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Abstract 
The validity of the results of an ANOVA test is largely dependent on satisfying the 
homogeneity of variance, normality, and independence assumptions.  Violations of these 
assumptions lead to distorted Type I error rates. Various tests to check the homogeneity 
of variance assumption for non-normal data have been proposed in the literature, yet 
there is no consensus as to which test is most appropriate.  A simulation study was 
conducted to explore the Type I error rates and statistical power of 
fourteen approaches for testing the homogeneity of variance assumption in one-way 
ANOVA models.  Seven factors were manipulated in the study: number of groups, 
average number of observations per group, pattern of sample sizes in groups, pattern of 
population variances, maximum variance ratio, population distribution shape, and 
nominal alpha level for the test of variances.  Results from this study delineate the 
performance of the tests under a wide variety of conditions, providing researchers with 
information to guide the selection of a valid test for assessing the tenability of this critical 
assumption. 
 
Keywords: Homogeneity of variance, Analysis of variance, Non-normality, Type I error 
control, Statistical power.  
 

1. Introduction 
 
In an ANOVA procedure, the assumption of homogeneity of variance (HOV) is that 
treatment variances are equal. That is, 
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Moderate deviations from the assumption of equal variances may not seriously affect the 
results in ANOVA (Glass, Peckham, & Sanders, 1972). Because the ANOVA procedure 
may be robust to small deviations from the HOV assumption, researchers may only need 
to be concerned about large deviations from the HOV assumption. However, the tests 
used to evaluate HOV are sensitive to departures of normality, for which researchers 
should turn to alternative tests when the assumption of normality is not met. In this study, 
we assemble fourteen HOV tests.  Some of these methods are prevailing and available in 
statistical analytical software packages (e.g., Statistical Analysis System or SAS). And 
many are alternatives of the HOV testing approaches that have been proposed in 
literature but are not included in the existing software packages. Table 1 presents all the 
HOV methods evaluated in this study, followed by the test statistic and mathematical 
equation of each method. These fourteen approaches are elaborated in detail below. 
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Table 1: Alternative Homogeneity of Variance Tests Statistics and Distributions. 

HOV Test Test Statistic and Distribution Notation 
Bartlett  

𝜒2 =
(𝑁−𝑘)𝑙𝑜𝑔�

∑ (𝑛𝑗−1)𝑆𝑗
2𝑘

𝑗=1
(𝑁−𝑘) �−∑ (𝑛𝑗−1)log (𝑆𝑗

2)𝑘
𝑗=1

1+
�∑ 1

𝑛𝑗−1
𝑘
𝑗=1 �− 1

(𝑁−𝑘)
3(𝑘−1)

, 

 

N  = total sample size;  
Nj  = group j sample size;  
k = number of groups;   
Sj

2 = group j variance. 

Levene 
(Absolute 
and 
Squared) 

𝑍𝑖𝑗 = �𝑌𝑖𝑗 − 𝑌�.𝑗� 𝑎𝑛𝑑 𝑍𝑖𝑗 = (𝑌𝑖𝑗 − 𝑌�.𝑗)2, 

𝑊 =  
(𝑁−𝑘)∑ 𝑛𝑗(𝑍�.𝑗−𝑍�..)2𝑘
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(𝑘−1)∑ ∑ (𝑍𝑖𝑗−𝑍�.𝑗)2
𝑛𝑗
𝑖=1

𝑘
𝑗=1

  

𝑌𝑖𝑗 = raw score;  
𝑌�.𝑗  = mean of the jth group; 
�̅�.𝑗 = group mean of 𝑍𝑖𝑗;  
�̅�..  = grand mean. 

Brown-
Forsythe 
(BF)a 

𝑧𝑖𝑗 =  �𝑌𝑖𝑗 −  𝑌�ji�, 

𝑊 =  
(𝑁 − 𝑘)∑ 𝑛𝑗(�̅�.𝑗 − �̅�. . )2𝑘
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𝑖=1

𝑘
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𝑌�j = median of group j;  
zij = transformed value of 
Yij; 
�̅�.𝑗 = group mean of 𝑍𝑖𝑗; 
�̅�..  = grand mean. 

