v⊤(z, ϑ), u⊤(z))⊤, z ∈ Z , ϑ ∈ Θ. Suppose side infor-
mation is available given by

(K) There is a measurable function u : Z → Rd such that
∫

u dQ = 0 and Wu =
∫

u⊗2 dQ is positive definite.

Under (K), it is natural to look at the empirical likelihood

Rn = sup
{

n
∏

j=1

nπj : π ∈ Pn,

n
∑

j=1

πju(Zj) = 0
}

.

Following Owen, one uses Lagrange multipliers to derive the solution

πnj =
1

n

1

1 + ζ⊤n u(Zj)
, j = 1, . . . , n, (1.2)

where ζn satisfies the equation

1

n

n
∑

j=1

u(Zj)

1 + ζ⊤u(Zj)
= 0. (1.3)

Now the easy MELE ϑ̂n of θ studied by Peng (2014) is any solution to the equation

n
∑

j=1

πnjv(Zj , ϑ) =
1

n

n
∑

j=1

v(Zj , ϑ)

1 + ζ⊤n u(Zj)
= 0. (1.4)
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This is the case of an improved estimator of the zero estimator ϑ̃ of θ to the sample
equation

1

n

n
∑

j=1

v(Zj , ϑ) = 0.

In this article, we extend the above method from estimating equations to min-
imization problems. Let m : Z × Θ → Rd be a measurable function such that
∫

m(z, κ(R)) dR(z) is finite for every R ∈ Q. Based on a random sample Z1, . . . , Zn

from Q, we are interested in estimating θ = κ(Q). A popular estimator of θ is the
M-estimator which minimizes the sample criterion function,

Mn(ϑ) =
1

n

n
∑

j=1

m(Zj , ϑ), ϑ ∈ Θ.

Thus a natural estimator of θ is the M-estimator which minimizes

Mn(ϑ) =
n
∑

j=1

πnjm(Zj , ϑ) =
1

n

n
∑

j=1

m(Zj , ϑ)

1 + ζ⊤n u(Zj)
, ϑ ∈ Θ,

where πnj ’s are given in (1.2). Following Peng (2014), we shall refer to πnj ’s as the
empirical likelihood weights (EL-weights).

As pointed in Peng (2014), easy MELEs are mathematically tractable. The work
in this article is another example of the tractability. Suppose m(z, ϑ) is convex in ϑ.
Then we quickly claim that Mn(ϑ) is also convex as πnj , j = 1, . . . , n are probability
weights (at least for large sample size n). An further application of the tractability
is the concavity of ℓ(t, b) in the Cox hazard regression model, see (2.8). We can
now use those nice properties of estimates defined by convex minimization which
are well studied in the literature (see e.g. Hjort and Pollard (1993)) to derive the
asymptotic behaviors of the estimator defined as the minimizer of Mn(ϑ) .

We shall refer to the preceding Mn(ϑ) as the EL-weighted criterion function. We
shall apply the EL-weight method to derive efficient estimates for quantitles and pa-
rameters in quantile regression models when there is side information. We shall also
use the method in the Cox proportional hazards regression to improve efficiency. It
is well known that the maximum partial likelihood estimator is semiparametrically
efficient in the proportional hazards model, see e.g. Bickel, et al. (1993). How-
ever, the result holds under the assumption that only information on time to event
(possibly censored) and treatment assignment are available. In clinical-trial data,
as remarked in Lu and Tsiatis (2008) not only are survival and censoring times
collected but also side information on variables that may be important prognostic
factors which are correlated with time to event. The EL-weight method provides
a convenient way to make use of side information to obtain improved estimators
of parameters. We have run a small simulation in Section 3 to demonstrate the
improvement.

The rest of this paper is organized as follows. In section 2, we give the con-
sistency and asymptotic normality for estimators defined by EL-weighted convex
minimization. As applications, we derive the MELEs for quantiles and parameters
in quantile regression and the Cox PH model. A small simulation is reported in
Section 3. Section 4 contains sketches of the proofs of some of the results. We shall
omit some lengthy proofs due to the page limit.
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2. The main results

In this section, we consider estimators defined by the minimizers of EL-weighted
convex criterion functions. We shall use the convexity property to establish the
asymptotic properties of the estimators.

As discussed in the Introduction, the EL-weighted version Mn(ϑ) is convex
(hence continuous). The convexity not only greatly simplifies the theoretical in-
vestigation of the estimator, but also reduces the computational burden. Here we
present an asymptotic theory in the framework of Theorem 2.2 in Hjort and Pollard
(1993). It must be noted that the asymptotic normality results of the EL-weighted
estimators hold under similar conditions to those for the asymptotic normality of
the usual M-estimators. The proof is omitted.

