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Abstract
Identifying spatially distributed point patterns plays an important role in many scientific areas

including pattern recognition, computer vision, image processing and some geological applications.
This research is focused on applying spatial point process theories to analyze suspected prehistoric
house structures belongs to Pleistocene people. Various statistical methods such as quadrat method,
cluster indices and Ripley’s K function are used to test the complete spatial randomness of rock
locations of the excavated sites. A variation of the K-function known as the L-function is used to
compare the clustering structures identified in few different sites and the existence of small scale
regularities of those sites is also discussed.
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1. Spatial Point Processes

Spatial data are important in a wide range of scientific areas, including agriculture, biol-
ogy, epidemiology, astronomy, physics and geology. Much of the emphasis in these fields
concentrated on the analysis of spatially correlated measurements and the development of
statistical methods for such analysis. Spatial point processes are different from measure-
ments taken at locations in a spatial domain. Spatial point processes are locations that
are characterized as realizations of a random process. Common examples of spatial point
processes are locations of trees in a forest, ant nests in a field, and copper sites at a miner-
alogical site. A realization of a point process is an unordered set of locations.

1.1 Archeological Mountaineer Site

Anthropology Professor David Meltzer and his research team excavated an archaeological
site on the western slope of the Rocky Mountains. They selected three different archaeo-
logical sites, one of which is suspected of being the ruins of a late Pleistocene age (10,400
years BP) house. The rocks pattern in the main site, Block C, is the main interest of the
study. The other two are control sites, named Block X and Block Y. Block C has 3762
rocks in a rectangular sampling window 13× 9 m2. Rocks at these sites were categorized
as large or small (this categerization was done by Prof. David Meltzer) depending on the
longest surface length. If the longest surface length was greater than 30 cm, then a rock
was categorized as large and otherwise as small. In Block C there are 282 large and 3480
small-rocks available for analysis.

The same categorization was applied to the control sites. In Block X there are 17 large-
rocks and 776 small-rocks within a rectangular sampling window 5 × 3 m2. In Block
Y there are 33 large-rocks and 231 small-rocks within a rectangular sampling window
4× 3 m2. The spatial distributions of the rocks at these sites are shown in Fig. 1.
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Figure 1: Large- and Small-Rocks in Mountaineer Site
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One hypothesis of interest in this investigation is whether the locations of rocks in a sup-
posed region of human activity would form an identifiable pattern whereas rocks in regions
not believed to be influenced by recurring human activities would not form an identifiable
pattern. In particular, a hypothesis of interest in whether the large-rock locations in Block
C might form a pattern due to the supposed existence of a prehistoric house. A secondary
hypothesis is that the pattern of the large-rock locations within this block is circular. In
this research statistical methods are used to investigate whether the locational pattern in the
large-rock locations is not reasonably attributable to spatial randomness.

1.2 Intensity Function Estimates

Intensity is the average density of events (e.g., rocks in the Mountaineer Site data), or the
expected number of events per unit area in the study region, and it is denoted by λ. Inten-
sity characterizes homogeneous and inhomogeneous spatial point processes depending on
whether intensities are constant or non-constant from location to location, respectively.

Let E(X) be the expectation of a random variable X , N(W ) the number of points in a
region W , |W | the area of W , and dx an infinitesimal region which contains the point x.
Then a first-order property of the point process, the intensity function, is defined as,

λ(x) = lim
|dx|→0

E[N(dx)]

|dx|
. (1)

A stationary spatial point process has a constant intensity and second-order (covariance)
moment properties that depend only on the distance between locations, not on the locations
themselves. For a stationary point process λ(x) is a constant value λ and can be estimated
(Diggle, 1983) as,

λ̂ =
N(W )

|W |
. (2)

The second order intensity function is also defined in a similar manner,

λ2(x, y) = lim
|dx|,|dy|→0

E[N(dx)N(dx)]

|dx||dy|
. (3)

For a stationary process λ2(x, y) = λ2(x − y). For a stationary isotropic spatial point
process λ2(x, y) reduces to λ2(h), where h is the distance between x and y; i.e. λ2(h)

does not depend on the direction of location x relative to location y. Then λ2(h)
λ2

is defined
(Diggle, 1983) as the radial distribution function and γ(h) = λ2(h) − λ2 is defined as the
covariance density. Covariance density measures spatial dependence of events for locations
as a function of the distance h.