O’Brien 
𝑟𝑖𝑗(𝑤) = �𝑤+𝑛𝑗−2�𝑛𝑗�𝑌𝑖𝑗−𝑌�.𝑗�

2−𝑤𝑠𝑗2(𝑛𝑗−1)
(𝑛𝑗−1)(𝑛𝑗−2)

, 

 

𝑠𝑗2 = within-group 
unbiased estimate of 
variance for sample j;  
w (0≤w≤1) = weighting 
factor. 

Ramsey 𝑏2 = 𝑚4/𝑚2
2, 

𝑏2𝑗 =

∑�𝑌𝑖𝑗 – 𝑌� .𝑗�
4

𝑛𝑗

�
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2

𝑛𝑗
�

2 . 

 𝑚𝑟= Σ(Yij – 𝑌�.𝑗)r / 𝑛𝑗. 

Cochran’s 
Cb 𝐶 = 𝑠𝑚𝑎𝑥

2

∑𝑠𝑗
2 , 

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝐶 = 1

1+ 𝑘−1
𝐹𝛼
𝑘,   𝑛−1,(𝑘−1)(𝑛−1)

. 

 

n = number of observations 
in each group (for the 
balanced design);  
F = critical value of F at 
α/k with df = n-1, (k-1)(n-
1). 

G test  𝐺 = 𝑣𝑚𝑎𝑥𝑠𝑚𝑎𝑥
2

∑𝑣𝑗 𝑠𝑗2
, 

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝐺 = 1

1+
𝑣𝑝𝑜𝑜𝑙 /(𝑣𝑚𝑎𝑥−1)

𝐹𝛼
𝑘,   𝑛𝚥����−1,(𝑘−1)(𝑛𝚥����−1)

. 

𝑣𝑝𝑜𝑜𝑙 = pooled degrees of 
freedom;  
𝑣𝑚𝑎𝑥 = degrees of freedom 
for the group within the 
largest variance; 
 𝑛𝚥�  = mean number of 
observations in each group;  
𝐹𝛼
𝑘

= critical value of F at 

α/k with df = 𝑛𝚥� − 1, (𝑘 −
1)(𝑛𝚥� − 1). 

Fmax
b 

𝐹𝑚𝑎𝑥 =
𝑠𝑚𝑎𝑥2

𝑠𝑚𝑖𝑛2  
𝑠𝑚𝑎𝑥= largest group 
variance; 
𝑠𝑚𝑖𝑛= smallest group 
variance. 
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Z-variance 𝑧 = �2𝜒2 − �2(𝑑𝑓) − 1 , 

𝜒𝑛−12 = (𝑛−1)𝑆2

𝜎2
, 

𝑍𝑗 = �𝑐(𝑛𝑗−1)𝑆𝑗
2

𝑀𝑆𝑤
− �𝑐(𝑛𝑗 − 1) − 1, 

𝐹 =
∑ 𝑍𝑗2𝑘
𝑗=1

𝑘−1
. 

s2 = sample variance 
estimate;  
σ2 = true population 
variance; 
𝑐 = 2 + 1/𝑛𝑗;  
𝑀𝑆𝑤= pooled within-cells 
mean square across all 
groups (or cells in a more 
complex factorial design). 

Modified 
Z-variance 𝑐 = 2.0 �2.9+.2/𝑛𝑗

𝐾
�
1.6�𝑛𝑗−1.8𝐾+14.7�/𝑛𝑗

, 

𝐾 =
∑𝑍𝑖𝑗

4

𝑛𝑗−2
, 

 𝑍𝑖𝑗 = 𝑌𝑖𝑗−𝑌�.𝑗

�
𝑛𝑗−1
𝑛𝑗

𝑆𝑗
2
. 

K = mean of the kurtosis 
indices from all groups. 
 

Note: aThe bootstrap version of the BF test was also evaluated. bWith arithmetic mean 
and harmonic mean for the group size under unbalanced design. 