Theorem 2.1. Let m(z, ϑ) be convex in ϑ. Assume there exists some function D
from Z to Rk satisfying (K) with Wu =

∫

D⊗2 dQ such that

m(z, θ + t)−m(z, θ) = D⊤(z)t+R(z, t), z ∈ Z , t ∈ R
k (2.1)

for some measurable function R(z, t) with Var(R(Z, t)) = o(‖t‖2), and that

E (m(Z, θ + t)−m(Z, θ)) = E (R(Z, t)) = 1/2t⊤Ht+ o(‖t‖2), t → 0 (2.2)

for some positive definite matrix H. Then the estimator θ̂n which minimizes Mn(ϑ)
over Θ is

√
n-consistent for θ and satisfies the stochastic expansion,

θ̂n = θ −H−1 1

n

n
∑

j=1

(

D(Zj)− C(D)W−1
u u(Zj)

)

+ op(n
−1/2).

Hence
√
n(θ̂n − θ) =⇒ N (0,Σ) where Σ = H−1(K − C(D)W−1

u C(D)⊤)H−⊤.

Quantiles. Let Z1, Z2, . . . be i.i.d. random variables from a continuous density
f positive in its support. The sample p-th quantile qn is the value which minimizes
the criterion function Mn(ϑ) = n−1

∑n
j=1mp(Zj , ϑ), where mp(z, t) is the popular

check function given by

mp(z, t) = p
(

(z − t)+ − z+)
)

+ (1− p)
(

(t− z)+ − (−z)+
)

, z, t ∈ R, (2.3)

where x+ = max(x, 0) denotes the positive part of x. It is convex in t (hence
continuous) and bounded by |t|, so that it is always integrable. Its expected value
is minimized by t = F−1(p) := q, the p-th quantile. One easily verifies

E (mp(Z, t)−mp(Z, q)) = 1/2f(q)(t− q)2 + o(|t− q|2);

that (2.2) holds with R(z, t) = (q + t− z)1[q < z ≤ q + t] such that

E(R(Z, t)) = 1/2t2f(q) + o(|t|2), E(R(Z, t)2) = o(|t|2);

and that (2.1) holds with

D(z) = (1− p)1[z ≤ q]− p1[z > q] = 1[z ≤ q]− p.

Suppose side information is available via E(u(Z)) = 0. By Theorem 2.1, the EL-
weighted estimator q̂n which minimizes the EL-weighted criterion function Mn(ϑ) =
∑n

j=1 πnjmp(Zj , ϑ) is
√
n-consistent for q and satisfies the stochastic expansion,

q̂n = q − 1

n

n
∑

j=1

1[Zj ≤ q]− p− C1W
−1
u u(Zj)

f(q)
+ op(n

−1/2),
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where C1 = E(1[Z ≤ q]u(Z)⊤). Thus
√
n(q̂n − q) =⇒ N (0, σ2) where σ2 =

(p(1− p)− C1W
−1
u C⊤

1
)/f(q)2.

Quantile regression. Bassett and Koenker (1986) considered the linear
quantile regression model in which the response Y and covariate X satisfies

F−1
X (p) = β⊤X, (2.4)

where p ∈ (0, 1), β is a parameter, and F−1
x is the inverse function of the condi-

tional distribution function Fx(y) = P (Y ≤ y|X = x) of Y given X = x. Let
(X1, Y1), . . . , (Xn, Yn) be i.i.d. copies of Z := (X,Y ). When side information is
available via E(u(Z)) = 0, the EL-weighted estimator β̂n of β is defined by

β̂n = argmin
b∈B

n
∑

j=1

πnjmp(Yj , b
⊤Xj), (2.5)

where mp is the convex function given in (2.3) and B is some compact subset of Rk.
Clearly the above sum is convex in b (hence continuous). We need the following
regularity conditions to establish the asymptotic properties of the estimator.

(Q1) The conditional distribution function Fx(y) of Y given X = x is absolutely
continuous with continuous density fx(y) such that it is bounded away from
both zero and infinity for almost every x ∈ Rk.

(Q2) The matrix E(fX(q(X))XX⊤) is finite and positive definite, where q(x) =
F−1
x (p).

By applying Theorem 2.1, we obtain the following asymptotic result with the proof
omitted.

Theorem 2.2. Suppose (Q1)-(Q2) hold. Then the EL-weighted estimator β̂n is√
n-consistent for β and satisfies the stochastic expansion,

β̂n = β − 1

n

n
∑

j=1

H−1
(

D(Zj)− C(D)W−1
u u(Zj)

)

+ op(n
−1/2),

where D(z) = x(1[y ≤ β⊤x]−p) and H = E
(

X⊗2fX(β⊤X)
)

. Thus
√
n(β̂n−β) =⇒

N (0,Σ), where Σ = H−1
(

K − C(D)W−1
u C(D)⊤

)

H−⊤ with K = p(1− p)E(X⊗2).