A point process that exhibits no dependence among events is called an independent
process. Independent spatial point processes including, homogeneous Poisson process,
have λ2(h) = λ2 and γ(h) = 0 for all h > 0. If the events have regular spacing, as
indicated by a constant covariance density, then it is called a regular process. If similar
events are clustered together with a higher positive covariance in some locations than at
other locations in a region, then the process is called a clustered process. Illustrations of
independent, regular and clustered spatial point processes are shown in Fig. 2.

2. Initial Investigations of Complete Spatial Randomness

The first stage of an analysis of a spatial point process often focuses on identifying whether
the point process exhibits complete spatial randomness (CSR). Complete spatial random-
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Independent Regular Cluster

Figure 2: Plots of Independent, Regular and Clustered Point Processes in Rectangular
Windows.

ness indicates that there is no specific underlying spatial pattern and that locations are sim-
ply random over the study area. If the process is not a CSR process then identification of
a pattern or patterns in locations is undertaken. Identifying the spatial structure can aid the
comprehension of underlying geographical processes and their relationships with the phe-
nomenon under investigation. In spatial point processes, completely spatial randomness is
characterized by locations following a homogeneous Poisson process.

2.1 Quadrat Analysis of Block C Large-rocks

The quadrat method is a frequently used technique for testing the hypothesis of complete
spatial randomness. This method is based on a goodness-of-fit test that locations follow a
homogeneous Poisson process. The numbers of events are counted in sub regions called
quadrats. It is convenient to have quadrats with the same shape and size. Even though any
geometrical shape can be used, usually quadrats are rectangles. Quadrats can be placed
randomly in the study area or made contiguous, depending on the nature of the region.

Swindel (1983) discussed the importance of optimal quadrat size to obtain the maxi-
mum information from the data. The optimum quadrat size for randomly located quadrats
in a study region was defined as 1.6

λ̂
, the maximum likelihood estimate of quadrat size, for a

Poisson process. Here λ̂ is the estimated intensity (see eqn. (2)). As an example, for Block
C, the large-rocks optimum quadrat size for randomly located quadrats is 0.815×0.815m2.
There are 176 quadrats of this size as shown in Fig. 3. In subsequent quadrat analysis the
number of rocks in each quadrat is enumerated based on each block’s optimum quadrat
size, even though the quadrat will comprise a grid of contiguous quadrats. Table 1 shows
the frequency distribution of the number of rocks per quadrat. The expected frequency
of rocks in the 176 quadrats has been obtained under the hypothesis of a homogeneous
Poisson distribution with a mean λ × |quadrat|. Pearson’s Chi-square goodness-of-fit
test was performed to test the hypothesis that the process is completely spatially random
(CSR). On the basis of the testing procedure for Block C large-rocks locations, the observed
Chi-square value was 31.42 and the resulting p-value was 7.74 × 10−6. Hence, reject the
hypothesis of CSR. Rocks appear to be clustered.

2.2 Cluster Indices

Since the preliminary hypothesis of CSR for Block C large-rocks is rejected, it would be
beneficial to identify the degree of the departure. There are several statistics and cluster
indices available to quantify the departure from CSR. A few important such cluster indices
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Figure 3: 0.815m×0.815m quadrats and quadrat counts for Block C large-rock locations.

Table 1: Frequency distribution of the number of rocks per quadrat in a sample of 176
quadrats of size 0.815 m × 0.815 m. See Fig. 3. for the number of large-rocks in each
Block C quadrat.

Rocks per Observed Quadrat Expected Quadrat
Quadrat Frequency Frequency

0 55 35.45
1 42 56.81
2 32 45.51
3 25 24.31
4 11 9.74
5 9 3.12
6 2 0.83

and their realizations for Block C large-rock locations are given in Table 2.

Fisher et al. (1922) derived a statistic I , that can be used to identify the clustering and
regularity based on I being greater than 1 or not. This statistic is derived based on the the-
oretical relationship of the ratio of the variance to the mean of a Poisson distribution. If the
point process is clustering, the variance of quadrat counts increases relative to the mean;
hence, the resulting ratio I will be greater than 1. Similarly for regular point processes
quadrat counts are uniform and the variance decreases relative to the mean of the Poisson
process and the resulting ratio I tends to be less than 1. The statistical significance of this
test can be assessed using a Chi-square distribution. For Block C large-rocks, Fisher’s I
indicates significant clustering with a p-value = 3.33× 10−8 based on its Chi-square test.

Loyd’sX∗ (Lloyd, 1967) estimates the average number of events sharing a quadrat with
another event. Loyd’s IP measures the mean crowding relative to the mean density. The
average number of neighboring rocks within a quadrat is 2.086 and the mean crowding is
1.302 times as great as the mean density. Both of these quantities provide extra information
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about the underlying clustering structure tested by the Fisher’s I . More details of these
quantities can be found in the Ripley (1981) and Cressie (1993).