 
1.1 Methods Available in SAS 
 
Bartlett Test. Bartlett (1937) proposed a special use of the chi-square test for testing the 
HOV assumption, under which the null hypothesis of equal variances will be rejected if 
the Bartlett’s χ2 is greater than the critical χ2 value with df = k-1. However, Snedecor and 
Cochran (1989) found that the Bartlett’s test is sensitive to non-normal distributions and 
instead recommended alternative testing approaches: Levene (Absolute and Squared), 
Brown-Forsythe (BF), and O’Brien tests. 
 
Levene Test. Levene (1960) proposed the use of absolute residual values or squared 
residuals, which transforms the test of variances into a test of means that is relatively 
robust to the normality assumption. The W statistics of the absolute residual values and 
squared residuals are compared to the F critical value with N-k and k-1 as df in the 
numerator and denominator, respectively.  
 
Brown-Forsythe (BF) Test. Brown and Forsythe (1974) proposed the Brown-Forsythe 
(BF) test that follows the idea of Levene’s test but uses the group median instead of the 
group mean in the calculation of the absolute residual values. It is expected to be more 
robust than Levene’s test when the population distribution is skewed.  
 
O’Brien Conditional Test. O’Brien (1979) proposed a test that transforms original scores 
so they represent sample variances. The mean of the transformed values per group, 
𝑟𝚥� =

∑𝑟𝑖𝑗
𝑛𝑗

= 𝑠𝑗2, will equal the variance computed for that group. The weighted average, 

𝑟𝑖𝑗(𝑤), is a modification of Levene’s squared difference from the group mean (w = 0), 
and a jackknife pseudo value of 𝑠𝑗2 (𝑤 = 1).  O’Brien (1981) suggested setting w = .5 as 
default. 
 
These aforementioned approaches that are available in the existing software have been 
well-examined. Snedecor and Cochran (1989) stated that the Bartlett’s test is sensitive to 
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violations of the normality assumption. Therefore, statisticians do not recommend its use 
for testing the HOV assumption when data depart from normality and recommend instead 
alternative testing approaches that are not sensitive to departures from normality, namely, 
Levene, BF, and O’Brien tests.  
 
However, simulation studies (e.g., Algina, Olejnick, & Ocanto, 1989; Conover, Johnson, 
& Johnson, 1981; Lee, Katz, & Restory, 2010; Olejnick & Algina, 1987) have showed 
differences among these tests. The O’Brien test provided Type I error rates near the 
nominal alpha in unbalanced samples but with platykurtic distributions it was more 
sensitive to variance differences than the BF test. When sample sizes were equal, O’Brien 
had a power advantage used with platykurtic distributions and had a slight power 
advantage when used with mesokurtic distributions regardless of whether the 
distributions were skewed or not. On the other hand, BF had a power advantage used 
with leptokurtic distributions regardless of the skewness. When sample sizes were 
unequal, results were different because the relative power of these tests depended on the 
direction of the relationship between the population variances and sample sizes. For 
example, the power of the O’Brien test was improved when used with skewed-platykurtic 
and symmetric-platykurtic distributions. The power of BF was also enhanced when the 
relationship between population variance and sample size was direct (i.e. larger samples 
come from populations with larger variances) and with leptokurtic or mesokurtic 
distributions. With other distributions, the tests had similar power. 
 
1.2 Methods Not Available in SAS 
 
Bootstrap Brown-Forsythe Test. Boos and Brownie (2004) as well as Lim and Loh 
(1996) recommended using the median version of Levene’s test statistic (i.e., the BF 
statistic), then obtaining the p-value via the bootstrap, which provided more power than 
the F distribution version.  
 
Ramsey Conditional Test: Brown-Forsythe or O’Brien. Ramsey’s (1994) conditional 
procedure is based on using BF or OB method, conditional on a test of kurtosis. Kurtosis 
(𝑏2) for each of the k groups is computed by using Pearson’s traditional measure; the 
kurtosis value for each group is then compared to critical values obtained from a table 
provided by Ramsey and Ramsey (1993). The O’Brien test will be applied if the data are 
platykurtic and the BF test will be used if the data are mesokurtic or leptokurtic. 
 