Using Theorem 4.4 of Peng (2014), we can show β̂n is the MELE for β as stated
below with the proof omitted.

Theorem 2.3. Suppose the assumptions in Theorem 2.2 are met. In addition,
assume X is bounded and E

((

X⊤(1[Y ≤ β⊤X]−p), u(Z)⊤
)⊗2)

is positive definite.

Then β̂n is the MELE for β in the model specified by the check-function-defined
minimization.

Quantile regression with side information was studied in Tang and Leng (2012)
in a general setup in which the side information u is allowed to contain unknown
parameters. There examples were given where side information is expressed via
conditional moments, and the use of such information results in more efficient es-
timators of the parameters. What we have shown here is that the estimator is the
MELE for the parameter in the model specified by E(u(Z)) = 0 and the check
function.
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Cox regression. In this model, the hazard rate h(t) for the survival time T
of an individual with a p-dimensional covariate process Z(t) ∈ Z of time t for some
compact Z is expressed as

h(t) = h0(t) exp(b
⊤Z(t)), t ∈ [0, τ ], b ∈ B,

where h0 is an unspecified nonparametric baseline hazard function, B is some subset
of Rk, and τ is finite. Let U be a censoring time of a person. The data can be
summarized as n i.i.d. realizations (Xi, δi, Zi) of (X, δ, Z), where Xi = min(Ti, Ui),
representing the observed time of person i; δi = 1[Ti ≤ Ui], indicating that the
observed time is an event time not a censoring time. Let the counting process Ni

have mass δi at Ti, i.e. dNi(t) = 1[Ti ∈ [t, t+ dt], δi = 1], and the at-risk process be
Yi(t) = 1[Xi ≥ t}]. The at-risk process is left continuous hence predictable. More
discussions can be found in Fleming and Harrington (2005). The usual MPLE β̃n
of β is the value which maximizes the log partial likelihood function:

ln(b) =
n
∑

j=1

∫ τ

0
(b⊤Zj(t)− logSn(t, b)) dNj(t), b ∈ B, (2.6)

where Sn(t, b) =
∑n

j=1 Yj(t) exp(b
⊤Zj(t)). Suppose additional information is avail-

able about the underlying model via E(u(R)) = 0, where R = (X, δ, r(Z), U) for
some measurable function r(Z) of the covariate process Z(t), t ∈ [0, τ ]. Here we
shall focus on side information which does not vary with the time t in order to
avoid lengthy presentation. Also we allow side information possibly depends on the
censoring variable U when its observations are available, see Example 2.1.

By the principle of maximum empirical likelihood, a natural estimator β̂n of β
is the value which maximizes the EL-weighted log partial likelihood function:

ℓn(b) =
n
∑

j=1

πnj

∫ τ

0
(b⊤Zj(t)− log Sn(t, b)) dNj(t), b ∈ B, (2.7)

where Sn(t, b) =
∑n

j=1(nπnj)Yi(t) exp(b
⊤Zj(t)) is the EL-weighted version of Sn(t, b).

Here the EL-weights πnj are given in (1.2) with u(Zj) = u(Rj). It is well known
that ln(b) is concave. The proof uses the urn model, see e.g. pages 148 – 151 in
Fleming and Harrington (2005). Using the same method, one can show ℓn(b) is also
concave. In fact, similar to the first equation in page 151 one has

−∂2ℓn(b)

∂b∂b⊤
=

∫ τ

0
V(t, b)

n
∑

j=1

πnj dNj(t), (2.8)

where analogous to (3.23) in Fleming and Harrington (2005) it is easy to prove

V(t, b) =

∑

j=1 nπnj(Zj(t)− E(b, t))⊗2Yj(t) exp(b
⊤Zj(t))

Sn(t, b)

with E(t, b) =
∑n

j=1 nπnjZj(t)Yj(t) exp(b
⊤Zj(t))/Sn(t, b). This immediately yields

the concavity of ℓn(b) at least for large n. Using the convex argument of Hjort and
Pollard (1993), we can prove the following Theorem 2.4 with the proof delayed to

the Appendix. Formally set I (Y, Z) =
∫ τ
0

[

Z(t)− e(t)
]

Y (t)eβ
⊤Z(t)h0(t) dt,

C(I (Y, Z)) = E(I (Y, Z)u(R)⊤),

si(t) = E
(

Zi(t)Y (t) exp(β⊤Z(t))
)

, i = 0, 1, 2, e = s1/s0,
(2.9)

where a0 = 1 and a2 = aa⊤ for a vector a.
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Theorem 2.4. Assume h0(t) is a continuous baseline function. Assume Y (t) is
the at-risk process such that P (Y (τ) > 0) > 0. Suppose the covariate processes
Zj(t), t ∈ [0, τ ] are predictable and uniformly bounded. Suppose J =

∫ τ
0 (s2(t) −

s0(t)
−1s1(t)

⊗2)h0(t) dt is positive definite. Then β̂n is
√
n-consistent for β and√

n(β̂n−β) =⇒ N (0,Σ), where Σ = J−1−J−1C(I (Y, Z))W−1
u C(I (Y, Z))⊤J−⊤.

