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Abstract

Let {xij(1 ≤ j ≤ ni)|i = 1, 2, . . . , k} be k independent samples of size nj from
respective distributions of functions Fj(x)(1 ≤ j ≤ k). A classical statistical problem
is to test whether these k samples came form a common populations with distributions
function, F0(x) whose form may or may not be known. In this paper, we consider
the complementary problem of estimating the distribution functions suspected to be
homogeneous in order to improve the basic estimator known as “empirical distribution
function” (edf) in an asymptotic setup. To illustarte the findings of the paper some
tables and graphs are given.
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1 Introduction

Let {xij(1 ≤ j ≤ ni)|i = 1, 2, . . . , k} be k (k ≥ 2) independent samples with respective

distributions of functions Fj(x)(1 ≤ j ≤ k). A classical statistical problems is the test of

homogeneity or test of goodness of fit, namely,

H0 : F1(x) = F2(x) = . . .Fk(x) = F (x) (unknown)

and

H0 : F1(x) = F2(x) = . . .Fk(x) = F0(x) (known) (1.1)

This paper deals with the estimation of

F(x) = (F1(x), F2(x), . . . , Fk(x))′
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when it is suspected that either of the hypothesis may hold. To begin with, we consider the

basic estimator of F(x), namely, the vector of the empirical distribution function, called

unrestricted edf (Uedf), as

F(x) = (Fn1(x), Fn2(x), . . . , Fnk
(x))′,

where x = F−1
0 (λ), (0 < λ < 1) under goodness of fit hypothesis. Otherwise, we choose

ξ̄λ ≈ F−1
n (λ),

where the average of Uedf is given by

F̄n = F̄n(ξ̄λ) =
1
n

[n1Fn1(ξ̄λ) + n2Fn2(ξ̄λ) + . . . + nkFnk
(ξ̄λ)] (1.2)

is the empirical distribution function under homogeneity constraint. We designate F̄n(ξ̄λ)

as the restricted edf (Redf) of F(x), The Redf generally performs better than the Uedf

when F(x) is close to F (x)1k. But, when F(x) deviate from the F (x)1k, F̄n(ξ̄λ) may be

considerably biased, inefficient and even inconsistent. For this reason, often we incorporate

the uncertain prior information, namely homogeneity or goodness of fit restriction in the

estimation of F(x). As a first step, we consider the preliminary test edf (PTedf), FPT
n (x)

as the estimator of F(x) as suggested by Bancroft (1944), Han and Bancroft (1968), Judge

and Bock (1978), and expanded by Saleh (2006) among others.

Note that FPT
n chooses Fn or Fn1k according to the preliminary test leading to rejection

or acceptance of the hypothesis, H0 : F1(x) = F2(x) = . . . = Fk(x). The PTE of F(x) is

a discrete process and not stable as such we consider the continuous version of the FPT
n

known as the Stein-type estimator (SE), FS
n (for details see Saleh 2006). This estimator is

aimed at minimum quadratic risk. Further, improvement of FS
n , may be made by combining

FS
n and F̄n1k to obtain the positive -rule Stein type estimator (PRSE), FS+

n . This paper is

a follow up of the paper by Saleh and Ghania (2014a): “New estimators of a CDF” based

on a single sample.

The proposed PTE, SE and PRSE, along with preliminary notions are presented in Section

2. The notion of asymptotic distributional bias (ADB), MSE (ADMSE) and quadratic risk

(ADQR) are considered in section 3 and, in this light, ADQR results for various estimates

are presented as well. The main result on asymptotic risk efficient (ARE) and relative

efficieny will be discussed in Section 4. Finally some concluding remars are presented in

section 5.
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2 Proposed Estimators of F (x): Homogeneity Hypothesis

First, we consider the unrestricted estimator (UE) of F as

Fn(ξ̄λ) = (Fn1(ξ̄λ), Fn2(ξ̄λ), . . .Fnk
(ξ̄λ))′.