Cochran’s C test. Cochran’s C test (Cochran, 1941) is a ratio of the largest group 
variance to the sum of sample variances. If the obtained value exceeds the critical value, 
the null hypothesis of variance homogeneity is rejected. For an unbalanced design one 
could use either an arithmetic mean of 𝑛𝑗 or the harmonic mean of 𝑛𝑗 to calculate degrees 
of freedom. Both were included in our study. 
 
G Test. The G test is a ratio of the product of the largest variance and its degrees of 
freedom to the sum of the products of each variance and its degrees of freedom. If the 
obtained value exceeds the critical value, the null hypothesis of variance homogeneity is 
rejected. 
 
F-max Test. Hartley (1950) developed the Hartley’s or Fmax test for comparing three or 
more group variances, which is a ratio of the largest group variance to the smallest group 
variance and requires independent random samples of the same size from normally 
distributed populations (Ott & Longnecker, 2010). The value of Fmax is compared to a 
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critical value from the table containing the test sampling distribution. Similar to the 
Cochran’s C test, this study included the use of both the arithmetic and harmonic means 
of 𝑛𝑗 for an unbalanced design.  
 
Z-variance Test. Overall and Woodward (1974) proposed the Z-variance test based on 
Fisher and Yates’ formula (1963). It transforms the chi-square statistics with large df into 
standard normal deviate z-scores.  It performed very well with normally distributed data 
but produced too many Type I errors when samples were from leptokurtic or skewed 
distributions.  
 
Modified Z-variance Test. To improve the performance of the Z-variance test when 
sample distributions are leptokurtic or skewed, Overall and Woodward (1976) developed 
the modified Z-variance approach to testing the HOV by implementing a c value based on 
sample size, skewness, and kurtosis. 
 
1.3. Research Purpose 
 
Considering the ongoing controversy on testing the homogeneity of variance and the 
minimal consensus among studies as to which test is appropriate for a particular analysis, 
two over-arching research questions guide this area of inquiry: (a) Does it make sense to 
statistically test the homogeneity of variance assumption? (b) What method should we 
use for testing the homogeneity of variance assumption? To our knowledge, there are no 
studies that examine all the HOV tests proposed in this study simultaneously. Thus, the 
goal of the current paper is to conduct a comprehensive examination of fourteen 
approaches for testing the homogeneity of variance assumption in one-way ANOVA 
models under diverse data conditions. The specific questions are as follows: (a) Which 
HOV tests possess adequate control of the Type I error and competitive power? (b) 
Which design factors have significant impacts on Type I error control and statistical 
power among the HOV tests?   
 

2. Method 
 
This study was conducted using a simulation approach. The six design factors 
manipulated in this study included: (a) number of groups (k = 4 and 6), (b) average 
number of observations per group (n = 5, 10, and 20), (c) sample size pattern (equal, one 
extreme, split, and progressive), (d) variance pattern (equal, one extreme, split, 
progressive, one extreme inversely, split inversely, and progressive inversely), (e) 
maximum group variance (4, 8, and 16), and (f) population distribution (γ1 = 0.00 and γ2 
=0.00, γ1 = 1.00 and γ2 = 3.00, γ1 = 1.50 and γ2 =5.00,  γ1 = 2.00 and γ2 = 6.00, γ1 = 
0.00 and γ2 =25.00, and γ1 = 0.00 and γ2 =-1.00, where γ1 and γ2 represent skewness 
and kurtosis, respectively). Non-normal populations were generated by implementing the 
Fleishman’s transformation (Fleishman, 1978). Table 2 shows four sample size patterns 
and Table 3 presents seven variance patterns. In addition to six designed factors, we used 
six alpha levels for testing the homogeneity assumption (α = .01, .05, .10, .15, .20, and 
.25). Thus, this crossed mixed factorial design had a total of 16,416 conditions in this 
study. For each condition, 5,000 replications were generated.  
 
