
Multi-Factor Discretely Observed Vasicek Term Structure Models with
non-Gaussian Innovations and Its Applications to the Japanese Government

Bond Markets

Takayuki Shiohama∗

Abstract
In this paper, we propose a multi-factor model in which the discretely observed short-term interest
rates follow a non-Gaussian and dependent process. The state space formulation has the advan-
tages of taking into account both the cross-sectional and time-series restrictions on the data and
measurement errors in the observed yield curve. Clarifying the non-Gaussianity and dependency of
the dynamics of short-term interest rates, we show that these features are important to capture the
dynamics of the observed yield curve. Applications to the estimation of the Japanese government
bond yield are illustrated.

Key Words: Asymptotic expansion, Kalman filter state space models, term structure models,
Vasicek model

1. Introduction

Term structure of interest rates describes the relationship between the yield on a zero-
coupon bond and its maturity. Learning about the nature of bond yield dynamics plays a
critical role in monetary policy, derivative pricing and forecasting, and risk-management
analysis. It is necessary to capture accurately the term structure of interest rates in order to
evaluate the price of interest rate derivatives. A number of theoretical term structure models
have been proposed in the literature. The early models which are still widely used include
these by Vasicek[13] and Cox et al.[4].

Although single-factor Vasicek model has been widely used in the theoretical litera-
ture, empirical research reports that it fails to appropriately capture the behavior of short
rates. The aim of this paper is to develop a closed-form valuation for pricing zero-coupon
bonds for the multi-factor Vasicek term structure models where the innovations of underly-
ing short rate processes have non-Gaussian and dependent processes. Honda et al.[8] and
Shiohama and Tamaki[12] consider the higher-order asymptotic valuation for zero-coupon
bonds and the European call options on zero-coupon bonds using single-factor discretely
observed Vasicek models with non-Gaussian and dependent error structure. Miura et al.[10]
develop a closed-form valuation for pricing defaultable bonds incorporating a stochastic
risk-free interest rate and defaultable intensity processes have non-Gaussian and dependent
processes.

The estimation of out proposed non-Gaussian term structure modeling is formulated
via state-space representation which involves the specification of measurement system and
transition sytem. This state-space modeling is estimated using Kalman filtering methods
for one-, two-, three-factor models using the Japanese government bond yields data. Ex-
amples for the use of Kalman filtering methods for the estimation of the term structure
of interest rates include Duan and Simonato[6], O’Sullivan[11], and Date and Wang[5].
Nowman[9] estimates one-, two-, three-factor models using Japanese monthly data and
finds the evidence that the two-, and three-factor models provides a good description of
the Japanese yield curves. We extend Nowman[9] results where the underlying short rates
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dynamics have non-Gaussian innovation, and find that the non-Gaussian modeling is have
better performance compared with usual Gaissian models for the one-, two-, three-factor
modeling.

This paper is organized as follows: Section 2 explains the multi-factor term structure
models with discretely observed Vasicek models with non-Gaussian innovations. The an-
alytic expression for the approximate zero-coupon bond prices is obtained. Section 3 dis-
cusses the state-space formulation of the model and the estimation procedures. Section 4
presents the data used and the empirical results for the proposed models are illustrated.
Finally, some conclusions are offered in Section 5.

2. The Multi-Factor Models

The model for the analysis is the discretely sampled short rates with interval∆. The spot
interest rate is assumed to be the sum ofK state variablesXj,t

rt =

K∑
j=1

Xj,t,

and the state variable are driven by the non-Gaussain and dependent innovations. These
models are considered in Honda et al.[8], Shiohama and Tamaki[12], and Miura et al.[10].
The factorsXj,t are of the form

Xj,t −Xj,t−1 = κj(µj −Xj,t−1)∆ +∆1/2Zj,t, j = 1, . . . ,K, (1)

whereZj,t are independent such thatE[Zi,tZj,t] = 0 for i ̸= j, µj are the long-term mean
of Xj,t, κj are their mean reversion parameters. The innovations{Zj,t} are forth order
stationary in the following sense.