To give an estimate of Σ, introduce

Vn(t, b) =

∑

j=1(Zj(t)− E(t, b))⊗2Yj(t) exp(b
⊤Zj(t))

Sn(t, b)
,

where E(t, b) =
∑n

j=1 Zj(t)Yj(t) exp(b
⊤Zj(t))/Sn(t, b). A consistent estimate of J

in the literature (see e.g. Fleming and Harrington (2005)) is given by

Ĵ =
1

n

n
∑

j=1

∫ τ

0
Vn(t, β̂n) dNj(t).

With a similar argument, a consistent estimate of C(I (Y, Z)) is

Ĉ =
1

n

n
∑

j=1

∫ τ

0

(

Zj(t)− E(t, β̂n)
)

dNj(t)u(Rj)
⊤.

Thus one immediately obtains a consistent estimate of Σ as follows:

Σ̂ = Ĵ−1 − Ĵ−1ĈŴ−1Ĉ⊤Ĵ−⊤,

where Ŵ = 1
n

∑n
j=1 u(Rj)u(Rj)

⊤.
Below and the simulation in Section 3 are examples about side information in

which the covariate processes are constant over time, i.e. Zj(t) = Zj , t ∈ [0, τ ].

Example 2.1. One important situation in censoring data is that the censoring
variable U is independent of the covariate variable Z. The independence implies
E(a(U) ⊗ b(Z)) = 0 for some known square-integrable vector functions a, b with
mean zero. While the usual partial likelihood does not use this additional in-
formation, our EL-weighted partial likelihood can use this information by taking
u(u, z) = a(u)⊗ b(z). Choices of a, b can be obtained from basis functions as in the
simulation study in Section 3 for univariate continuous distributions.

3. A small simulation

As noted in the Introduction, in censored survival data there is usually available
some additional information about covariate variables. While the partial likelihood
does not use this information, the EL-weight method can use it to improve the
efficiency of parameter estimates. To illustrate it, we have run a small simulation
based on a nice example given in Lu and Tsiatis (2008).

Notice that the logrank test is commonly used for assessing treatment effects
in survival analysis. It is well known that this test is equivalent to the partial
likelihood score test for the null hypothesis b = 0 in the Cox proportional hazards
regression model, which postulates that the hazard rate h(t) of the survival time T
of an individual at time t and a {0, 1}-valued covariate Z satisfy the relationship

h(t) = h0(t) exp(bZ), t ≥ 0,
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Table 1: Simulated mean squared errors (multiplied by n) of the MPLE β̃n & EL-
weighted MPLE β̂n of β for n = 150, repetitions 2000 and number r of constraints.

Censoring % 25 50

β r 1 2 3 4 5 1 2 3 4 5

0 β̃n 5.76 6.01 5.75 5.59 5.51 8.62 8.62 7.99 8.40 8.21

β̂n 3.89 4.10 3.99 4.03 4.08 6.55 6.45 6.30 6.57 6.24

.25 β̃n 5.84 6.01 5.56 5.96 5.55 8.77 8.63 8.78 8.28 8.65

β̂n 4.05 4.12 4.01 4.19 4.10 6.47 6.65 6.54 6.59 7.11

where h0(t) is an unspecified nonparametric continuous baseline hazard function
and b is a parameter. Let U be a censoring time of a person. As pointed out in
Lu and Tsiatis (2008), in clinical trails, in addition to data on T , U and treatment
assignment, auxiliary (side) information is also collected on variable W such as age,
gender and other health conditions that may be important prognostic factors which
are correlated with T . Due to randomization, it is plausible to assume that the the
randomization probability to treatment 1 is equal to a known π, i.e. P (Z = 1) = π,
and the treatment indicator Z is independent of W . Independence of Z and W of
course implies that

E
(

1[Z = i]ak(W )
)