Continuous data for this study were generated using a random number generator, 
RANNOR in SAS/IML statistical software, using a different seed value for each 
execution of the simulation program. For each condition in the simulation, 5,000 samples 
were generated. The use of 5,000 replications provides a maximum standard error of an 
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observed proportion (e.g., Type I error rate estimate) of .00158, and a 95% confidence 
interval no wider than ± .003 (Robey & Barcikowski, 1992). 
 
We examined Type I error and statistical power as the simulation outcomes. Type I error 
was examined when the variances across groups were equal (i.e., equal variance pattern); 
otherwise, power was computed. For Type I error, we further investigated the robustness 
using the Bradley’s liberal criterion. The liberal criterion for the robustness is set at .5α 
around the nominal alpha. For instance, a test is considered robust when the Type I error 
rate falls between .025 (= .5*.05) and .075 (= 1.5*.05) using the alpha level of .05. 
Finally, eta-square analyses were conducted to explore the significant impacts of design 
factors on variability in the estimated Type I error. The Cohen’s (1988) moderate effect 
size of .0588 was set as a cutoff value for eta-square analyses. 
 
Table 2:  Sample Size Pattern. 

Sample Sizes 
 Progressive N  Equal N  Split N  One Extreme 
K=6                
1 2 5 10  5 10 20  2 5 10  3 6 12 
2 3 7 14  5 10 20  2 5 10  3 6 12 
3 4 9 18  5 10 20  2 5 10  3 6 12 
4 6 11 22  5 10 20  8 15 30  3 6 12 
5 7 13 26  5 10 20  8 15 30  3 6 12 
6 8 15 30  5 10 20  8 15 30  15 30 60 
Average 
N 

5 10 20  5 10 20  5 10 20  5 10 20 

K=4                
1 2 7 14  5 10 20  2 5 10  3 6 12 
2 4 9 18  5 10 20  2 5 10  3 6 12 
3 6 11 22  5 10 20  8 15 30  3 6 12 
4 8 13 26  5 10 20  8 15 30  11 22 44 
Average 
N 

5 10 20  5 10 20  5 10 20  5 10 20 

Note. K=number of groups, Progressive N = progressive increase of sample size, Split 
N=half of groups has the same sample size.  
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Table 3: Variance Patterns. 
Population Variances 

 Progressive  Split  One Extreme          Equal 
Max 
Variance 
Ratio 

1:4 1:8 1:16  1:4 1:8 1:16  1:4 1:8 1:16  1:1 

K=6              
1 1 1 1  1 1 1  1 1 1  1 
2 1.6 2.4 4  1 1 1  1 1 1  1 
3 2.2 3.8 7  1 1 1  1 1 1  1 
4 2.8 5.2 10  4 8 16  1 1 1  1 
5 3.4 6.6 13  4 8 16  1 1 1  1 
6 4 8 16  4 8 16  4 8 16  1 
K=4              
1 1 1 1  1 1 1  1 1 1  1 
2 2 3.3 6  1 1 1  1 1 1  1 
3 3 5.7 11  4 8 16  1 1 1  1 
4 4 8 16  4 8 16  4 8 16  1 

 
 

(Cont’d)  
Population Variances 

 Progressive 
Inversely  Split Inversely  One Extreme 

Inversely 
Max 
Variance 
Ratio 

4:1 8:1 16:1  4:1 8:1 16:1  4:1 8:1 16:1 

K=6            
1 4 8 16  4 8 16  4 8 16 
2 3.4 6.6 13  4 8 16  1 1 1 
3 2.8 5.2 10  4 8 16  1 1 1 
4 2.2 3.8 7  1 1 1  1 1 1 
5 1.6 2.4 4  1 1 1  1 1 1 
6 1 1 1  1 1 1  1 1 1 
K=4            
1 4 8 16  4 8 16  4 8 16 
2 3 5.7 11  4 8 16  1 1 1 
3 2 3.3 6  1 1 1  1 1 1 
4 1 1 1  1 1 1  1 1 1 
Note. For example, “Progressive” means that the population variances increased in a 
progressive way among groups. “Progressive Inversely” refers to the same variance 
patterns as in “Progressive” but in the reverse group order. 
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3. Results 
 