Assumption 1 For j ∈ {1, 2, . . . ,K}, the process{Z = (Z1,t, . . . , ZK,t)
′} is fourth-

order stationary in the sense that

1. E[Zj,t] = 0,

2. cum(Zj,t, Zj,t+u) = cZj (u),

3. cum(Zj,t, Zj,t+u1 , Zj,t+u2) = cZj (u1, u2),

4. cum(Zj,t, Zj,t+u1 , Zj,t+u2 , Zj,t+u3) = cZj (u1, u2, u3).

Assumption 2 Thek-th order cumulantscZj (u1, . . . , uk−1) of Zj,t, j = 1, . . . ,K, for
k = 2, 3, 4 satisfy

∞∑
u1,··· ,uk−1=−∞

|cZj (u1, . . . , uk−1)| < ∞.

Assumptions 1 and 2 are satisfied by a wide class of time series models containing the usual
bivariate ARMA and GARCH processes.

Hereafter we assume that the current time is set att = 0, and that the initial factorsXj,0

are observable and fixed. Thenrt is discretely sampled at times0,∆, 2∆, . . . , n∆(≡ T )
over[0, T ]. For the notational convenience, we use following notation. Let

Aj,u = µj(u∆−Bj,u), Bj,u =
1

2κj
(1 + υj)(1− υuj ),

aj,u =
2

κj∆

{
1− 1

2
υu−1
j (1 + υj)

}
,
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whereυj = 1 − κj∆ for j = 1, . . . ,K andu = 1, . . . , n. Then it follows from Honda et
al.[8] that

P (0, T ) = EQ
0

[
exp

(
−
∫ T

0
rtdt

)]
= EQ

0

exp
−

K∑
j=1

∫ T

0
Xj,tdt


=

K∏
j=1

EQ
t

[
exp

(∫ T

0
Xj,tdt

)]
≈

K∏
j=1

EQ̃
0

[
exp

{
−∆

(
1

2
r0 +

n−1∑
u=1

ru +
1

2
rn

)}]

=

K∏
j=1

exp(−Aj,n −Bj,nr0)AFj,n

whereEQ̃
0 is the expectation under the asymptotic risk-neutral measure, which is discussed

in Miura et al.[10], and

AFj,n = EQ̃
0

[
exp

(
−∆3/2

2

n∑
u=1

aj,uZj,n−u+1

)]
. (2)

Let

Yj,n = ∆1/2
n∑

u=1

bj,uZj,n−u+1 and bj,u =
∆

2
ai,j =

1

κj

{
1− 1

2
υu−1
j (1 + υj)

}
. (3)

Using the process{Yj,n}, we express the product of theAFj,n terms as

K∏
j=1

AFj,n = EQ̃
0

exp
−

K∑
j=1

Yj,n

 .

We give an analytic approximation of the zero coupon bond prices for the multi-factor dis-
cretely observed Vasicek term structure models with non-Gaussian and dependent innova-
tions by the Edgeworth expansion of the joint density function ofYn = (Y1,n, . . . , YK,n)

′.
It is easy to observe that the processes{Yj,n}, j = 1, . . . ,K are fourth-order stationary
with Var(Yj,n) = σ2

j,n, and the third and fourth order cumulant is denoted by

cum(Yj,n, Yj,n, Yj,n) = n−1/2C
(3)
Yj

and cum(Yj,n, Yj,n, Yj,n, Yj,n) = n−1C
(4)
Yj

.

We need following assumption.

Assumption 3 TheJ-th order (J ≥ 5) cumulants of{Yj,n}, j = 1, . . . ,K are of order
O(n−J/2+1).

Since we calibrate this model to the market interest rates, we need to include the risk
premium before we pricing the zero-coupon bonds. We assume that thejth factor’s market
price of riskλj is constant and definēµj = µj − λiσXj/κj .

By using the asymptotic expansion for the defaultable bond price of Miura et al.[10],
we can derive the following formula for the nominal price of a pure discount bond with
face value 1 maturing at timeT .

