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Abstract
We model longitudinal data from a heterogeneous population as samples from a mixture of extended
linear mixed-effects models, and develop an expectation-maximization (EM) algorithm based on
Monte Carlo (MC) sampling, called EMMC, to estimate the model parameters. The algorithm
EMMC is implemented separately using linear mixed-effect model for each cluster, and thus con-
verges much faster than the standard EM algorithm. We present an evaluation of the approach
through simulations. We also applied our algorithm to clustering of International Normalized Ratio
(INR) trajectories following warfarin initiation. Four clusters of the INR trajectories were deter-
mined using model selection criterion AIC. In contrast, when using BIC for model selection, the
cluster consisting of the worst cases, where INR cannot be controlled, was missed.

Key Words: Longitudinal data, mixed-effects, mixture model, EM algorithm, clustering

1. Introdution

Longitudinal study involves repeated measurements on each subject or individual over long
periods of time. Such repeated measures data are usually heteroscedastic and correlated
within subjects, and measurement times may be unequally spaced within an individual and
varying across individuals. Model-based methods or finite mixture models (Titterington
et al., 1985; McLachlan and Basford, 1988; McLachlan and Peel, 2000; Fraley and Raftery,
2002) have been proposed for clustering such longitudinal data, for example, see Pauler and
Laird (2000), De la Cruz-Mesia et al. (2008), and McNicholas and Murphy (2010).

For model-based clustering, we need to specify a family of statistical models for the
components of the mixture models. Two families have previously been proposed. Banfield
and Raftery (1993) proposed a general framework for the family of multivariate normal
mixtures by parameterizing covariance matrices through eigenvalue decomposition. Mc-
Nicholas and Murphy (2008) developed a parsimonious Gaussian mixture model (PGMM)
family based on a mixture of factor analyzers (McLachlan et al., 2003). The PGMM fam-
ily of models is well suited to the analysis of high-dimensional data because the number
of covariance parameters is linear in the dimensionality of the data under consideration.
These two families of models are implemented in the R (R Development Core Team, 2013)
software packages mclust (Fraley and Raftery, 1999, 2007) and pgmm (McNicholas et al.,
2010), respectively. McNicholas and Murphy (2010) also proposed a Gaussian mixture
model with a modified Cholesky decomposed covariance structure (Pourahmadi, 1999) for
clustering of longitudinal data. These families of models take account of the heteroscedas-
ticity and correlation within subjects, but ignore random variations from multiple sources
or between subjects.

More recently, the family of linear mixed-effects (LME) models has been used in the
model-based clustering context (Celeux et al., 2005; De la Cruz-Mesia et al., 2008), to
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provide a more flexible and powerful tool for the analysis of random variations (Pinheiro
and Bates, 2000). Although the LME models include random variations, they neglect het-
eroscedasticity and correlation within subjects by assuming that the correlation matrix of
within subject errors is the identity matrix. Extended linear mixed-effects models relax
this assumption and allow heteroscedastic and correlated within-subject errors (Pinheiro
and Bates, 2000). Hence, the extended LME model offers a viable option for modeling
longitudinal data.

In this paper, we consider the family of extended LME models for clustering of lon-
gitudinal data. Following previous work (Ciampi et al., 2012), we model the longitudinal
data as samples from a mixture of extended LME models. The EM algorithm (Dempster
et al., 1977; Titterington et al., 1985) is popularly used to estimate mixture model param-
eters by maximizing a complete data likelihood. However, the standard EM algorithm is
highly nonlinear and can be slow to converge. We propose an EM algorithm with Monte
Carlo sampling, called EMMC, that is implemented separately using LME model for each
sampling cluster. The EMMC algorithm converges quickly.

The rest of this paper is organized as follows. Section 2 introduces a mixture of ex-
tended LME models. The EM algorithms for parameter estimation are presented in Section
3. Sections 4 is devoted to evaluation of the approach through limited simulations. In
Section 5, we analyzed clinical data set on initiation of warfarin.

2. A mixture of extended linear mixed-effects models

Consider a data set containingM subjects or individuals assumed to come fromK clusters.
For subject i in cluster k we model the observed response as a linear mixed model

yi = Xiβk + Zibik + εik, (1)

where yi = (yi1, . . . , yi,ni)
′, yij is the response variable of subject i at measurement time

point tij , j = 1, . . . , ni, and

• βk is a vector of fixed effects, and Xi is a corresponding design matrix of ni × p;

• bik ∼ N(0,Ψk) corresponding to random effects, and Zi is a design matrix of ni×q;

• εik ∼ N(0,Λik) representing modeling errors, where Λik > 0, positive definite.

The random effects, b, and modeling errors, ε, are assumed to be independent. The covari-
ance matrix of yi, can therefore be written

Σik = ZiΨkZ
′
i + Λik.

