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Abstract
In many research areas such as clinical trials, bioequivalence or pharmaceutical experiments, there
is often the need to deal with the problem of testing the equivalence of two treatments. There are
mainly two approaches with which to address the problem, the choice of which depends on the
priority of the researcher who perform the analysis. The intersection-union principle (IU principle)
considers as null hypothesis that the effect of a new treatment lies outside a given interval around that
of the comparative treatment, and as alternative hypothesis that this effect lies within that interval.
Alternatively, the union-intersection principle (UI principle) considers as null hypothesis that the
effect of a new treatment lies within a given interval around that of the comparative treatment, and as
alternative hypothesis that this effect lies outside that interval. Thus, given a fixed α , the researcher
has to decide if it is preferable to retain with a probability converging to one an equivalence between
treatments (leading to the IU approach), or a non-equivalence between treatments (leading to the UI
approach). In the literature, the IU approach seems to be the only one followed, apparently without
real motivations.

The goal of this paper is at first to present two practical solutions for the two approaches,
working in a nonparametric setting within the permutation framework. Two algorithms respectively
for IU and UI test are presented. A comparison between the behavior of the two solutions is also
discussed using a simulation study.

Key Words: intersection-union principle, union-intersection principle, multi-aspect testing, non-
parametric combination, permutation tests, testing for equivalence

1. Introduction

Most of the literature about testing for equivalence of two treatments, faces the problem
within the framework of the intersection-union tests (see e.g. Berger (1982); Berger and
Hsu (1996); D’Agostino et al. (2003); Hung and Wang (2009); Julious (2010); Laster and
and Johnson (2003); Liu et al. (2002); Metha et al. (1984); Wellek (2010); Zhong et al.
(2012)). Following the IU principle, the alternative hypothesis states that the effect of a
new treatment (typically a drug) lies within a given interval around that of the comparative
treatment, whereas the null hypothesis states that this effect lies outside that interval. More
formally, suppose to have one endpoint variable X and a two-sample design, and we want
to assess the (substantial) equivalence of a new treatment A to a comparative treatment
B. Let δA be the effect of A, and let δB that of the treatment B, we want to test for the
hypothesis H : [(δA ≤ δB − εI) OR (δA ≥ δB + εS)] against K : (δB − εI < δA <
δB + εS), where εI > 0 and εS > 0 are the non-inferior and the non-superior limits for
the difference δA − δB of two effects. Limits which are suitably established by biological
and/or pharmacological and/or clinical and/or technical and/or regulatory considerations.

Let us assume to break down the global hypothesis into the following partial sub-
hypotheses: HI : δA ≤ δB − εI vs KI : δA > δB − εI and HS : δA ≥ δB + εS

∗Department of Statistical Sciences, University of Padova, Italy. E-mail: pesarin@stat.unipd.it
†Department of Management and Engineering, University of Padova, Italy. E-mail:

luigi.salmaso@unipd.it, carrozzo@gest.unipd.it
‡Department of Land, Environment, Agriculture and Forestry, University of Padova, Italy. E-mail:

rosa.arboretti@unipd.it

JSM 2014 - Section on Nonparametric Statistics

2573



vs KS : δA < δB + εS . It is easy to observe that the global null hypothesis H is true when
only one between the sub-null hypothesesHI andHS is true, whereas the global alternative
K is true when both the sub-alternatives KI and KS are jointly true. Thus the hypotheses
in the IU test states that H = HI

⋃
HS and K = KI

⋂
KS .

Conversely following the UI principle, in accordance with Roy’s theory (Roy, 1953;
Sen, 2007), the alternative hypothesis states that the effect of a new treatment lies outside a
given interval around that of the comparative treatment, whereas the null hypothesis states
that this effect lies within that interval. The related hypotesis testing can be written as
∼
H : (δB − εI ≤ δA ≤ δB + εS) against

∼
K : [(δA < δB − εI) OR (δA > δB + εS)].

As before, let us consider the related partial sub-hypotheses:
∼
HI : δA ≥ δB − εI vs

∼
KI : δA < δB − εI and

∼
HS : δA ≤ δB + εS vs

∼
KS : δA > δB + εS , and note that in

this case the global null hypothesis
∼
H is true when both the sub-null hypotheses

∼
HIand

∼
HS are jointly true, whereas the global alternative

∼
K is true if only one between the sub-

alternatives
∼
KIand

∼
KS is true. The hypotheses in the UI test states that

∼
H =

∼
HI

⋂ ∼
HS and

∼
K =

∼
KI

⋃ ∼
KS .