3.1 Type I Error Rate Estimates 
 
Boxplots were first checked to examine the distributions of Type I error rate estimates 
for the fourteen HOV tests across all simulation conditions at each nominal alpha level. 
Figure 1 presents a set of the boxplots at the nominal level of .05. The results for 
different nominal levels (i.e., .01, .10, .15, .20, and .25) are consistent with those at .05. 
As shown in Figure 1, the Levene test with squared deviations, the BF test, the 
Bootstrap BF test, the O’Brien test, and the Ramsey conditional test were the five best 
testing approaches that controlled Type I error adequately.  
 

 
Figure 1: Distributions of estimated Type I error rates across all simulation conditions 
at .05. The horizontal line is the reference line at the nominal level of .05.  
 
3.2 A Closer Look at Type I Error Control: Bradley’s Liberal Criterion 
 
The performance of the HOV tests in terms of the Type I error control was further 
examined using Bradley’s liberal criterion of robustness, which is set at .5α around the 
nominal alpha. For each nominal alpha level investigated, the value of proportion 
meeting Bradley’s Liberal Criterion is the proportion of Type I error rates (across all 
simulation conditions with 5,000 replications simulated for each condition) that fell 
within the range of α ± .5α. Figure 2 shows the overall proportion meeting Bradley’s 
criterion for the fourteen HOV tests at each nominal alpha level. Consistent with the 
results shown in Figure 1, the O’Brien test, the Ramsey conditional test, the Bootstrap 
BF test, the BF test, and the Levene test with squared deviations had the larger 
proportions of conditions meeting Bradley’s criterion across all nominal alpha levels, 
compared with other tests.  For instance, the proportions of those five tests that met the 
Bradley’s criterion were .77, .72, .58, .58, and .52 respectively at the nominal level of 
.05.  
 
As the nominal alpha level increased, the proportions meeting Bradley’s criterion for the 
fourteen HOV tests all increased. It is worthwhile noting that the modified Z-variance 
test had a considerable increase when the nominal alpha level increased and the Levene 
test with absolute deviations also had a significant increase when the nominal level was 
at .15 or above. At the nominal level of .25, all the HOV tests had at least 50% of 
conditions meeting the Bradley’s criterion.   
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Figure 2: Overall proportion conditions of the fourteen HOV tests meeting Bradley’s 
liberal criterion.  

 
3.3 Impact of Design Factors on the Type I Error Control  
 
Additionally, we conducted factorial ANOVA analyses to estimate the generalized eta 
square effect size (𝜂𝐺2). Cohen’s (1988) moderate effect size of .0588 was used a cutoff 
value to indicate the significant impact of design factors on the Type I error estimates. 
Among all design factors, population shape and average cell size were two factors that 
had the largest impacts on Type I error estimates across all the HOV tests. 
 
Figure 3 displays the proportions of conditions that met the Bradley’s liberal criterion 
for each test across all population distribution shapes. The O’Brien and Ramsey 
conditional tests tended to have adequate Type I error control (i.e., the high proportions 
meeting the Bradley’s criterion) across all population distribution shapes. For the BF, 
Bootstrap BF, Levene with squared deviations, and modified Z-variance tests, the Type I 
error control was not adequate under some population shapes. For instance, the BF and 
Bootstrap BF tests did not perform well in terms of the Type I error control when 
population distributions were leptokurtic (skewness = 0, kurtosis = 25). The Levene test 
with squared deviations had a poor control of Type I error under skewed distributions 
(skewness = 5 or 6). When data were normally distributed, however, the Bartlett, 
Cochran with the harmonic mean, and Z-variance tests controlled Type I error extremely 
well so that the proportions meeting Bradley’s criterion were all 1.00.  
 