Let Ck denote the set of subjects in the cluster k, and αk = Pr{Ck} be the mixture
proportion for cluster k, satisfying

∑K
k=1 αk = 1. Let µik = Xiβk. Then the set of obser-

vations for subject i follow a multivariate Gaussian mixture distribution with probability
density function

f(y|θ) =

K∑
k=1

αkϕ(y|µik,Σik), (2)

where
ϕ(y|µik,Σik) =

1√
(2π)ni |Σik|

exp{−1

2
(y − µik)′Σ−1ik (y − µik)} (3)

is the density of the multivariate normal distribution, and θ = {α, β,Ψ,Λ} contain all
unknown parameters. The covariance matrix of the modeling errors may be redefined as
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Λik = σ2kVi(φk), depending on some additional parameters. Then θ = {α, β,Ψ, φ, σ2}. In
this article, we use parameter notation without subscripts to represent the set of all corre-
sponding parameters.

3. Model estimation

The likelihood function for the model (1) is

l(θ|y) =
M∑
i=1

log f(yi|θ) =
M∑
i=1

log(
K∑
k=1

αkϕ(yi|µik,Σik)).

Estimating the model parameters by directly maximizing the likelihood function usually is
not possible due to its complexity. Instead, the EM algorithm can be used for estimating
parameters of statistical models with missing or latent variables. Let δik = 1{i ∈ Ck} be
an indicator function of subject i being in cluster k, and let δi = (δi1, . . . , δiK)′. Both the
random effects, b, and cluster indicators, δ, are unobserved, and can be called missing or
latent variables. Nevertheless, the joint probability of Yi, bi, and δi, is

f(yi, bi, δi|θ) =
K∏
k=1

{αkϕ(yi|Xiβk + Zibik,Λik)ϕ(bik|0,Ψk)}δik .

We therefore have a complete data log-likelihood function

l(θ|y, b, δ) =

M∑
i=1

K∑
k=1

δik{logαk + logϕ(yi|Xiβk +Zibik,Λik) + logϕ(bik|0,Ψk)}. (4)

Instead of maximizing l(θ|y) directly, we can use the EM algorithm to maximize the
expectation of the complete data log-likelihood Eb,δ{l(θ|y, b, δ)}. This is achieved by two
alternating steps, the E or expectation step and M or maximization step, repeated over
multiple iterations.

3.1 The standard EM algorithm (EM)

E-step

Let θ(s) denote the value of the parameters after iteration s. Then the E-step at iteration s+1
involves the computation of a Q-function, Q(θ|θ(s)) = Eb,δ{l(θ|y, b, δ)|y, θ(s)}. Omitting
the constant C in (4), we have

Q(θ|θ(s)) = −1

2

M∑
i=1

K∑
k=1

τik{−2 logαk+[log |Ψk|+tr(Ψ−1k Bik)]+[log |Λik|+tr(Λ−1ik Aik)]},

(5)
where

τik = E{δik|y, θ(s)} = Pr{i ∈ Ck|yi, θ(s)} =
α
(s)
k ϕ(yi|Xiβ

(s)
k ,Σ

(s)
ik )∑K

j=1 α
(s)
j ϕ(yi|Xiβ

(s)
j ,Σ

(s)
ij )

,

Aik = E{eike′ik|y, θ(s)} = (yi −Xiβk − Ziγik)(yi −Xiβk − Ziγik)′ + ZiΓikZ
′
i , Aik(βk),

Bik = E{bikb′ik|y, θ(s)} = γikγ
′
ik + Γik,
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and

Σ
(s)
ik = ZiΨ

(s)
k Z ′i + Λ

(s)
ik ,

γik = E{bik|y, θ(s)} = Ψ
(s)
k Z ′iΣ

(s)
ik

−1
(yi −Xiβ

(s)
k ),

Γik = V ar{bik|y, θ(s)} = (Ψ
(s)
k −Ψ

(s)
k Z ′iΣ

(s)
ik

−1
ZiΨ

(s)
k ).

All these quantities and then the Q-function, Q(θ|θ(s)), are straightforward to calculate
using the above equations given θ(s).