Thus, for a given fixed significance level α, the researcher who faces the problem of
testing for equivalence has to decide if his focus is: the equivalence of the effects, i.e.
when two treatments are equivalent, he wishes to detect this equivalence with probability
converging to one when sample size diverges, hence follow an IU approach; or the non-
equivalence of the effects, i.e. when two treatments are non-equivalent, he wishes to detect
this non-equivalence with a probability converging to one when sample size diverges, hence
follow an UI approach.

It is worth noting that the IU testing approach does not admit any solution when εI =
εS = 0. In fact in this situation the hypothesis testing becomes H : [(δA ≤ δB) OR (δA ≥
δB)] against K = ∅. In the other hand the UI approach does not present drawbacks when

εI = εS = 0 because the hypothesis testing becomes
∼
H : δA = δB against

∼
K : δA 6= δB

which is the traditional two-sided test.
In this paper, we propose a solution for both IU and UI approaches within the permu-

tation approach, testing separately, albeit simultaneously, the two partial test statistics, and
combining them through the NonParatric Combination (NPC) procedure (Bertoluzzo et al.,
2013; Pesarin, 2001; Pesarin and Salmaso, 2010).

In order to introduce the proposed methods and without loss of generality, let us refer
to a two-sample design, a one dimensional endpoint variable X and let us assume that a
sample of n1 IID data are from X1 related to treatment A and, independently, n2 IID data
from X2 related to B. Let us also suppose that the underlying variable X is common to
both populations and they may differ for a shift, i.e. X1 = X + δA and X2 = X + δB (in
this formulation it is implicitly assumed that data are homoschedastic, a condition which
can be considerably weakened, see Pesarin and Salmaso (2010, 2011)). So that X1 =
(X11, ..., X1n1) are the data of the A sample and X2 = (X21, ..., X2n2) those of B.

2. The nonparametric IU permutation test

In this section we present the proposal for the IU approach, where the hypothesis has testing
the formH : [(δA ≤ δB−εI) OR (δA ≥ δB+εS)] againstK : (δB−εI < δA < δB+εS).
As seen in the previous section it is possible to see the global test as splitted into two
partial tests HI : δA ≤ δB − εI vs KI : δA > δB − εI and HS : δA ≥ δB + εS
vs KS : δA < δB + εS . The idea is to test separately, albeit simultaneously HI vs KI and
HS vs KS . For testing HI vs KI let us consider the data X2 of sample B modified as XI2
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= X2 − εI whereas the data of sample A are the same so that XI1 = X1. Now we can see

that the sub-alternative KI : δA > δB − εI ≡ XI1
d
> XI2 and HI : δA ≤ δB − εI , as a

test for stochastic dominance between two populations. For this kind of problem a suitable

test statistic may be based on the differences of the two means, i.e. TI =
−
XI1−

−
XI2where

XIj =
∑nj

i=1XIji/nj , j = 1, 2. Similarly for testing HS vs KS let us consider XS1 = X1

and data of sample B modified as XS2 = X2 + εS . The hypothesis testing can be written

as KS : δA < δB + εS ≡ XS1
d
< XS2 and HS : δA ≥ δB and a suitable test statistic is

TS =
−
XS2 −

−
XS1. Note that both test statistics TI and TS are significant for large values,

i.e. large value are evidence agaist the respective null hypotheses. Before presenting a
complete algorithm for the IU permutation test, let us introduce a modification in the NPC
method, since the two partial p-values are not positively dependent. Indeed, it is worth
noting that HI true implies HS false and vice versa.Thus the combination can be done by a
nonparametric combining functions ϕ : [0, 1]2 → R+, small values of which are significant
and combining functions suitable for IU testing should satisfy the following properties:

1) ϕ is continuous and non-decreasing in each argument, i.e. λq < λ′q impliesϕ(. . . , λq, . . .) ≤
ϕ(. . . , λ′q, . . .);

2) ϕ must attain its infimum if all arguments attain 0;

3) α > 0 and larger than the minimum attainable value (Pesarin and Salmaso, 2010)
implies the conditional critical value ϕα > 0.

Examples of combining function for the IU permutation test are:
-the max-p rule: ϕM = max(λI , λS); sometimes equivalent to the min-T test
-the average rule: ϕA = λI+λS , or more generallyϕAr = λwI

I +λwS
S , wI , wS > 0 (this

could be used when the allocation of different weights of importance to sub-hypotheses is
required);

-the product-p rule: ϕπ = 1− (1− λI)(1− λS);
where λI and λS are the partial p-values related to TI and TS respectively. Note that the
two p-values are necessarily dependent, thus have to be computed on the same permutation
of the data.