Figure 4 summarizes the performance of the fourteen HOV tests in terms of Type I error 
estimates under different population distribution shapes. It was constructed based on the 
results of Bradley’s liberal criterion of robustness and the box plots which showed the 
distributions of Type I error estimates of those tests under different population shapes. 
The shaded areas indicated adequate Type I error control, i.e. the proportions meeting 
the Bradley’s liberal criterion were equal to and greater than .50. If the proportions were 
lower than .50, the test might be either liberal or conservative, depending on whether the 
distributions of Type I error rates were mostly above or below the reference line, as 
shown in the box plots. Consistent with the findings presented in Figure 3, the O’Brien 
test and the Ramsey conditional test showed adequate Type I error control across all 
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distribution shapes. The BF and Bootstrap BF tests were conservative under leptokurtic 
distributions (i.e., Shape 5: skewness = 0, kurtosis = 25), while the Levene test with 
squared deviations was liberal when distributions were skewed (i.e., Shapes 3 and 4). 
Under the normal distribution, almost all HOV tests had an adequate Type I error 
control except for the Cochran’s C test with the arithmetic means and the F-max test. 
Under the skewed and leptokurtic distributions, the HOV tests that did not have the 
adequate Type I error control had liberal Type I errors, whereas under the platykurtic 
distributions (i.e., Shape 6: skewness = 0, kurtosis = -1) they tended to have 
conservative Type I errors.  
 

 
Figure 3: Proportions meeting the Bradley’s liberal criterion for the fourteen HOV tests 
by population shape (alpha=.05). 
 

 

 
Figure 4: The performance of HOV tests under different population distribution shapes. 

 
In addition to population distribution shape, average cell size was the other factor that 
had a significant impact on Type I error estimates across the fourteen HOV tests. Figure 
5 presents the proportions of conditions meeting Bradley’s criterion for all HOV tests by 
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average cell size. It can be noticed that the O’Brien test tended to have adequate Type I 
error control regardless of average cell sizes. For the Ramsey conditional test, BF, 
Bootstrap BF, Levene with squared deviations, and Levene with absolute deviations 
tests, the proportions meeting Bradley’s criterion increased as average cell size 
increased. And increasing average cell size did not seem to improve the Type I error 
control for the rest of the HOV tests because these tests had a poor control of Type I 
error regardless of average cell sizes.  
 

 
Figure 5: Proportion meeting Bradley’s liberal criterion of HOV tests by average cell 
size (alpha=.05). 
 
3.4 Statistical Power Estimates 
 
Statistical power was estimated only for conditions in which Type I error was 
adequately controlled. Thus, the Levene with squared deviation, BF, O’Brien, Ramsey, 
and Bootstrap BF tests were included in the power analysis, as they had overall adequate 
Type I error control across conditions. As Figure 6 shows, the power differences among 
these five tests were very subtle; while the O’Brien test tended to have slightly less 
power and the Bootstrap BF test had slightly greater power than others.  
 

 
Figure 6: Distributions of estimated statistical power of HOV tests with overall 
adequate Type I error control. 
 
3.5 Type I Error rates and Statistical Power under the Normal Distribution 
 
The proportions of conditions meeting the Bradley’s criterion under the normal 
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distribution for 12 out of 14 HOV tests (see Figures 3 and 4 for these 12 tests), ranged 
from .63 to 1, except for the Cochran’s C test with the arithmetic mean (Bradley 
proportion = .33) and the F-max test with the arithmetic mean (Bradley proportion = 
.27). It seemed that under the normal distribution almost all the HOV tests examined in 
this study showed adequate Type I error control (i.e., the Bradley’s proportions were 
greater than .50). As shown in Figure 3, the Bartlett, Cochran’s C with the harmonic 
mean, and Z-variance tests had the perfect Type I error control (Bradley’s proportions = 
1.00). 
 

 
Figure 7: Distributions of estimated statistical power of HOV tests under normal 
distributions at the nominal level of .05.  
 

 
Figure 8: Distributions of estimated statistical power of HOV tests under normal 
distributions at the nominal level of .25.  
 