M-step

The M-step at iteration s + 1 needs to update the parameters θ by maximizing the Q-
function, Q(θ|θ(s)). Letting the first partial derivatives of the Q-function be zero and using
the constraint

∑K
k=1 αk = 1 and Λik = σ2kVi(φk), we have

α̂k =
1

M

M∑
i=1

τik

β̂k = (
M∑
i=1

τikX
′
iV
−1
ik Xi)

−1
M∑
i=1

τikX
′
iV
−1
ik (yi − Ziγik)

Ψ̂k =

∑M
i=1 τikBik∑M
i=1 τik

σ̂2k =

∑M
i=1 τiktr{V

−1
ik Aik(βk)}∑M

i=1 τikni

where
∑M

i=1 τik 6= 0 and Vik = Vi(φk). The parameters φk or equivalently the matrices
Vik can be estimated by minimizing the last term in the Q-function (5):

ξ(φk, βk, σ
2
k) =

M∑
i=1

τik{log(σ2ni
k |Vik|) + σ−2k tr(V −1ik Aik(βk))}. (6)

Substituting β̂k and σ̂2k into (6), we have ξ(φk, β̂k, σ̂2k) =
∑M

i=1 τik{ni log σ̂2k + log |Vik|+
ni}. Then the φk are estimated by

φ̂k = arg min{ξ(φk) = ξ(φk, β̂k, σ̂
2
k)}.

The E-step and M-step are repeated until convergence. The individual or subject i is
finally classified into the cluster k̂i = arg maxk{τik}.

3.2 EM algorithm using Monte Carlo sampling (EMMC)

The indictor variables for cluster membership, (δi1, . . . , δiK), follow a multinomial dis-
tribution with probabilities τi = (τi1, . . . , τiK). Let (δ

(h)
i1 , . . . , δ

(h)
iK ), h = 1, . . . ,H , be H

samples of clusters membership taken from the multinomial distribution,Multinomial(1, τi).
Then we use δ(h)i to replace τi in the Q-function (5), and have

Qh(θ|θ(s)) = −1

2

K∑
k=1

Qh,k(θ|θ(s)),
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where

Qh,k(θ|θ(s)) =
∑
δ
(h)
ik =1

{−2 logαk + [log |Ψk|+ tr(Ψ−1k Bik)] + [log |Λik|+ tr(Λ−1ik Aik)]},

which is a Q-function of a linear mixed-effects (LME) models. Let θ̂h = arg maxθQh(θ|θ(s)).
Then θ̂h = (θ̂h,1, . . . , θ̂h,K) that can be estimated separately in each cluster as a LME model
(Pinheiro and Bates, 2000) by

θ̂h,k = arg max
θk

Qh,k(θ|θ(s))

The mixing parameters are estimated by

θ̂ =
1

H

H∑
h=1

θ̂h.

The parameter estimation for LME models is much faster than for a mixture of extended
LME models. Hence the EM algorithm with Monte Carlo sampling converges quickly
within each iteration. However, typically, a large Monte Carlo sample size is required to
estimate the parameters within an acceptable tolerance. That is, H needs to be large. So
the EMMC is computationally demanding overall.

3.3 Initial values and number of clusters

The EM algorithm can be quite sensitive to the choice of starting values. A number of
different strategies for choosing starting values have been proposed (McLachlan and Peel,
2000). As Celeux et al. (2005) and Ciampi et al. (2012), we perform k-means clustering
of regression parameters obtained from linear regressions on each individual or subject to
obtain starting values.

The number of clusters in the finite mixture models may be estimated using Akaike in-
formation criterion (AIC) (Akaike, 1974) or Bayesian information criterion (BIC) (Schwarz,
1978). AIC selects more clusters and then has less missing clusters than BIC. So, for prac-
tical purpose, we may prefer AIC to BIC.

4. Simulations

We simulated data containing 200 individuals from 4 clusters that mimic 4 different patterns
of time evolution: worsening, slowly worsening, slowly improving and improving. The
number of individuals in each cluster was chosen to be 30, 43, 57, and 70, respectively. For
individual i in cluster k, the responses were generated from the following model:

yijk = β0,k + β1,ktijk + b0,jk + b1,jktijk + σkεijk,

where j = 1, . . . , ni, ni is the number of measures for individual i, tijk is the j-th measured
time point, βs,k, s = 0, 1, are fixed effects, bs,jk ∼ N(0, ψs,k) are random effects leading
to cluster-specific and individual-specific patterns and correlation, and εijk follows AR(1).
The true parameters are shown in Table 1. It is important to note that the measurement
times are unequally spaced for each individual, and ni, the number of observations, was
allowed to range from 15 to 25. We generated 500 datasets.

Firstly, assume that we know the true number of clusters, K = 4. We estimated the
model parameters using the two algorithms: EM and EMMC, for each simulated dataset.
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For each algorithm, the minimum and maximum iterations are set to be 100 and 300, re-
spectively. The E and M iteration processes will be terminated if a log-likelihood increase
is less than 0.001 or the iterations are over 300. The number of Monte Carlo samples for
EMMC is 200. The choice of these numbers of iterations here is arbitrary but set large
enough to ensure convergence. The mean and standard deviation of the estimated param-
eters over the 500 simulations for each algorithm are shown in Table 1. The average run
time per simulation for this simulation setting is 2.39 hours for EM and 12.48 hours for
EMMC. All simulations were run on the Colosse cluster of Compute Canada which has
2.8GHz blades in groups of 8, with a total of 24Gb RAM per 8 blades.