In what follows we present more in detail an algorithm for the IU permutation test:

1. read the data set X = (X1,X2) = (Xi, i = 1, . . . , n;n1, n2) and two limits εI and
εS ;

2. define two data vectors XI = (XI1,XI2) = (XI1i = X1i, i = 1, . . . , n1; XI2i =
X2i − εI , i = 1, . . . , n2) and XS = (XS1,XS2) = (XS1i = X1i, i = 1, . . . , n1;
XS2i = X2i + εS , i = 1, . . . , n2);

3. compute the observed values of two statistics: T oI = X̄I1−X̄I2 and T oS = X̄S2−X̄S1

and take memory;

4. take a random permutation u∗ = (u∗1, . . . , u
∗
n) of unit labels u = (1, . . . , n);

5. define the two permuted data sets: X∗I = (XIu∗i
, i = 1, . . . , n;n1, n2) and X∗S =

(XSu∗i
, i = 1, . . . , n;n1, n2) both defined on the same permutation u∗;

6. compute the related permuted values of two statistics: T ∗I = X̄∗I1 − X̄∗I2 and T ∗S =
X̄∗S2 − X̄∗S1 and take memory;
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7. independently repeat R times steps 4 to 6 obtaining the results: [(T ∗Ir, T
∗
Sr), r =

1, . . . , R] which simulates the bivariate permutation distribution of two partial tests
(TI , TS);

8. calculate two estimates of marginal p-value statistics λI =
∑R

r=1 I[T
∗
Ir ≥ T oI ]/R and

λS =
∑R

r=1 I[T
∗
Sr ≥ T oS ]/R and the ϕ-combined observed value ϕo = ϕ(λI , λS),

small values of which are evidence against the null hypothesis H;

9. transform the simulated bivariate distribution in step 7 into the bivariate empirical
significance level function L∗ = [(L∗Ir, L

∗
Sr), r = 1, . . . , R] where L∗hr = {0.5 +∑R

b=1 I(T
∗
hb ≥ T ∗hr)}/(R+ 1), h = I, S;

10. define the ϕ-combined distribution [ϕ∗r = ϕ(L∗Ir, L
∗
Sr), r = 1, . . . , R], that simu-

lates the true bivariate permutation distribution of ϕ where the dependence between
(TI , TS) is nonparametrically, albeit implicitly, taken into consideration;

11. the global NPC p-value statistic for testing equivalence is defined as λϕ =
∑R

r=1 I[ϕ
∗
r ≤

ϕo]/R;

12. if λϕ ≤ α then reject global H in favour of K.

3. The nonparametric UI permutation test

For testing H̃ against K̃ within the UI again our proposal is to test separately H̃I against

K̃I and H̃S against K̃S . To test for
∼
HI : δA ≥ δB−εI against

∼
KI : δA < δB−εI ≡ XI1

d
<

XI2 we propose the test statistic T̃I =
−
XI2 −

−
XI1 and for testing

∼
HS : δA ≤ δB + εS

against
∼
KS : δA > δB + εS ≡ XS1

d
> XS2 the test statistic T̃S =

−
XS2 −

−
XS1 or their

permutationally equivalent expressions. Note that even here large values of these statistics
are significant, i.e. are evidence of the respective sub-alternatives. The related permutation
p-value statistics λ̃I and λ̃S are now to be calculated in such a way that at least one small p-
value statistic is evidence of the global alternative K̃. It is to be observed here that K̃I true
implies K̃S false, and vice versa; whereas H̃I and H̃S can be jointly true. Moreover, now
two partial tests T̃I and T̃Scannot be jointly unbiased.This fact implies a modification with
respect to NPC as in Pesarin and Salmaso (2010) on the combining functions. That is, they
must be combined according to a modified NPC methodology, i.e. by combined functions
ψ : [0; 1]2 → R+ large values of which are evidence against the global null hypothesis H̃ .
Combining function for UI permuation test should satisfy the following properties:

1) ψ is continuous and non-increasing in each argument, i.e. λ̃q < λ̃′q impliesψ(. . . , λ̃q, . . .) ≥
ψ(. . . , λ̃′q, . . .);

2) ψ must attain its supremum if at least one argument attains 0;

3) α > 0 implies the combined critical value is ψα < ∞, i.e. no concentration at +∞
under H̃ .