It is well known that for fixed ξ̄λ ∈ R1, E(Fn(x)) = F(x) and

Cov(Fn) = Diag

(
1
ni

Fi(x)[1− Fi(x)], |i = 1, 2, . . . , k

)

≤ Diag

(
1

4ni
|i = 1, 2, . . . , k

)

=
1
4n

Diag

(
n

ni
|i = 1, 2, . . . , k

)
=

1
4n

Λ−1
n (2.1)

where Λn = Diag(ni
n |i = 1, 2, .., . . . , k). Also, Fn

a.s.−→Fx for fixed ξ̄λ ∈ R1.

There has been an increasing amount of research work in the area of PTE, SE and PRSE

since 2000. This is referenced by the recent work of Arashi (2012), Arashi and Tabatabaey

(2011), Arashi et al. (2014a, b), Kibria and Saleh (2012), Saleh (2006), Saleh (2013), Saleh

and Kibria (2011), Saleh and Ghania (2014), Shalabh et al. (2009), Shalabh and Wan (2000)

among others. In this paper, we introduce for the first time, the estimation of CDF in a

multi-sample situation. Next, the restricted estimator of Fx is the RE, Fn(ξ̄λ)1k. Since the

hypothesis H0 : F1(x) = F2(x) = . . . = Fk(x) may hold, we consider the test of homogeneity

given as

Ln = 4nFnJ ′
nΛnJnFn, Λn = Diag

(
ni

n
|i = 1, 2, .., . . . , k

)
. (2.2)

As n → ∞ such that ni
n → λj , the distribution of Ln under the H0 approximates the

central chi-square distribution with (k − 1) degrees of freedom (D. F.). Let χ2
k−1(α) be the

approximate upper α level critical value of the chi-square distribution with (k − 1) D.F.

Then we define the PTE of FX as PTedf given by

FPT
n = Fn − (Fn − F̄n1k)I(Ln ≤ χ2

k−1(α)), (2.3)

where I(A) is the indicator function of the set A.

Next, we define the Stein-type estimators of F(x) as

FS
n = Fn − (k − 3)(Fn − F̄n1k)L−1

n (2.4)
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and

FS+
n = FS

n − (FS
n − F̄n1k)I(Ln ≤ k − 3) (2.5)

which are known as James Stein type (JSE) and positive rule Styne type (PRS) estimator

respectively.

3 Distributional Properties of the Five Estimators

In this section, we consider the notion of asymptotic distributional biases, MSE matrices

and quadratic risk expressions for these estimators.

For the k dimensional unit cube, Ω, let ω(⊂ Ω) be a sub space for which FX satisfies

homogeneity constraint. Then by consistency of Ln test (2.2), we note that for fixed FX :6∈
ω, Ln → ∞ as n → ∞ and as n → ∞, the risks of FPT

n , FS
n and FS+

n are equivalent which

will be shown in the sequel. However, this situation is altered, when FX ∈ ω, ie. when it

belongs to a shrinkage neighborhood of ω. Thus we define a sequence of Pitman-alternative.

K(n) : Fx = F̄X1k + n−1/2ξ, ξ = (ξ1, ξ2, . . . , ξk) (3.1)

to find the asymptotic distribution of the FPT
n , FS

n and FS+
n respectively.

Let G(x) be the cdf of
√

n(F∗
n − Fx) under {K(n)} if it exists then

G(x) = limPK(n)

(√
n(F∗

n − Fx) ≤ x
)

(3.2)

We then define the asymptotic distributional bias (ADB), MSE matrices (AMSE) and

quadratic risk (ADQR) as

b∗(F∗
n) =

∫
xdG∗(x)

M∗(F∗
n) =

∫
xx′dG∗(x)

R∗(F∗
n; Q) = tr(QM∗). (3.3)

Now, we have the following theorem on the asymptotic equivalence of FPT
n , FS

n and FS+
n to

Fn(x) in ADQR while F̄n(x)1k has unbounded risk under fixed alternatives.