Secondly, we allowed the number of clusters to vary between 1 and 7, i.e., 1 ≤ K ≤ 7.
Then we estimated the number of clusters using both AIC and BIC model selection criteria.
The frequencies of the numbers of clusters selected by AIC and BIC for the EM algorithm
are shown in Figure 1. The simulation examples show that BIC selects a more accurate
number of clusters than AIC, but sometimes underestimates K leading to potentially miss-
ing interesting trajectory patterns.

Table 1: True parameters and average estimates of the parameters over 500 simula-
tions assuming the true number of clusters are known, that is, K = 4. The values in
parentheses are sample standard deviations of the estimates.

Method Cluster α β0 β1 ψ0 ψ1 φ σ2

True parameters

1 0.150 8 -0.75 0.50 0.01 0.45 1.00
2 0.215 6 -0.25 0.50 0.01 0.45 1.41
3 0.285 4 0.25 0.50 0.01 0.45 1.73
4 0.350 2 0.75 0.50 0.01 0.45 2.00

Estimated parameters

EM 1 0.157(0.028) 7.980(0.231) -0.734(0.051) 0.450(0.221) 0.013(0.011) 0.447(0.05) 1.014(0.098)
2 0.221(0.024) 5.931(0.306) -0.223(0.075) 0.372(0.265) 0.015(0.013) 0.451(0.047) 1.438(0.132)
3 0.283(0.031) 3.915(0.267) 0.272(0.062) 0.317(0.267) 0.015(0.012) 0.452(0.041) 1.761(0.136)
4 0.339(0.029) 1.957(0.170) 0.754(0.017) 0.398(0.259) 0.010(0.003) 0.451(0.034) 2.013(0.119)

EMMC 1 0.153(0.024) 7.982(0.219) -0.745(0.039) 0.490(0.221) 0.011(0.006) 0.448(0.049) 1.010(0.095)
2 0.216(0.016) 5.968(0.279) -0.243(0.060) 0.501(0.230) 0.010(0.004) 0.447(0.044) 1.417(0.116)
3 0.284(0.021) 3.983(0.234) 0.256(0.054) 0.479(0.208) 0.010(0.004) 0.445(0.038) 1.732(0.118)
4 0.347(0.025) 1.994(0.154) 0.752(0.018) 0.485(0.224) 0.010(0.003) 0.449(0.032) 1.999(0.114)

5. Clinical example

Data on response to warfarin therapy was collected on 99 patients with atrial fibrillation
presenting to the anticoagulation clinic between March 2001 and June 2012 at a single
tertiary-care center and enrolled in a previous study. Response to warfarin is measured with
the International Normalized Ratio (INR), and each patient has multiple measurements (6
∼ 33) measured over a time period of up to 240 days (8 months) post initiation of warfarin
therapy. Patient responses to warfarin are known to be highly variable and dose needs to
be carefully adjusted in some patients to achieve optimal anticoagulant effect. We modeled
the data as samples from a mixture of K linear mixed models with autoregressive errors,
where K is to be estimated from the data using either AIC or BIC. We found the best fit
was 4 clusters using AIC, and 3 clusters using BIC. An uncommon cluster with substantial
INR instability was only identified using the AIC criterion. Figure 2 shows typical patterns
of INR trajectories.
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Figure 1: Frequencies of cluster numbers selected by AIC and BIC for EM algorithm.
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Figure 2: Typical patterns of INR trajectories
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6. Conclusion

A mixture of extended LME models has been proposed for clustering of longitudinal data,
and two EM-type algorithms: standard EM and Monte Carlo sampling based EM, have
been developed to estimate the mixture model.

BIC remains the most prevalent mixture model selection technique within the literature.
Our simulation examples also showed that BIC tends to select a more accurate number of
clusters than AIC but also can miss some true clusters. In practice, it is recommended to
look at the clusters selected by both AIC and BIC since the small clusters found only by
AIC may have relevance.

The standard errors of θ̂ may be given by the diagonal elements of the asymptotic
covariance matrix of the maximum-likelihood estimates (Ciampi et al., 2012) , which is
equal to the inverse of the expected Information matrix and can be approximated by the
Louis (1982) decomposition.

The extended LME models are based on the Gaussian or normal distribution. Mixture
of different types of distributions, such as mixtures of Gaussian and uniform distributions
or t-distributions (McNicholas and Subedi, 2012), has received attention recently and it
could be interesting to extend this work to more general distributions.

Although total computation time for EMMC is longer than for EM, the former can be
parallelized so that total elapsed time for estimation could be considerably faster.
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