= 0, i = 0, 1, k = 1, . . . , r,

for some measurable functions ak such that E(ak(W )) = 0 and E(ak(W )2) < ∞
for k = 1, . . . , r. Let us assume W is univariate and has a continuous distribution
G. Then G(W ) is uniformly distributed over (0, 1) so we can choose ak(w) =√
2 cos(kπG(w)), the first r terms of the usual trigonometric basis. In this case,

the side information can be expressed by taking u(z, w) =
(

z − π, ã⊤(w)1[z =

0], ã⊤(w)1[z = 1]
)⊤

where ã⊤ = (a1, . . . , ar), so that E(u(Z,W )) = 0. The data
available can be summarized as n realizations of i.i.d. random vectors (Xi, δi, Zi,Wi)
of (X, δ, Z,W ), where Xi = min(Ti, Ui) and δi = 1[Ti ≤ Ui]. Suppose T and U are
conditionally independent given Z, and P (X ≥ τ) > 0 for some finite τ > 0. It then
follows from Theorem 2.4 below that the EL-weighted maximum partial likelihood
estimator (MPLE) β̂n is

√
n-consistent for β and asymptotic normal with mean zero

and variance-covariance matrix Σ, i.e.,

√
n(β̂n − β) =⇒ N (0,Σ),

where Σ = J−1−J−1C(I (Y, Z))⊗2J−⊤ with J−1 the asymptotic variance-covariance
matrix of the usual MPLE β̃n (assume it to be positive definite). Clearly the EL-
weighted MPLE β̂n has a smaller variance-covariance matrix M than the MPLE β̃n
in the sense of positive definiteness of matrices.

Following Lu and Tsiatis (2008), the data are generated as follows. First gener-
ate (V,W ) from the bivariate normal with mean zero, variance one and correlation
ρ = 0.7; then generate Z from the Bernoulli distribution with probability of success
π = 0.5; and then generate T by T = − exp(βZ) log(1−Φ(V )), where the null values
of β are β = 0 and β = 0.25, and Φ is the cumulative distribution function (cdf)
of the standard normal. This implies T has the exponential distribution with rate
exp(βZ) as its conditional distribution given Z, i.e. T |Z ∼ Exp(exp(βZ)), so that
it follows the proportional hazards regression model h(t) = exp(βZ) with h0(t) ≡ 1.
For the censoring time U , we generate it from the conditional distribution given Z
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with density c exp(−cs)/(1−exp(−cτ)), s ∈ [0, τ ]. This is the truncated exponential
distribution with truncation τ = 10. Here c is chosen to take two values so that
the censoring percentages are approximately 25% and 50%. Table 1 reports the
mean squared errors (MSE’s) multiplied by n for sample size n = 150, repetitions
M = 2000, and the number of constraints r = 1, . . . , 5. It can be seen that the
MSE’s of the EL-weighted MPLE β̂n are about 20%-40% less than the MSE’s of
the usual MPLE β̃n.

Remark 3.1. In order to compute ak, the distribution G of W must be known.
From the practical point of view, we can use the empirical distribution function of
the observations. But we can’t directly apply our results. In many real situations
such as in census data, a large sample is available, so that we can the empirical
distribution function, see the discussions in Examples 2.1 and 2.2 of Peng (2014)
and the references therein. In certain situations when the sample size is large, the
observations of W is approximately normally distributed. Hence we can take G to
be the standard normal after the observations of W are normalized.

4. Details of the proofs

In this section, we give the sketches of some of the proofs. Due to the page limit,
we shall omit some proofs.

Let ‖A‖ denote the euclidean norm and ‖A‖o the operator (or spectral) norm
of a matrix A which are defined by

‖A‖2 = trace(A⊤A) =
∑

i,j

A2
ij , ‖A‖o = sup

‖u‖=1
‖Au‖ = sup

‖u‖=1
(u⊤A⊤Au)1/2.

Let Tn1, . . . , Tnn be m-dimensional random vectors. With these random vectors we
associate the empirical likelihood

Rn = sup
{

n
∏

j=1

nπj : π ∈ Pn,
n
∑

j=1

πjTnj = 0
}

.

To study the asymptotic behavior of Rn we introduce

T ∗
n = max

1≤j≤n
‖Tnj‖, T̄n =

1

n

n
∑

j=1

Tnj , T
(ν)
n = sup

‖u‖=1

1

n

n
∑

j=1

(u⊤Tnj)
ν , ν = 3, 4,

and let λn and Λn denote the smallest and largest eigen values of Sn,

Sn =
1

n

n
∑

j=1

TnjT
⊤
nj , λn = inf

‖u‖=1
u⊤Snu, Λn = sup

‖u‖=1
u⊤Snu.

We impose the following conditions on Tnj .

(A1) T ∗
n = op(n

1/2).

(A2) ‖T̄n‖ = Op(n
−1/2).

(A3) There is a sequence of positive definite m × m dispersion matrices W such
that

‖Sn −W‖o = op(1).
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A sufficient condition for the preceding conditions is the square-integrability
which is quoted from Proposition 6.1 of Peng (2014).