Theorem 3.1 For fixed FX 6∈ ω, F̄n1k has unbounded ADRQ as n → ∞, while Fn, FPT
n , FS

n

and FS+
n are asymptotically ADQR equivalent.
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Proof:

n(FPT
n − Fn)′Q(FPT

n − Fn) = n(Fn − Fn1k)′Q(Fn − Fn1k)I(Ln < χ2
k−1(α))

= LnI(Ln < χ2
k−1(α)){n(Fn − Fn1k)′Q(Fn − Fn1k)L−1

n }
≤ χ2

k−1(α))I(Ln < χ2
k−1(α))Chmax(QΛ−1),

where Λ = Diag(λ1, λ2, . . . , λk) and limn→∞
ni
n = λi, Chmax(A) is the largest eigen value

of A.

Also, note that

E
[
I(Ln < χ2

k−1(α))|Fx 6∈ ω
]
≤ P (Ln < χ2

k−1(α))|Fx 6∈ ω)

Thus for fixed FX(x) 6∈ ω, FPT
n (x) and Fn(x) are asymptotically risk equivalent.

For FS
n(x), we note that on the set {Ln}

n(FS
n(x) − Fn(x))′Q(FS

n(x)− Fn(x))

= (k − 3)2L−2
n {n(Fn(x)− F̄n(x)1k)′Q(Fn(x) − F̄n(x)1k)}

≤ (k − 3)2L−1
n Chmax(QΛ−1) (3.4)

Thus, if we can show that

E
[
L−1

n I(Ln > 0|Fn(x) 6∈ ω)
]
→ 0 as n → ∞.

then FS
n(x) and Fn(x) becomes asymptotically risk-equivalent for every F̄n(x)1k 6∈ ω. Now,

Ln is non-negative and for every F̄n(x) 6∈ ω, n−1Ln
P−→∆2 = δ′Λδ as n → ∞ which is

equivalent to Ln = Op(n−1). Thus we have for every ε > 0,

E
[
L−1

n I(0 < Ln < ε|Fn(x) 6∈ ω)
]
→ 0 as n → ∞

Hence, FS
n(x) is risk-equivalent to Fn(x). Similarly we can show that

n(FS+
n (x)− Fn(x))′Q(FS+

n (x)− Fn(x))

= 4(k − 3)2Ln{L−1
n I(Ln < k − 3) + I(Ln < k − 3)}2

= 4(k − 3)2{L−1
n I(Ln < k − 3) + 2I(Ln < k − 3) + LnI(Ln < k − 3)} (3.5)

Now

E
{
L−1

n I(Ln < k − 3) + 2I(Ln < k − 3) + LnI(Ln < k − 3)|Fn(x) 6∈ 0
}
→ 0 as n → ∞
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Based on the above results we can say that FS+
n (x) and Fn(x) are asymptotically risk

equivalent. Next, we consider the case with Pitman alternatives.

Note that Fn(x)1k and Fn(x) both have non-negative elements bounded by 1, so the finite

moment of
√

n(Fn(x) − F(x)) and
√

n(F̄n(x)1k − E[F̄n(x)1k]) of all finite orders exist and

gave finite limit as n → ∞. Also under {K(n)},

E[F̄n(x)1k|K(n)]− F(x) = O(n−1/2)

so that in this case, n||F(x)− F̄n(x)1k||2 = O(1) in L-norm.

Thus, for (3.3) - (3.5), the convergence in distribution will ensure the convergence in second

moment and hence (3.5) will ensure asymptotic risks under {K(n)}. Note that Theorem 3.1

results applies as well for {K(n)}. For our purpose it suffices to consider ADRQ through

asymptotic distribution in (3.5). We present the asymptotic distributional theory and the

ADB, ADMSE and ADQR results. Thus we present the following theorem.