Statistical power was estimated for these 12 HOV tests under normal distributions. As 
Figure 7 shows, they all had acceptable power estimates, but the Levene with squared 
deviations, Z-variance, and F-max with harmonic mean tests tended to have slightly 
greater power than other tests across all nominal levels. When the nominal level was .10, 
.15, .20, or .25, a similar pattern occurred and the power differences among them were 
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very subtle, as is shown in Figure 8 using the nominal level of .25 as an example. It is 
worth noting that the BF test tended to have increased power to become one of the best 
performers at the nominal level of .25. 
 

4. Conclusions and Recommendations 
 
Overall, five HOV tests maintain adequate Type I error control better than the others 
across all the conditions, including the Ramsey conditional test, the O’Brien test, the 
Brown-Forsythe (BF) test, the Bootstrap Brown-Forsythe test, and the Levene test with 
squared deviations. The power for each of these five tests is acceptable and the power 
differences are subtle. The O’Brien test tends to have slightly less power than the others 
and the Bootstrap BF tends to have slightly greater power. Across all the nominal levels 
investigated, the results in terms of Type I error rates and statistical power are consistent.  
 
Among six design factors, population shape and average cell size are two factors that 
significantly affect Type I error rate control. As for the impact of population shape, the 
Ramsey and O’Brien tests are the only two tests that maintained adequate Type I error 
control across all the population shapes. Among the five best tests that maintain adequate 
Type I error control, the BF and Bootstrap BF tests have conservative Type I error rates if 
the distribution shape is extremely leptokurtic (i.e., kurtosis = 25). In contrast, the Levene 
test with squared deviations tends to have liberal Type I error rates when the shape is 
skewed (skewness = 1.5 or above). Fortunately, there are 12 out of 14 tests that maintain 
adequate Type I error control if the population shape is normal, except for the F-max test 
and the Cochran test with the arithmetic mean. Interestingly, the Bartlett test, the Cochran 
test with the harmonic mean, and the Z-variance test maintain Type I error control 
extremely well when the population shape is normal. As for power for these tests that 
adequately control Type I error when the population shape is normal, the Levene test 
with squared deviations, the F-max test with the harmonic mean, and the Z-variance have 
larger power. Based on the results of the Type I error control and power, the Z-variance 
test seems to be the best choice when the distribution is normal. 
 
Average cell size has significant impacts on Type I error control for the five HOV tests, 
including the Ramsey conditional test, the BF test, the Bootstrap BF test, the Levene test 
with squared deviations, and modified Z-variance test. With average cell size of 5, these 
five tests do not maintain adequate Type I error control. Increasing average cell size 
improves Type I error control. The O’Brien test maintains adequate Type I error control 
regardless of average cell sizes; that is, the O’Brien test shows adequate control of the 
Type I error although the average sample size is as small as 5. Average cell size has no 
impact on the rest of the HOV testing methods because these methods show poor control 
of the Type I error even though the sample size is large.   
 
There are two types of uses for these HOV tests that are examined in this study: (a) 
substantive hypotheses about population variances (e.g., do educational enrichment 
programs increase heterogeneity of student achievement scores?) and (b) testing for the 
tenability of homogeneity of variance in consideration of a subsequent test of mean 
differences (Bryk & Raudenbush, 1988). Different nominal alpha levels may be indicated 
for these uses. This study indicates that as the nominal alpha level increases, the 
proportion of conditions meeting Bradley’s criterion increases for all of the tests. 
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Based on the findings from this study, there is a caveat for researchers and practitioners: 
Choosing a HOV test with care, especially under the data conditions of small samples 
and/or non-normal distributions. Since it is difficult to assess population distribution 
shape based on samples (Ghasemi & Zahediasl, 2012), we make some recommendations 
for selecting appropriate HOV testing methods based on average sample size: (a) if 
average sample size is less than 10 (nj < 10), the O’Brien test is the best choice because 
of Type I error control; (b) if average sample size is between 10 and 20 (10 ≤ nj < 20), the 
Ramsey conditional test is the best choice because of Type I error control and greater 
power; and (c) if average sample size is greater than 20 (nj ≥ 20), the Bootstrap BF test is 
the best because of greater power. 
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