Proposition 4.1. If u : Z → Rm fulfills (K), then Tnj = u(Zj), j = 1, . . . , n satisfy
(A1) – (A3) with W = Wu = E(u(Z)⊗2).

The following is the first part of Theorem 6.1 of Peng (2014).

Theorem 4.1. If (A1)-(A3) hold, then there exists a unique ζn such that

1 + ζ⊤n Tnj > 0,
1

n

n
∑

j=1

Tnj

1 + ζ⊤n Tnj
= 0, (4.1)

‖ζn‖ ≤ ‖T̄n‖
λn − ‖T̄n‖T ∗

n

, ‖ζn − S−1
n T̄n‖2 ≤ 2

( 1

λn
+

Λn

9λ2
n

)

‖ζn‖4T (4)
n , (4.2)

and for arbitrary random vectors Rn1, . . . , Rnn of the same dimension,

∥

∥

∥

1

n

n
∑

j=1

( Rnj

1 + ζ⊤n Tnj
−Rnj +RnjT

⊤
njζn

)

∥

∥

∥

2
≤2‖ζn‖4T (4)

n

∥

∥

∥

1

n

n
∑

j=1

RnjR
⊤
nj

∥

∥

∥

o
. (4.3)

Before proving Theorem 2.4, we need the following result. Recall a n-variate
process {N1, . . . , Nn} is called a multivariate counting process if (i) Each Ni, i =
1, . . . , n is a counting process, and (ii) No two component processes jump at the same
time. The following result generalizes Corollary 3.4.1. of Fleming and Harrington
(2005) from i = 1 to i = n.

Lemma 4.1. Let {N1, . . . , Nn} be a locally bounded multivariate counting process.
Let {Ft : t ≤ 0} be a right-continuous filtration such that for each i, Mi = Ni −
Ai is the corresponding local square-integrable martingale with Ai the compensator
process, and Hi is a locally bounded Ft-predictable process. Then for any stopping
time T such that P (T < ∞) = 1, and any ǫ, η > 0,

P
(

sup
t≤T

(

n
∑

i=1

∫ t

0
Hi(s) dMi(s)

)2
≥ ǫ

)

≤ η

ǫ
+ P

(

n
∑

i=1

∫ T

0
H2

i (s) d〈Mi,Mi〉(s) ≥ η
)

.

Sketches of Proof. This can be proved similar to the proof of Corollary
3.4.1. of Fleming and Harrington (2005). Let {τk : k = 1, 2, . . . } be a localizing
sequence such that, for any k, Ni(· ∧ τk), Ai(· ∧ τk) and Hi(· ∧ τk) for i = 1, . . . , n
are processes bounded by k, and Mi(· ∧ τk) is a square-integrable martingale.
Let U =

∑n
i=1

∫

Hi dMi. Then it follows from their Theorem 2.4.5 that U is
a local square-integrable martingale and satisfies E(U(t)) = 0 and Var(U(t)) =
∑n

i=1E(
∫ t
0 H

2
i d〈Mi,Mi〉). Using this and similar to their proof of Corollary 3.4.1.

one can prove the result by replacing their Xk and Yk with the following

Xk(t) =
(

n
∑

i=1

∫ t∧τk

0
Hi(x) dMi(s)

)2
, Yk(t) =

n
∑

i=1

∫ t∧τk

0
H2

i (x) d〈Mi,Mi〉(s).

Proof of Theorem 2.4. It follows from Proposition 4.1 that (K) implies (A1)
– (A3) in Theorem 4.1, hence there exists a unique ζn such that

1 + ζ⊤n uj > 0, j = 1, . . . , n,
1

n

n
∑

j=1

uj
1 + ζ⊤n uj

= 0,
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‖ζn‖ ≤ ‖ūn‖
λn − ‖ūn‖u∗

, ‖ζn − S−1
n ūn‖2 ≤ c0‖ζn‖4u(4)n , (4.4)

on an event whose probability converges to one as n tends to infinity, where c0 is a
constant, Accordingly, ℓn(b) is well defined on this event (and defined to be an ar-
bitrary number on the complement of this event which has an vanishing probability
as n tends to infinity).