Table 2: Cluster indices for Block C large-rock locations. X̄ is the sample mean and S2 is
the sample variance of the quadrat counts. Q is the total number of quadrats in Block C.

Index Estimator Realization

Fisher et al. (1922) I: S2

X̄
∼ χ2

Q−1

Q−1 1.484
Relative Variance

Lloyd (1967) X∗: X̄ + S2

X̄
− 1 2.086

Mean Crowding

Lloyd (1967) IP : X∗

X̄
1.302

Index of Patchiness

2.3 Agglomerative Approach

Random quadrat techniques fail to account for the spatial locations in the analysis. For ex-
ample, the Pearson Chi-square test is a goodness-of-fit test for the null hypothesis that the
process is CSR. The alternative hypothesis is simply the negation of null. The test might
reject the null hypothesis because of many reasons, such as non-uniformity of the point
process or events being dependent in a variety of possible ways. Hence, it would be useful
to consider alternative analysis methods that can account for the spatial dependence and
non-uniformity of the processes.

Methods for the analysis of grids of contiguous quadrats have the ability to include
spatial locations of the point process. In this section, a method proposed by Greig-Smith
(1952), the agglomerative approach, is applied to the Block C large-rocks. The agglomer-
ative approach requires that the Block C region be re-divided into rectangular quadrats so
that the total number of quadrats is a power of 2. Consequently, Q = 32 × 32 = 1, 024
quadrats (Fig. 4), each of size .28 m × .41 m, were selected for analysis. The method
begins by combining pairs of adjacent quadrats into blocks of size two. Mean squares of
block rock counts are calculated. Then, sequentially, adjacent blocks are combined and
mean squares calculated.

The between-blocks mean square, MSr, is calculated as in eqns (4) and (5). Figure 4
illustrates the sequential combining of blocks.

SSr =
1

2r

m∑
i=1

(Ai −Bi)2, (4)

MSr =
SSr
m

, (5)

where m = Q
2r denotes the number of pairs of blocks, each containing r quadrats, and Ai

and Bi denote the number of events in the ith pair of blocks. A plot of the mean squares
versus block size is used to identify clustering and regularity of the point process. Figure 5

JSM 2014 - Section on Statistics in Imaging

2725



 

  

  

  

 

256 

512 

128 

64 

 

 

 

Figure 4: Agglomerative quadrats of Block C; sequentially double the size of blocks.

shows the plot of the mean squares versus block size for Block C large-rock locations. A
simulation envelope is obtained by randomly rearranging the rock locations and calculat-
ing mean squares, as before, a large number of times (200). Upper and lower limits are the
97.5th and the 2.5th percentile of the mean squares of simulated realizations.
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Figure 5: Plot of mean squares MSr versus block size r for the Block C large-rock loca-
tions. The solid line is the mean squares of the block counts. Dotted lines provide upper and
lower limits of simulated envelopes under the assumption of complete spatial randomness.

It is seen in Fig. 5 that mean squares fall below the lower acceptance envelope for the
two smallest block sizes, indicating that adjacent quadrat counts are more homogeneous
than would be expected from randomly arranged quadrat counts. For most of the larger
block sizes, the mean squares fall above the upper acceptance envelope. Peak mean squares
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occur in blocks of sizes 64 and 256 quadrats, indicating patches of size [3.25 m, 2.25 m]
and [6.50 m, 4.50 m]. Both small-scale regularity and large-scale clustering are indicated
in the realization of the Block C large-rock locations.

3. The K-function

The K-function plays an important role in spatial point process analysis because of its
demonstrated ability to capture the spatial dependence between different regions of a point
process. There are several variations of the K-function available in the literature. Most of
them differ depending on how border (i.e., edge) corrections are applied. The choice of the
edge correction does not appear to be very important as long as some edge correction is ap-
plied (Baddeley, 2010). Ripley (1976) defined the K-function for a stationary point process
so that λK(h) is the expected number of other points of the process within a distance h of
any point of the process. Ripley (1976) estimated K(h) as

K̂(h) =
1

Nλ̂

N∑
i=1

N∑
j=1

i 6=j

w(si, sj)
−1I(||si − sj || ≤ h), (6)

where the weight w(si, sj) is the proportion of the circumference of a circle centered at si
passing through sj , N is the number of events, I = 1 if ||si − sj || ≤ h and 0 otherwise,
and λ̂ = N

|A| is the estimated intensity.