Theorem 1 Under Assumptions 1–3, the current bond price of theK-factor discretely
observed Vasicek term structure model is expressed as

P (0, T ) = exp

A(T )−
K∑
j=1

Bj,nXj,0

D(T ) (4)
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where

A(T ) =
K∑
j=1

Aj,n =
K∑
j=1

[
µ̄j(n∆−Bj,n) +

1

2
σ2
j,n

]
,

D(T ) =

K∏
j=1

exp

(
− 1

6
√
n
C

(3)
Yj

+
1

24n
C

(4)
Yj

)
,

Bj,n =
1

2κj
(2− κj∆)(1− (1− κj∆)n).

The proof of Theorem 1 is omitted, since it is analogous to the results obtained from
Honda et al.[8] and Miura et al.[10].

The analytic expressions for the bond price and yield given in Theorem 1 are based on
the discrete time models with non-Gaussian and dependent innovations. According to this
expression, the linkage between continuous and discrete scheme for short rate models are
apparent. IfZj,ts are standard normal distribution, then as∆ → 0, bond price tends to the
standard multi-factor Vasicek term structures.

3. State Space Representation and Estimation

The application of Kalman filtering methods in the estimation of term structure models
using cross-sectional and time series data has been investigated by Duan and Simonate[6],
Chen and Schott[3], and Babbs and Nowman[1, 2].

To estimate the model, we use the state-space representation of the term structure
models with non-Gaussian innovations. Our proposed models is discrete scheme with
non-Gaussian driven innovations, hence the corresponding state-space model is also non-
Gaussian, however the Kalman filter can still be applied to obtain approximate moments of
the model and the resulting filter is quasi-optimal.

Let Rt(τ) denote the continuously compounded yield on a zero-coupon bond of ma-
turity τ with corresponding discrete sample sizeτ/∆ = n. The state-space formulation
of the model consists of the measurement and transition equations. To construct measure-
ment equation, we needN zero-coupon rates and use the following relationship between
the zero-coupon yield and the price of zero-coupon bonds.

Rt(τ) = − lnP (0, τ)

τ
= −1

τ

(
(−A(τ) + lnD(τ)) +

K∑
i=1

Bj,nXj,n

)
.

Then the measurement equation has the following form withK = 3
Rt(τ1)
Rt(τ2)

...
Rt(τN )

 =


A(τ1)+lnD(τ1)

τ1
A(τ2)+lnD(τ2)

τ2
...

A(τN )+lnD(τN )
τN

+


B1,n1
τ1

B2,n1
τ1

B3,n1
τ1

B1,n2
τ2

B2,n2
τ2

B3,n2
τ2

...
...

...
B1,nN
τN

B2,nN
τN

B3,nN
τN


 X1,t

X2,t

X3,t

+


εt,1
εt,2

...
εt,N

 ,

or

Rt = A(Ψ) +H(Ψ)Xt + εt,

whereΨ denotes the unknown parameter vectors to be estimated andεt ∼ N(0,Vε) with
Vε = diag(h21, . . . , h

2
N ).
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To obtain the transition equation for the state-space model, we need conditional mean
and variance of the state variable process. Using recursive substitution in (1) and remind
thatvj = 1− κj∆, Xj,n can be represented as

Xj,n = (1− vnj )µ̄j + vnj Xj,0 +∆1/2
n∑

u=1

vu−1
j Zj,n−u+1.

For simplicity, we assume that sequence{Zj,n} is i.i.d. with zero mean and finite variance
σ2
Zj

. Then the variance ofXj,n becomes

σ2
Xj

= σ2
Zj

[
1− v

2(n−1)
j

2κj − κ2j∆

]
. (5)

The exact discrete-time models is a VAR(1), and the transition system as follows X1,t

X2,t

X3,t

 =

 µ̄1κ1∆
µ̄2κ2∆
µ̄3κ3∆

+

 1− κ1∆ 0 0
0 1− κ2∆ 0
0 0 1− κ3∆

 X1,t−1

X2,t−1

X3,t−1

+

 ηt,1
ηt,2
ηt,3

 ,

or

Xt = C(Ψ) + F (Ψ)Xt−1 + ηt(Ψ)

whereηt ∼ N(0,Vη) with Vε = diag(σ2
X1

, . . . , σ2
XK

).
Now that we have placed our models in state-space form, we can construct the Kalman

filter for the three-factor model in which we want to minimize the mean squared error
betweenRt(τi) andR̂t(τi).

