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Abstract

Accurately modeling extreme events such as flood, fire, hurricane etc. has become
more and more important. Several methods of analyzing extreme values are proposed
in literature however, most of them are based on the extreme value limit distributions
or some related family of distributions. In this paper we review these techniques and
proposed to use Bayesian method to analyze such extreme value events. These ideas
are illustrated with an analysis of Minnesota river flood data. Comparisons between
different models such as Block Maxima model, Picks Over Threshold (POT) model
and Bayesian approach have been made.

Key Words: Picks over threshold method, Bayesian, extreme values, Generalized Ex-
treme Value distribution, return levels.

Introduction

During September 2010 heavy rainfall ranging more than 10 inches caused severe flooding
across Minnesota. June 2012 the most damaging flood in Duluth’s history began when
heavy rains fell over already saturated ground, making the situation worse. Widespread
flooding that occurred as a result of the heavy rainfall caused evacuations of hundreds of
residents, and damages in excess of 100s of million dollars to residences, businesses, and
infrastructure. In this paper we discuss if appropriate model is fitted on such extreme events
using historical data, we can predict these events more precisely.

The traditional and best known method of analyzing extreme values is based on the extreme
value limiting distributions first introduced by Fréchet (1927) arises as limiting distribution
of maxima (or minima) in samples of independent and identically distributed random vari-

ables.
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Results on Extreme Value Analysis (EVA) dates back to Fréchet (1927), who obtained the
asymptotic distribution of the maximum. Fisher and Tippet (1928) and von Mises (1936)
presented the first studies on the extremal limit problems. However Gnedenko (1943) was
the first who gave conditions for the existence of sequences.

The first book on modeling the extremal values was Statistics of Extremes by Gumbel
(1958) which provides detail discussion on Extreme Value Analysis. There are more recent
publications on applications of Generalized Extreme Value (GEV) model on various areas
such as oceanography: Haan (1990), Robinson & Twan (1997), sports data: Henery (1984),
insurgence and finance: Smith(2003), just to name a few.

In recent years a number of alternative approaches have been studied. Other recent works
published in extreme value analysis are Coles (2001), Embrechts et al. (2003), Beirlant et
al. (2004), Castillo et al. (2005) and Reiss and Thomas (2007), among others.

In this paper, we used Minnesota river flood data and utilized three approaches. Block

Maxima Model, Pick Over Threshold (POT) Model and Bayesian approach.

Block Maxima Model

Traditional and best known method of analyzing extreme values is based on the extreme
value limiting distributions originally introduced by Fisher and Tippet (1928) which was
derived using block maxima (or minima).

Let X1, --- X, i'id' F' with mean p and finite variance, o2. The central limit theorem states

X-p
o/ n

Extremes values data are often rare and normal distribution is inappropriate. We are inter-

asn — 00, X ~ N(u,02/n)orZ =

N(0,1) as n — o0

ested in modeling the tail of the underlying distribution.

Consider the iid sample (X7, - - -, X,,) whose common distribution function ~ F'. We want
to know the distribution of the maximum M,, = max (X1, -, X,).
Since,

P[M, <z]=P[X; <z;--; X, <z
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Figure 1: Normal fit and Q-Q plots of the sample average and maximum of random samples

(n = 1000) from an uniform distribution.

= P[X; <z|--- P[X,, < z] (i.i.d. sample)

= F"(x)

Because F' is unknown, this is not very helpful and small discrepancies in the estimate of

F can lead to large discrepancies for F™.

To derive the limiting distribution of extreme values. If there exist sequences of constants

{an > 0} and {b,,} such that

P{Mzi;l’”gx}%G(x)asnﬁoo.
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Gage Height (feet)
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Figure 2: Annual peak gage height from 1903 through 2013 for the Minnesota River near

Mankato.

where G is a non-degenerate distribution function. Then G belongs to one of the following

three types extreme value distributions: type I, II or III. Originally stated without detailed

mathematical proof by Fisher and Tippett (1928), and later rigorously derived by Gnedenko

(1943).
I. Gumbel:
G(z) = exp {—exp [(
II. Fréchet:
G(z) = exp [— (—
III. Weibull

G(z) = exp [— (

€T
o

pn—x
o

9. w<n

)]}, <o <o

Combining all the above three distribution we get the Generalized Extremal Value Distri-

bution (GEVD) given as

G(z;p,0,8) =
T—p

o

oo {- (=)

eap {— [1+¢ (:”U“)]l/&}

for14¢(%5#) >0
E#0

for —0o <z <00

,§=0

The model has three parameters: a location parameter p; a scale parameter ¢ and shape
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parameter £&. Gumbel (shape — 0, light tail), Fréchet (shape > 0, heavy tail) and Weibull

(shape < 0, bounded upper tail at location - scale/shape).

Plot of GEVD for different shape parameters
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Figure 3: GEVD density plots for Shape parameter -ve (Weibull), 0 (Gumbell) and +ve
(Fréchet). Location=0 and Scale=1.

Return level:

Another common measure of extreme events is the p-year return level. The p-year return
level, x,, is the level so extreme it is expected to occur once every p time-units (year, day,
hour...).

(Let p=100) The inverse problem of return levels gives the stream flow level that exceeded
with probability 1/100 in a given year. This quantity is called the 100-year return level.

Inverting the GEVD distribution formula,

p—g 1= {-log(1=p)}~¢|  for+#0

l’p:

p — olog{—log(1 —p)} for £=0

where G(x,) = 1 — p and x), is called the return level associated with the return period

1/p.
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Pick Over Threshold (POT) Model:

Let X7, Xo, ... be an iid sequence of random variables with marginal distribution, F'. Inter-
est is now in the conditional probability of X's exceeding a certain value u + y, given that
X already exceeds a threshold value, .