Theorem 3.2: Under {K(n)} and the assumed regularity conditions, the following holds as

n → ∞

(i)
√

n(Fn(x)− F(x)) D⇒ Nk

(
ξ,

1
4
Λ−1

)

(ii)
√

n(Fn(x)− Fn(x)1k)
D⇒Nk

(
Jδ,

1
4
Λ−1J ′

)

(iii)
√

n(Fn(x)1k − F (ξλ))1k
D⇒Nk

(
0,

1
4
1k1′k

)

(iv)

( √
n(Fn(x) − F(x))√

n(Fn(x) − Fn(x)1k)

)
D⇒ N2k

{(
ξ
δ

)
;
1
4

(
Λ−1 Λ−1J ′

JΛ−1 Λ−1J ′

)}
,

(v)

( √
n(Fn(x)− F (x)1k)√

n(Fn(x) − Fn(x)1k)

)
D⇒ N2k

{(
0
δ

)
;
1
4

(
1k1′k O

O Λ−1J ′

)}
,

(vi) lim
n→∞

PK(n)
(Ln ≤ x) = Hk−1(χ2

k−1(α); ∆2), ∆2 = 4δ′Λδ, δ = ξJ (3.6)

where Hν(.; ∆2) is the cdf of a non-central chi-square distribution with ν D.F. and non-

centrality parameter ∆2.

Now we proceed to compute the ADB, ADMSE and ADQR of the estimators based on the

theorem 3.2. First, the ADB, ADMSE and ADQR of the UE is given by

b1(Fn(x)) = 0
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M1(Fn(x)) =
1
4
Λ−1 and

R1(Fn(x); Q) =
1
4
tr(QΛ−1) (3.7)

The ADB, ADMSE and ADQR of the RE is given by

b2(Fn(x)1k) = −δ

M2(Fn(x)1k) =
1
4
1k1′k + δδ′ and

R2(Fn(x)1k; Q) =
1
4
tr(1′kQ1k) + δ′Qδ (3.8)

The ADB, ADMSE and ADQR of the PTE is given by

b3(FPT
n (x)) = −δHk+1(χ2

k−1(α); ∆2)

M3(FPT
n (x)) =

1
4
Λ−1 − 1

4
(Ik − 1k1′kΛ)Λ−1Hk+1(χ2

k−1(α); ∆2)

+ δδ′{2Hk+1(χ2
k−1(α); ∆2) − Hk+3(χ2

k−1(α); ∆2)}and

R3(FPT
n (x); Q) =

1
4
tr(QΛ−1)− 1

4
{tr(QΛ−1) − tr(1′kQ1′k)}Hk+1(χ2

k−1(α); ∆2)

+ δ′Qδ{2Hk+1(χ2
k−1(α); ∆2) − Hk+3(χ2

k−1(α); ∆2)} (3.9)

The ADB, ADMSE and ADQR of the SE is given by

b4(FS
n(x)) = −(k − 3)δE

[
χ−2

k+1(∆
2)
]

M4(FS
n(x)) =

1
4
Λ−1 − 1

4
(k − 3)Λ−1

{
2E

[
χ−2

k+1(∆
2)
]
− (k − 3)E

[
χ−4

k+1(∆
2)
]}

+ (k − 3)(k + 1)δδ′E
[
χ−4

k+3(∆
2)
]

R4(FS
n(x); Q) =

1
4
tr(QΛ−1) − 1

4
(k − 3)tr(QΛ−1)

{
2E

[
χ−2

k+1(∆
2)
]
− (k − 3)E

[
χ−4

k+1(∆
2)
]}

+ (k − 3)(k + 1)δ′QδE
[
χ−4

k+3(∆
2)
]

(3.10)

The ADB, ADMSE and ADQR of the PR is given by

b5(FS+
n (x)) = −δ

{
(k − 3)E

[
χ−2

k+1(∆
2)
]