ExampleLet {Zj,t} follows a GARCH(1,1) process

Zj,t = h
1/2
j εj,t, hj,t = ωj + αjZ

2
j,t−1 + βjhj,t−1,

where{εt,j} is a sequence of i.i.d. standard Normal random variables. The parameter
values must satisfyωj > 0, αj , βj ≥ 0, αj + βj < 1, and1 − 2α2

j − (αj + βj)
2 > 0.

Accordingly,σX2
j

in (5) should be

σ2
Xj

=
ωj

1− αj − βj

[
1− v

2(n−1)
j

2κj − κ2j∆

]
.

C
(3)
Yj

andC(4)
Yj

in the definition ofD(T ) in Theorem 1 should become

C
(3)
Yj

= 0,

C
(4)
Yj

=
3

n

∫ π

−π
|Bj,2(λ)

2|fZ2
j
(λ)dλ− 2

3{(1− (αj + βj)
2)}

1− (αj + βj)2 − 2α2
j

1

n

n∑
u=1

b4j,u,

whereB2(λ) =
∑n

u=1 b
2
j,ue

ijλ and

fZj
2,2(λ) =

σ2
νj

2π

1 + β2
j − 2βj cosλ

1 + (αj + βj)2 − 2(αj + βj) cosλ

with

σ2
νj =

2ω2
j (1 + αj + βj)

{1− (αj + βj)}
{
1− 2α2

j − (αj + βj)2
} .

Using this parametrization in the state space representation, we can estimate the GARCH(1,1)
driven multi-factor term structure models explicitly.
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Vasicek model (a) non-Gaussian model (b) Difference(%) (b)/(a)-1
K = 1 K = 2 K = 3 K = 1 K = 2 K = 3 K = 1 K = 2 K = 3

3 Month 31.84 2.94 1.88 28.83 4.11 1.67 -9.43 39.81 -11.03
6 Month 27.61 0.93 0.63 28.20 1.78 0.57 2.12 90.58 -9.76
1 Year 22.57 1.29 1.23 23.16 1.20 1.23 2.64 -6.45 -0.31
2 Year 15.35 5.25 3.48 13.67 3.37 3.10 -10.97 -35.77 -10.94
3 Year 12.13 7.48 3.59 9.34 4.71 3.40 -23.05 -37.10 -5.38
4 Year 10.49 7.87 3.33 8.35 5.72 3.21 -20.41 -27.34 -3.73
5 Year 11.03 7.64 3.15 9.74 6.25 3.10 -11.66 -18.28 -1.44
6 Year 13.34 7.87 3.77 12.73 6.12 3.65 -4.58 -22.21 -3.26
7 Year 15.17 7.56 4.79 15.22 6.06 4.66 0.29 -19.80 -2.82
8 Year 19.59 9.09 6.71 19.76 7.14 6.57 0.89 -21.39 -2.17
9 Year 19.47 7.56 5.94 19.37 6.39 5.89 -0.52 -15.39 -0.77
10 Year 18.29 6.78 5.36 17.84 6.34 5.39 -2.43 -6.43 0.52
15 Year 13.02 10.73 10.73 14.84 13.44 11.04 14.03 25.22 2.95
20 Year 20.34 12.61 6.03 20.88 14.54 6.12 2.70 15.33 1.57
30 Year 33.38 27.95 6.88 33.51 22.86 7.15 0.41 -18.22 4.05
Total 283.61 123.54 67.50 275.45 110.03 66.75 -2.88 -10.93 -1.11

Table 1: Sum of the squared errors with different maturities and models

4. Data Analysis

The data used consist of Japanese Government Bond (JGB) yields which are zero-coupon
adjusted obtained from Bloomberg. We use weekly sampled data and set∆ = 1/52. Data
cover the period October 1, 1999 to December 27, 2013, a total ofT = 744 observations.
The maturities included are 1/4, 1/2, 1,2,3,4,5,6,7,8,9,10,15,20, and 30 years, a total ofN =
15 different maturities. Application of the Kalman filter to the one-, two- and three-factor
models with discretely observed non-Gaussian models are discussed. For fair comparison,
we also estimate corresponding multi-factor Vasicek term structure models.