Some possible of combining functions for the UI permutation test are:
-the min-p rule: ψm = max(1 − λ̃I , 1 − λ̃S) corresponding to the so called Tippett’s

combination rule;
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-the product rule: ψP = λ̃I λ̃S , equivalent to the famous Fisher’s combination rule
ψF = −2

[
ln λ̃I + ln λ̃S

]
;

Let us now introduce in detail an algorithm for the UI permutation test:

1. read the data set X = (X1,X2) = (Xi, i = 1, . . . , n;n1, n2) and two limits εI and
εS ;

2. define two data vectors XI = (XI1,XI2) = (XI1i = X1i, i = 1, . . . , n1; XI2i =
X2i − εI , i = 1, . . . , n2) and XS = (XS1,XS2) = (XS1i = X1i, i = 1, . . . , n1;
XS2i = X2i + εS , i = 1, . . . , n2);

3. compute the observed values of two test statistics: T̃ oI = X̄I2 − X̄I1 and T̃ oS =
X̄S1 − X̄S2 and take memory;

4. take a random permutation u∗ = (u∗1, . . . , u
∗
n) of unit labels u = (1, . . . , n);

5. define the two permuted data sets: X∗I = [XI(u
∗
i ), i = 1, . . . , n;n1, n2] and X∗S =

[XS(u∗i ), i = 1, . . . , n;n1, n2]; note that two permuted data sets are both defined on
the same permutation u∗;

6. compute the permuted values of two statistics: T̃ ∗I = X̄∗I2−X̄∗I1 and T̃ ∗S = X̄∗S1−X̄∗S2
and take memory;

7. independently repeat R times steps 4 to 6; the results: [(T̃ ∗Ir, T̃
∗
Sr), r = 1, . . . , R]

simulate the bivariate permutation distribution of two partial test statistics (T̃I , T̃S);

8. calculate two estimates of partial p-value statistics λ̃I =
∑R

r=1 I(T̃
∗
Ir ≥ T̃ oI )/R

and λ̃S =
∑R

r=1 I(T̃
∗
Sr ≥ T̃ oS)/R and the estimated global test statistic T̃G =

min(λ̂I , λ̂S);

9. if T̂G > α reject the global null hypothesis H0.

4. A simulation study

In the present section we wish to evaluate the behaviour of the IU and UI permutation tests
both under H0 and in power. We consider three different distributions as data generators,
gaussian, uniform and exponential and a two sample design with equal sample size for each
sample. The rejection probability of the permutation test (based on B = 2000 permuta-
tions) at usual nominal significance level of 5% is recorded for different situations on the
basis of 2000 Monte Carlo iterations. In particular we consider the situation δA = ε1 (H0

both for IU and UI tests), δA = 0 (H0 for UI test, H1 for IU test) and δA = 2ε2 (H0 for IU
test, H1 for UI test). We also consider both the case with symmetrical and asymmetrical
equivalence interval. The max-p rule and min-p rule have been chosen as combining func-
tions respectively for the IU and UI tests. We report in Table 1 and Table 2 the results of
the simulations for the case with δA on a limit of the equivalence range, i.e. under the null
hypothesis both for IU and UI test. The choice of equivalence ranges takes into account the
distributions considered. In Table 3 and Table 4 are shown the results for different cases:
δA = 0 and δA = 2ε2, and δA = 0 and δA = 2ε1. Note that, we report these results in
the same table because if we wish to compare the behaviour of the two tests we have to
consider that the case δA = 0 is a situation under H1 for the IU test which corresponds
to the case δA = 2ε2 for the UI test. Similarly for the case with asymmetrical interval we
compare the case δA = 0 for the IU test with the case δA = 2ε1 for the UI test.
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Table 1: Rejection rates at δA = ε1(H0 both for IU and UI tests) with sample size
n1 = n2 = 20, 30 for Gaussian, Uniform and Exponential distribution, and symmetri-
cal equivalence range.

H0

Distribution n1 n2 ε1 ε2 IU UI
Gaussian 20 20 -0.75 0.75 0.049 0.053
Gaussian 30 30 -0.75 0.75 0.045 0.052
Exponential 20 20 -0.50 0.50 0.026 0.048
Exponential 30 30 -0.50 0.50 0.047 0.053
Uniform 20 20 -0.25 0.25 0.051 0.052
Uniform 30 30 -0.25 0.25 0.043 0.045

Table 2: Rejection rates at δA = ε1(H0 both for IU and UI tests) with sample size
n1 = n2 = 20, 30 for Gaussian, Uniform and Exponential distribution, and asymmetri-
cal equivalence range.