+ E

[(
1− (k − 3)χ−2

k+1(∆
2)
)2

I
(
χ2

k+1(∆
2 < k − 3

)]}

M5(FS+
n (x)) = M4(FS

n(x))− 1
4
(k − 3)Λ−1E

[(
1 − (k − 3)χ−2

k+1(∆
2)
)2

× I
(
χ2

k+1(∆
2) < k − 3

)]

+ (δδ′)
{
2E

[(
1 − (k − 3)χ−2

k+1(∆
2)
)

I
(
χ2

k+1(∆
2 < k − 3

)]

− E

[(
1− (k − 3)χ−2

k+3(∆
2)
)2

I
(
χ2

k+3(∆
2) < k − 3

)]}
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R5(FS+
n (x); Q) = R4(FS

n(x))− 1
4
(k − 3)tr(Λ−1Q)E

[(
1 − (k − 3)χ−2

k+1(∆
2)
)2

× I
(
χ2

k+1(∆
2) < k − 3

)]

+ (δ′Qδ)
{
2E

[(
1 − (k − 3)χ−2

k+1(∆
2)
)

I
(
χ2

k+1(∆
2) < k − 3

)]

− E

[(
1− (k − 3)χ−2

k+3(∆
2)
)2

I
(
χ2

k+3(∆
2) < k − 3

)]}
(3.11)

4 Analysis of ADQR Properties

In this section, we will compare the performance of the estimators via ADQR expressions.

4.1 Comparison of Uedf and Redf

Consider the ADQR-difference between Uedf and Redf as follows

R1(Fn(x); Q)− R2(Fn(x)1k; Q)) =
1
4
tr[Q(Λ−1 − 1k1′k)] − δ′Qδ (4.1)

By Courant Theorem

∆2Chmin(QΛ−1) ≤ ∆2 δ′Qδ

δ′Λδ
≤ ∆2Chmax(QΛ−1)

where Chmin(A) and Chmax(A) are the minimum and maximum eigen values of A respec-

tively. Thus we obtain that Redf, Fn(x)1k performs better than Uedf, Fn(x), whenever,

∆2 ≤ tr[Q(Λ−1 − 1k1′k)]
4Chmax(QΛ−1)

and Uedf, Fn(x) performs better than Redf, Fn(x)1k, whenever,

∆2 >
tr[Q(Λ−1 − 1k1′k)]
4Chmax(QΛ−1)

If Q = Λ, then Redf performs better than Uedf whenever,

∆2 <
k − 1

4

4.2 Comparison of FPT
n (x), Fn(x) and Fn(x)1k

Consider the ADQR expression for PTefd, FPT
n (x) given by

1
4
tr(QΛ−1) − 1

4
tr(QΛ−1)Hk+1(χ2

k−1(α); ∆2)
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+ δ′Qδ{2Hk+1(χ2
k−1(α); ∆2) − Hk+3(χ2

k−1(α); ∆2)} (4.2)

If α = 0, then χ2
k−1(0) = 1, hence ADQR expression reduces to 1

4tr(1′kQ1k) + δ′Qδ, the

ADQR of Redf, Fn(x). Now, by Courant theorem we have
[
1− Hk+1(χ2

k−1(α); ∆2) + 4∆2 Chmax(QΛ−1)
tr(QΛ−1)

K(α, ∆2)

]−1

≤ ARE(FPT
n (x) : Fn(x)) ≤[

1− Hk+1(χ2
k−1(α); ∆2) + 4∆2 Chmin(QΛ−1)

tr(QΛ−1)
K(α, ∆2)

]−1

(4.3)

K(α, ∆2) =
{
2Hk+1(χ2

k−1(α); ∆2) − Hk+3(χ2
k−1(α); ∆2)

}

So that FPT
n (x) performs better than the Fn(x) whenever

∆2 ≤
1
4 tr(QΛ−1)Hk+1(χ2

k−1(α); ∆2)