Table 1 gives the sum of the squared errors for estimated models with various maturi-
ties. For the bond yield withτi maturity, the entry in the cell is given by

SSE(τi) =

T∑
t=1

(Rt(τi)
(obs) − R̂t(τi)

(model))2,

and the total mean squared error is calculated as

Total SSE =

N∑
i=1

T∑
t=1

(Rt(τi)
(obs) − R̂t(τi)

(model))2.

We see from Table 1 that the total sum of the squares errors are small for the non-
Gaussian models compared with those corresponding one-, two- three-factors of Vasicek
model. As the number of factors increase, the calibration errors get smaller. We also
observe that the non-Gaussian models perform better for the maturities no longer than 10
years, whereas for the long maturities Vasicek term structure models perform better. This
is because, the distribution of{Yj,n} tends be normal as the sample sizen increases by the
Central Limit Theorem. Hence the non-Gaussian modelling is much better to fit the short
maturities of bond yield, where the underlying short rates exhibit highly non-Gaussian
behavior.
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parameter Vasicek model non-Gaussian model
1-factor 2-factor 3-factor 1-factor 2-factor 3-factor

µ1 -0.290 0.140 7.330 0.189 -0.873 -0.802
µ2 6.030 -4.370 -1.210 2.200
µ3 3.350 1.280
λ1 2.380 -2.040 -0.039 2.430 -12.000 8.120
λ2 0.909 3.010 3.720 -10.000
λ3 1.800 -0.507
κ1 0.009 0.560 0.251 0.003 0.325 0.212
κ2 0.094 0.396 0.093 0.415
κ3 0.009 0.023
σ1 0.012 0.114 0.001 0.015 0.003 0.019
σ2 0.085 0.003 0.183 0.019
σ3 4.27E-04 0.002

C
(3)
1 0.709 2.020 -0.622

C
(4)
1 -0.636 7.320 -0.103

C
(3)
2 -1.480 -0.451

C
(4)
2 0.487 3.110

C
(3)
3 0.999

C
(4)
3 2.460

Table 2: Estimates of one-, two- , and three- factor Vasicek models and non-Gaussian
models

Table 2 shows the parameter estimation results. As for the sum of the long-run mean
levels, the Vasicek models tends to have quite high levels with 6.1% for two-factor and
6.3% for three-factor models, whereas those with non-Gaussian models have -2% and 2.6%
for two- and three- factor models, respectively. We see that the three-factor models with
non-Gaussian models can appropriately capture the long-run interest rate level. Most of
the estimates for the sum of the risk premiams are negative. This is because, in general,
the risk in a bond associate with the spot rate is proportional to the sensitivity of the bond
price, that is∂P (0, T )/∂Xj,0 < 0.

For the skewness effects on the zero-coupon yield can be seen as the parameter values of
C

(3)
j , and these values vary from -1.5 to 2.0 among ont-, two-, and three-factors. According

to these values, we see that the effect of the skewness of underlying innovation process is
small. On the other hand, the kurtosis effect on the zero-coupon yields is apparent for some
factors in two- and three- factor models.

The observed term structure of Japanese Government Bond (JGB) yield with fitted yield
curve with various models estimated are displayed in Figure 1. We choose JGB yield of
December 20, 2013 as an example. This figure shows a typical shape for the JGB yield
under the Quantitative and Qualitative easing policy with low interest rate level for short
maturities. According to these two figures, the fitting performances for the non-Gaussian
modelling is superior to those with Vasicek term structure modelling.

5. Summary and Conclusions

In this paper we have introduced the multi-factor discretely observed Vasicek term struc-
ture models, and presented a method to estimate these models by the Kalman filter. The
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Figure 1: Wiener stochastic paths (left) and stochastic Logistic paths (right)

advantages of incorporating non-Gaussian effect for the short rate process are clear by
investigating Japanese Government Bond yield calibration. The following is possible re-
search topics. A particle filtering method should be used to compute estimates of the model
parameters as well as the state variables. Evaluation for the various interest rate derivatives
using proposed model should be investigated.
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