Pr{X>u+y|X>u}:%ﬁ)y) ,y >0
F' is not known, the distribution of [(X — u)|X > wu], is approximated by Generalized
Pareto Distribution (GPD). (for more see Todorovic and Zelenhasic (1970)).

H(y)=1- (1 + %y)_l/g defined on {y > 0, and (1 + %y) >0}

where ¢ = 0 + &(u — p) and p, 0, € are as defined in GEVD.
Bayesian Parameter Estimation

Lety = (y1,--,ym) be observed data with pdf f(y|@) where @ denotes the vector of
parameters in parameter space 2.
According to Bayes’ theorem, posterior distribution 7(8|y) is proportional to the product
of likelihood function f(y|@) and and prior distribution for @ denoted by 7(0)
~(0ly) = UGG > [wlO)w(0)
The estimagtze of 0 is obtained by calculating the mean or median of the posterior distribution.
Bayesian Prediction: To predict the future observation Y;,, ;1 with density function f(y,,+1(0)
obtain the posterior predictive density function of future observation Y, given y is given
by
fymarly) = s{ f(Ym+110)7(6y)do
The posterior predictive probability of Y,,,+1 exceeding some high threshold ¥ is given by
P(Yonia > 9ly) = [ P(¥o1 > yl0)7(0ly)do
Posterior prediction distribution is often difficult to solve analytically. We can use MCMC

simulation to estimate it. A posterior predictive (1 — p) quantile is then obtained by solving

P(Ymy1 >yly) =p
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Analysis and Result

The data used for illustration is yearly maximum gage height for 110 years recorded in

Minnesota river at Mankato 1903 to 2013. Taken from U.S. Geological Survey.

http://nwis.waterdata.usgs.gov/mn/nwis/peak

fevd(x = ht, method = "MLE", verbose = TRUE)
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Figure 4: Plots of goodness of fit and return level using block maxima model.
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Paramet | MLE Bayesian

Loc (@) 13.37 (0.557) | 13.43 (0.677)
Scale (o) | 5.31(0.386) | 5.42(0.456)
Shape (£) | -0.20 (0.060) | -0.189 (0.072)

Table 1: Estimated model parameters using MLE method for GEVD and standard errors (in

parenthesis) compared with Bayesian estimation.

Method Return Level | 95% CI
GEVD (MLE) | 29.247 (26.264, 32.430)
Bayesian 29.35 (27.248, 35.643)

Table 2: 100 year return level.

Model Syr | 25yr | 50yr | 100yr | 200yr
GEVD 20.26 | 25.93 | 27.76 | 29.35 | 30.72
Bayesian | 20.43 | 26.35 | 28.29 | 29.94 | 31.45

Table 3: Return levels for 5, 25, 50, 100 and 200 years gage height in feet.
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Model | 1965 | 1969 | 1993 | 2001 | 2010
Gage ht | 29.09 | 27.07 | 30.11 | 26.96 | 28.25

Table 4: Actual historical data from MN river (Source: USGS Water Resources).
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Figure 5: Return level plots of MLE, L-moment, Bayesian and Generalized MLE meth-
ods (Solid line represents the GEV model estimates with dashed lines indicate the 95%
confidence interval,black dots denote the empirical estimates).
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Figure 6: Mean Residual Life Plot of River Flow Data. Used to set the threshold.

Based on the mean residual life plot (Figure 6) we selected threshold . = 15 as the curve
is linear from O to 15 after that it become non-linear. Maximum likelihood estimates in this

case using Generalized Pareto Distribution (GPD) approximation for Pick Over Threshold
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(POT) model is given in Table 7.

Model Syr 25yr | 50yr | 100yr | 200yr
GEVD 20.26 | 25.93 | 27.76 | 29.35 | 30.72
Bayesian | 20.43 | 26.35 | 28.29 | 29.94 | 31.45
POT 33.33 | 34.48 | 34.83 | 35.12 | 35.36

Table 5: Return levels for 5, 25, 50, 100 and 200 years

fevd(x = ht, method ="MLE", verbose = TRUE)
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Figure 7: Profile log likelihood plot shows the similar estimates of 100 year return level.
95 % Confidence interval for 100 year return level is approx. (27,34) which is close to the
estimate by other methods given in Table 8.

Model | 1965 | 1969 | 1993 | 2001 | 2010
Gage ht | 29.09 | 27.07 | 30.11 | 26.96 | 28.25

Table 6: Actual historical data from MN river
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Paramet | MLE Bayesian POT model
Loc () 13.37 (0.557) | 13.43 (0.677) | -
Scale (o) | 5.31(0.386) | 5.42 (0.456) 6.006 (1.216)

Shape (£) | -0.20 (0.060) | -0.189 (0.072) | -0.2795 (0.158)

Table 7: Estimated model parameters and standard errors (in parenthesis)

Method | Return Level | 95% CI

MLE 29.247 (26.2645, 32.4305)
Bayesian | 30.236 (27.248, 35.643)
POT 35.124 (14.687, 55.559)

Table 8: 100 year return level (normal approx)
Conclusions and Summary

Classical extreme value theory has suggested a number of techniques for statistical mod-
eling however, these methods are not appropriate in some situations as extreme data are
rare and assumption of limiting distribution may not be correct. The analysis of Minnesota
river flood level data has been performed using traditional Block Maxima Model, relatively
new Pick Over Threshold (POT) model, and nonparametric Bayesian MCMC technique.
Comparison of estimates of different approaches have been made. Actual recorded values
of flood level shows the model is well fitted to the data.

The analysis has been done considering only single long time series without incorporat-
ing other possible covariates such as rainfall, temperature etc. or by considering values at
different sites. Davison and Smith (1989) has discussed this type of analysis concerning

multivariate extreme.
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