For a homogeneous Poisson process, the expected number of events within a distance
h of a specified event is πh2λ and hence the K-function value is πh2. If the process is
clustering, then K̂(h) tends to be greater than πh2 and if the process is regular then K̂(h)
tends to be less than πh2.

The K-function is an alternative characterization of the second-order intensity function
for a stationary isotropic process. Diggle (1983) showed that the relationship between the
second-order intensity function and the K-function is

λ2(h) = λ2K
′(h)

2πh
. (7)

In practice, it is more convenient to work with the K-function than λ2 because of its
empirical behavior. A plot of the K-function generally provides meaningful insight about
the underlying process. Figure 6 shows the K-functions for both large and small-rocks in all
three Mountaineer study sites. This figure and all the K-function and related calculations
and the graphs in this dissertation are obtained from the “spatstat” package in R (Baddeley
and Turner, 2005).

The plots suggest that small-rock locations in all blocks and large-rock locations in
Block C are clustering. Large-rock locations in Block X appear to indicate small-scale
regularity and large-scale clustering while large-rocks locations of Block Y are suggesting
only the regularity. These suggested behaviors of regularity and clustering await formal
statistical analysis to determine whether the suggested behaviors are due to chance.

Besag (1977) recommended plotting a variation of the K-function, namely the L-function
defined as

L(h) =

√
K(h)

π
− h. (8)
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Figure 6: K- function for both large and small-rocks in Block C, Block X and Block Y.
The dotted line is the theoretical K-function for a homogeneous Poisson process. The solid
line is the empirical K-function of the mapped rocks.
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Figure 7: Empirical L-function (Ripley’s edge corrected) for the Block C large-rock loca-
tions. The dotted line is the theoretical L-function for a homogeneous Poisson process.

Under an assumption of a homogeneous Poisson process, K(h) = πh2 and therefore
the empirical L-function should reasonably approximate a horizontal line centered at zero;
that is, L̂(h) = 0. A plot of the estimated L-function allows identifying the small-scale
regularity and large-scale clustering in a transformed scale much more clearly.

Figure 7 shows the L-function of the large-rocks in Block C. It suggests regular rock
locations for small distances (< .40 m) and clustering at the larger (0.40 m to 4.50 m)
distances.

4. Evaluating Complete Spatial Randomness by Using Simulation Envelope
Approach

As it was shown in the Fig. 6, all the small-rock locations tend to provide clustering struc-
tures. However, large-rock locations in Blocks X and Y provide lack of graphical evi-
dence to suggest any clustering structure. Ripley (1981) suggested a Monte-Carlo-based
goodness-of-fit method to test the reasonableness of the fitted process by using the K-
function. A thorough discussion of this method can be found in Baddeley (2010). The
testing procedure is based on a simulation envelope which obtains by simulating the fit-
ted process a large number of times using the estimated parameters of either the fitted
K-function or the L-function of the clustering process.

In the case of testing completely spatial randomness, the simulation envelope of the
homogeneous Poisson process based on the estimated intensity function will be obtained
and compared to the empirical L-function (see Chapter 20 in Baddeley (2010)). The empir-
ical L-functions and the corresponding simulation envelopes of all the sites are presented
in Fig. 8.
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5. Conclusion

As suspected, all the small-rock locations and the large-rock locations in Block C show very
strong evidence of clustering. This departure from complete spatial randomness is clearly
evident in Fig. 8 since the empirical L-function substantially deviates from the simulation
envelope. Also, the suspected small scale regularity is significantly evident only in the
large-rock locations in Block C. The apparent small dips at the beginning of the curves of
the rest of the locations are not provide any significant evidence of small scale regularity.
However, large-rock locations in Blocks X and Y do not show any evidence of clustering or
regularity; hence, those locations will not be considered for further investigation in future
studies. Rest of the blocks with clustering structures will be further studied and attempt to
identify the underlying geometrical patterns. Due to the apparent shape of the clustering
structure of the Block C large rocks data, it may be suggested to investigate the possibility
of fitting a circular model using least squares principle. Statistical evidence of such a
structure may solidify the professor David Meltzer’s initial hypothesis of existence of man
made prehistoric house structure on the Block C.
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Figure 8: Empirical L-functions and corresponding simulation envelopes for both small
and large-rock locations in all blocks. The dotted red line is the theoretical L-function
for a homogeneous Poisson process and the solid black curve is the empirical L-function
(Ripley’s edge correction). Solid shaded regions are represent the simulation envelope.
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