Since Z(t) is bounded (by c2 say), it follows that the si(t), i = 0, 1, 2 given
in (2.9) are well defined and bounded for every t ∈ [0, τ ]. Note that P (Y (τ) >
0) > 0 implies inft∈[0,τ ] s0(t) > 0. Indeed, if it were 0 then it follows from s0(t) ≥
exp(−c2‖β‖)P (X ≥ t) that P (X ≥ τ) = 0 which contradicts P (Y (τ) > 0) > 0.
Thus, the e(t) defined in (2.9) is bounded by some c3. This, the boundedness of
Z(t), the square-integrability of u(R) and

∫ τ
0 h0(t) dt < ∞ imply that C(I (Y, Z))

given in (2.8) is well defined and finite.
Introduce the following two predictable processes

Z̄n(t, b) =
∑

j=1

pnj(t, b)Zj(t), Vn(t, b) =
n
∑

j=1

pnj(t, b)(Zj(t)− Z̄n(t, b))
⊗2,

where pnj(t, b) = Yj(t) exp(b
⊤Zj(t))/Sn(t, b). Write Z̄n(t) = Z̄n(t, β) and Vn(t) =

Vn(t, β). By the weak law of large numbers, we have

Sn(t, β)/n
p→ s0(t), Z̄n(t)

p→ e(t), Vn(t)
p→ V (t),

where V (t) = s0(t)
−1s2(t)−e(t)⊗2. By the standard argument (see e.g. Fleming and

Harrington (2005)), V (t) can be viewed as a variance-covariance matrix so that it
is positive definite. Introduce the EL-weighted versions of the above two processes:

Z̄n(t) =
∑

j=1

ppnj(t)Zj(t), Vn(t) =
n
∑

j=1

ppnj(t)(Zj(t)− Z̄n(t))
⊗2,

where ppnj(t) = (nπnj)Yj(t) exp(β
⊤Zj(t))/Sn(t, β). Clearly they are also predictable.

Applying Lemma A2 of Hjort and Pollard (1993) with wj = ppnj(t)Yj(t) exp(β
⊤Zj(t))

and aj = a⊤Zj(t) allows us to have an expansion for log Sn(t, β + a) with a ∈ Rk.
The result is

log Sn(t, β + a)− log Sn(t, β) = a⊤Z̄n(t) + 1/2a⊤Vn(t)a+ rn(t, a), (4.5)

where the remainder rn(t, a) has the property

|rn(t, a)| ≤ 4/3|a|3 max
1≤j≤n

‖Zj(t)− Z̄n(t)‖3. (4.6)

The limit behavior of β̂n can be derived from the study of the following ℓ∗n. To this
end, we use (4.5) to obtain its two-term Taylor expansion,

ℓ∗n(a) := n
(

ℓn(β + n−1/2a)− ℓn(β)
)

=
n
∑

j=1

nπnj

∫ τ

0

(

n−1/2a⊤(Zj(t)− Z̄n(t))

− 1/2n−1a⊤Vn(t)a− rn(t, n
−1/2a)

)

dNj(t)

:= a⊤Un − 1/2a⊤J∗na− rn(a),
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where

Un = n1/2
n
∑

j=1

πnj

∫ τ

0
(Zj(t)− Z̄n(t)) dNj(t),

J
∗
n =

n
∑

j=1

πnj

∫ τ

0
Vn(t) dNj(t), rn(a) =

n
∑

j=1

nπnj

∫ τ

0
rn(t, n

−1/2a) dNj(t).

One observes that ℓ∗n(a) is maximized at â =
√
n(β̂n−β). SinceWu = E(u(R)u(R)⊤)

is positive definite and Sn = n−1
∑n

j=1 u(Rj)u(Rj)
⊤ p→ Wu, it follows that λmin(Sn) =

λn ≥ λ0 for some constant λ0 > 0. Noticing (K) implies u∗n‖ζn‖ = op(1), hence the
first inequality in (4.4) implies nπnj ≤ 1

λ0−u∗
n‖ζn‖

≤ c1 for some constant c1 > 0.

Since Zj(t), j = 1, 2, . . . are uniformly bounded processes (bounded by c2), it fol-
lows, in view of (4.6), that

|rn(a)| ≤ c1

n
∑

j=1

∫ τ

0
4/3|a|3(2c2)3n−3/2 dNj(t) = O(n−1/2).

Therefore rn(a) = op(1) for every finite a. Recall that it is shown in the Introduction
that ℓn hence ℓ∗n is convex. Using the convex argument (e.g. Hjort and Pollard
(1993)), the desired result now follows from

Un =⇒ N (0,Σ1), and (4.7)

J
∗
n

p→ J =

∫ τ

0
J(t)h0(t) dt, (4.8)

which are shown below. Here Σ1 = J − C(I (Z, Y ))W−1
u C(I (Z, Y ))⊤ and J(t) =

s0(t)V (t) = s2(t) − s1(t)
⊗2/s0(t). Note first that by Proposition 4.1 and (4.3) we

have
n
∑

j=1

πnj

∫ τ

0
Zj(t)dNj(t) =

1

n

n
∑

j=1

∫ τ

0
Zj(t) dNj(t)

− 1

n

n
∑

j=1

∫ τ

0
Zj(t) dNj(t)u

⊤
j ζn + rn,

(4.9)

where rn is the remainder term whose square is bounded by the right hand side of
(4.3). Hence,