4Chmax(QΛ−1)
{
2Hk+1(χ2

k−1(α); ∆2)− Hk+3(χ2
k−1(α); ∆2)

} = ∆2
1(α, k) (4.4)

and Fn(x) performs better than the FPT
n (x) whenever

∆2 ≥
1
4 tr(QΛ−1)Hk+1(χ2

k−1(α); ∆2)

4Chmax(QΛ−1)
{
2Hk+1(χ2

k−1(α); ∆2)− Hk+3(χ2
k−1(α); ∆2)

} = ∆2
2(α, k) (4.5)

4.3 Comparison of FS
n(x) and Fn(x)

The ADQR of FS
n(x) can be written as

R4(FS
n(x); Q) =

1
4
tr(QΛ−1) − 1

4
(k − 3)tr(QΛ−1)

{
2E

[
χ−2

k+1(∆
2)
]
− (k − 3)E

[
χ−4

k+1(∆
2)
]}

+ (k − 3)(k + 1)δ′QδE
[
χ−4

k+3(∆
2)
]

=
1
4
tr(QΛ−1) − 1

4
(k − 3)tr(QΛ−1)

{
(k − 3)E

[
χ−4

k+1(∆
2)
]

+ 2∆2E
[
χ−4

k+3(∆
2)
] [

1 − (k + 3)δ′Qδ

2∆2tr(QΛ−1)

]}
≥ 0 (4.6)

for tr(QΛ−1)
Chmax(QΛ−1)

≥ p+2
2 . Hence,

R4(FS
n(x); Q) ≤ R1(Fn(x); Q)

∀(∆2, Q) satisfy {
Q :

tr(QΛ−1)
Chmax(QΛ−1)

≥ p + 2
2

}
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4.4 Comparison of FS
n(x) and FPT

n (x)

The AQR difference is

R4(FSE
n (x); Q − R3(FPT

n (x); Q) =
1
4
{tr(QΛ−1) − tr(1′kQ1′k)}Hk+1(χ2

k−1(α); ∆2)

− δ′Qδ{2Hk+1(χ2
k−1(α); ∆2) − Hk+3(χ2

k−1(α); ∆2)}

− 1
4
(k − 3)tr(QΛ−1)

{
2E

[
χ−2

k+1(∆
2)
]
− (k − 3)E

[
χ−4

k+1(∆
2)
]}

+ (k − 3)(k + 1)δ′QδE
[
χ−4

k+3(∆
2)
]

(4.7)

The above difference will be non-negative when

δQδ
{
(2Hk+1(χ2

k−1(α); ∆2) − Hk+3(χ2
k−1(α); ∆2)) − (k − 3)(k + 1)E

[
χ−4

k+3(∆
2)
]}

≥
1
4
{tr(QΛ−1) − tr(1′kQ1′k)}Hk+1(χ2

k−1(α); ∆2)

− 1
4
(k − 3)tr(QΛ−1)

{
2E

[
χ−2

k+1(∆
2)
]
− (k − 3)E

[
χ−4

k+1(∆
2)
]}

(4.8)

Using Courant theorem, FS
n(x) will dominate FPT

n (x) when

∆2 ≥

{
(2Hk+1(χ2

k−1(α); ∆2) − Hk+3(χ2
k−1(α); ∆2))− (k − 3)(k + 1)E

[
χ−4

k+3(∆
2)
]}

Chmax(QΛ−1)f1(α, k)
(4.9)

where

f1(α, k) = {tr(QΛ−1) − tr(1′kQ1′k)}Hk+1(χ2
k−1(α); ∆2)

− (k − 3)tr(QΛ−1)
{
2E

[
χ−2

k+1(∆
2)
]
− (k − 3)E

[
χ−4

k+1(∆
2)
]}

. (4.10)

However, FPT
n (x) will dominate FS

n(x) when

∆2 ≤

{
(2Hk+1(χ2

k−1(α); ∆2) − Hk+3(χ2
k−1(α); ∆2)) − (k − 3)(k + 1)E

[
χ−4

k+3(∆
2)
]}

Chmin(QΛ−1)f1(α, k)
.

(4.11)

Now, FS
n(x) will dominate FRE

n (x) when

∆2 ≥
1 − (k − 3)(k + 1)E

[
χ−4

k+3(∆
2)
]

Chmax(QΛ−1)f2(k, ∆2)
(4.12)
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where

f2(k, ∆2) = {tr(QΛ−1) − tr(1′kQ1′k)} − (k − 3)tr(QΛ−1){
2E

[
χ−2

k+1(∆
2)
]
− (k − 3)E

[
χ−4

k+1(∆
2)
]}

(4.13)

However, FRE
n will dominate FS

n(x) when

∆2 ≤
1 − (k − 3)(k + 1)E

[
χ−4

k+3(∆
2)
]

Chmin(QΛ−1)f2(k, ∆2)
. (4.14)

4.5 Comparison of FS
n(x) and FS+

n (x)

Now, consider the comparison of FS
n(x); Q) and FS+

n (x); Q). Since, 1−(k−3)χ−2
k+1(∆

2) ≤ 0,

the ADQR difference is

R5(FS+
n (x); Q)− R4(FS

n(x); Q) ≤ 0

Hence

R5(FS+
n (x); Q) ≤ R4(FS

n(x); Q) ≤ R4(Fn(x); Q) ∀∆2

We could compare all possible pairs of estimators using the corresponding risk functions.

Since the comparison teachniques are similar, for the brevity of the paper, we compare

them via table and figures. For Q = Λ, the values of risk for different ∆2 are presneted in

Table 4.1 and the graph in Figure 4.1. The values of relative efficiency for different ∆2 are

presneted in Table 4.2 and graph in Figure 4.2.

From the Tables 4.1 and 4.2 and Figures 4.1 and 4.2, we can see that near the null hypothesis

both restricted and PTE perform better than the rest. However, for k > 3, the positive

rule estimators uniformly domonates both LSE and JSE.

5 Concluding Remarks

We have considered several estimators for estimating the population CDF, FX(x). The

asymptotic bias, MSE and quadratuc risk of the estimators are provided. The perfromance

of the estimators are discussed in the smaller quadratic risk sense. Under the null hypotheie,

the RE performed the best. For k > 3, we showed that the Stein-type positive rule estimator

dominates both shrinkage and the unrestricted estimator uniformly in an asymptotic set-up,
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Table 4.1: Risk of the Estimators for α = 0.05 and different values of k and ∆2

∆2 UE RE PT SE PR
K=4

0.000 1.000 0.250 0.287 0.667 0.534
1.000 1.000 0.500 0.556 0.737 0.646
2.000 1.000 0.750 0.783 0.788 0.726
5.000 1.000 1.500 1.199 0.875 0.856

10.000 1.000 2.750 1.285 0.930 0.928
20.000 1.000 5.250 1.059 0.964 0.964
30.000 1.000 7.750 1.005 0.976 0.976

K=6
0.000 1.500 0.250 0.312 0.600 0.060
1.000 1.500 0.500 0.597 0.733 0.361
2.000 1.500 0.750 0.858 0.837 0.581
5.000 1.500 1.500 1.436 1.042 0.958

10.000 1.500 2.750 1.769 1.208 1.194
20.000 1.500 5.250 1.607 1.334 1.334
30.000 1.500 7.750 1.514 1.385 1.385

while preliminary test estimators works reasonably for k = 3. Tables and graphs are given

for practical use of the methodology.
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Figure 4.1: Risk behavior of the estimators for α = 0.05 and k = 4
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Figure 4.2: Efficiency of the estimators for α = 0.05 and k = 6
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