‖rn‖2 ≤ op(n
−1)‖ 1

n

n
∑

j=1

∫ τ

0
Zj dNj‖2 = op(n

−1). (4.10)

Denote the i-the component of Zj by Zj,i for i = 1, . . . , k. By Lemma 4.1, for any
η > 0, ǫ > 0 we have

P
(
∥

∥

∥

1

n

n
∑

j=1

∫ τ

0
Zj(t) dMj(t)

∥

∥

∥

2
≥ ǫ

)

≤
k

∑

i=1

P
(( 1

n

n
∑

j=1

∫ τ

0
Zj,i(t) dMj(t)

)2
≥ ǫ/k

)

≤ k2η

ǫ
+

k
∑

i=1

P
( 1

n2

n
∑

j=1

∫ τ

0
Z2
j,i(t) d〈Mj ,Mj〉(t) ≥ η

)

.

By taking η = ǫ2 and in view of the uniform boundedness of Zj(t), the last sum
tends to zero as n goes to infinity, hence letting ǫ → 0 gives

1

n

n
∑

j=1

∫ τ

0
Zj(t) dMj(t) = op(1).
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Analogously,

1

n

n
∑

j=1

∫ τ

0
Zj(t) dMj(t)⊗ uj = op(1),

where ⊗ is the Kronecker product. Thus using the decomposition dNj = dMj+dAj

and the law of large number we derive

1

n

n
∑

j=1

∫ τ

0
Zj(t) dNj(t)⊗ uj =

1

n

n
∑

j=1

∫ τ

0
Zj(t) dAj(t)⊗ uj + op(1)

= E
(

∫ τ

0
Z(t)Y (t) exp(β⊤Z(t))h0(t) dt⊗ u(R)

)

+ op(1).

This, (4.9), (4.10), the two inequalities in (4.2), (A1) and (??) yield

n
∑

j=1

πnj

∫ τ

0
Zj(t)dNj(t) =

1

n

n
∑

j=1

∫ τ

0
Zj(t) dNj(t)

− E
(

∫ τ

0
Z(t)Y (t) exp(β⊤Z(t))h0(t) dtu(R)⊤

)

W−1
u ūn + op(n

−1/2).

(4.11)

Analogously, it follows from Proposition 4.1 and Theorem 4.1 that

Sn(t, β) = Sn(t, β) +Op(n
1/2), and (4.12)

Z̄n(t) = Z̄n(t) +Op(n
−1/2), (4.13)

uniformly in t ∈ [0, τ ]. Thus, recalling (2.8) and observing thatRnj =
∫ τ
0 Z̄n(t) dNj(t)

is square-integrable, we apply (4.3) to get

n
∑

j=1

πnj

∫ τ

0
Z̄n(t) dNj(t) =

∫ τ

0
Z̄n(t)

dN̄n(t)

n

− 1

n

n
∑

j=1

∫ τ

0
Z̄n(t) dNj(t)u

⊤
j ζn + rn,

(4.14)

where the remainder satisfies

rn = ‖ζn‖4u(4)n ‖
(

n−1

∫ τ

0
Z̄n(t) dN̄n(t)

)⊗2‖ = op(n
−1/2).

It is easily seen that
Z̄n(t) = e(t) + op(1). (4.15)

By the second inequality of (4.4), (4.7)-(4.11) and (4.14)-(4.15), we achieve

Un = n−1/2
n
∑

j=1

∫ τ

0
(Zj(t)− Z̄n(t)) dNj(t)− C(I (Y, Z))W−1

u n1/2ūn + op(1).

It is a standard result that the first term on the right side of the above display con-
verges in distribution of N (0, J), see e.g. Theorem 8.2.1. of Fleming and Harring-
ton (2005), while the second term converges in distribution N (0, C(I (Z, Y ))W−1

u

C(I (Z, Y ))⊤). Since the second term is (asymptotically) the projection of the first
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term onto the closed linear subspace spanned by u1, . . . , um, it follows Un satisfies
(4.7). We are now left to prove (4.8). Analogous to (4.12), one obtains

n
∑

j=1

ppnjZj(t)
⊗2 =

n
∑

j=1

pnjZj(t)
⊗2 +Op(n

−1/2), and

Vn(t) =

n
∑

j=1

ppnjZj(t)
⊗2 − Z̄n(t)

⊗2 = Vn(t) + op(1).

Accordingly,

J
∗
n =

n
∑

j=1

πnj

∫ τ

0
Vn(t) dNj(t) + op(1) = n−1

∫ τ

0
Vn(t)dN̄n(t) + op(1) = J + op(1),

where the last equality uses (i) of Hjort and Pollard (1993). This proves (4.8) and
completes the proof.
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