H0

Distribution n1 n2 ε1 ε2 IU UI
Gaussian 20 20 -0.50 1.00 0.044 0.046
Gaussian 30 30 -0.50 1.00 0.052 0.047
Exponential 20 20 -0.30 0.70 0.036 0.051
Exponential 30 30 -0.30 0.70 0.049 0.042
Uniform 20 20 -0.10 0.40 0.040 0.042
Uniform 30 30 -0.10 0.40 0.054 0.052

Table 3: Rejection rates at δA = 0 (H0 for UI test, H1 for IU test) and δA = 2ε2 (H0 for
IU test, H1 for UI test) with sample size n1 = n2 = 20, 30 for Gaussian, Uniform and
Exponential distribution and symmetrical equivalence range.

H1

IU UI
Distribution n1 n2 ε1 ε2 δA = 0 δA = 2ε2
Gaussian 20 20 −0.75 0.75 0.507 0.747
Gaussian 30 30 −0.75 0.75 0.770 0.885

Exponential 20 20 −0.50 0.50 0.422 0.510
Exponential 30 30 −0.50 0.50 0.691 0.606

Uniform 20 20 −0.25 0.25 0.712 0.843
Uniform 30 30 −0.25 0.25 0.912 0.949
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Table 4: Rejection rates at δA = 0 (H0 for UI test, H1 for IU test) and δA = 2ε1 (H0 for
IU test, H1 for UI test) with sample size n1 = n2 = 20, 30 for Gaussian, Uniform and
Exponential distribution and asymmetrical equivalence range.

H1

IU UI
Distribution n1 n2 ε1 ε2 δA = 0 δA = 2ε1
Gaussian 20 20 -0.50 1.00 0.388 0.482
Gaussian 30 30 -0.50 1.00 0.582 0.613
Exponential 20 20 -0.30 0.70 0.286 0.261
Exponential 30 30 -0.30 0.70 0.500 0.330
Uniform 20 20 -0.10 0.40 0.284 0.274
Uniform 30 30 -0.10 0.40 0.359 0.385

Note that, under the null hypothesis for the IU test, with an exponential distribution
we obtain a conservative behaviour for small sample size (n1 = n2 = 20) whereas this
is not a problem for UI test. Note also that increasing the sample size, things get better
both for symmetrical and asymmetrical ranges. It is important to recall that for distribution
like the Exponential we have to consider a ‘rank-version’ of the IU algorithm. This version
consists in inserting between step 2 and step 3 of the algorithm presented in section 2, the
rank transformation of the XI and XS data.

5. Conclusions

Testing for equivalence of two treatments is very common in many area of research such
as clinical trials, bioequivalence or pharmaceutical experiments. As pointed out by Sen
(Sen, 2007), the critical points in this field are essentially two: the difficulties related to
the appropriate application of the likelihood ratio methods and the way to deal with the
generally too complex dependence structure of the several partial test statistics where such
analysis is usually broken down. In this paper using the nonparametric combination (Pe-
sarin, 2001; Pesarin and Salmaso, 2010) of dependent permutation tests, we have provided
two procedures, one following the intersection-union (IU) approach and one following the
union-intersection (UI) approach, able to deal with the intriguing problem of testing for
equivalence in a general multidimensional setting. The extension of the proposed pro-
cedures to several other designs (i.e. one sample designs, to C > 2 samples, ordered
categorical endpoint variables, repeated measurements, multidimensional and mixed set-
tings, situations with missing or censored data) is obtained simply by suitably changing the
combining functions with respect to the corresponding solutions discussed in Pesarin and
Salmaso (2010) and Pesarin and Salmaso (2011). It is important to note that neither the IU
nor the UI approaches are uniformly appropriate for all situations, but the choice depends
on the specific problem.

References

Berger, R.L. (1982), “Multiparameter hypothesis testing and acceptance sampling”, Technometrics, 24, 295–
300.

Berger, R.L. and Hsu, J.C. (1996), “Bioequivalence trials, intersection-union tests and equivalence confidence
sets”, Statistical Science, 11, 283–319.

Bertoluzzo, F., Pesarin, F. and Salmaso, L. (2013), “On multi-sided permutation tests”, Communications in
Statistics - Simulation and Computation, 42, 1380–1390.

JSM 2014 - Section on Nonparametric Statistics

2579



D’Agostino, R.B., Massaro, J.M. and Sullivan, L.M. (2003), “Non-inferiority trials: design concepts and issues
– the encounters of academic consultants in statistics”, Statistics in Medicine, 22, 169–186.

Hung, H.M.J. and Wang, S.U. (2009), “Some controversial multiple testing problems in regulatory applica-
tions”, Journal of Biopharmaceutical Statistics, 19, 1–11.

Julious, S.A. (2010), Sample Sizes for Clinical Trials, Chapman & Hall/CRC, Boca Raton, USA.
Laster, L.L. and Johnson, M.F. (2003), “Non-inferiority trials: the ‘at least as good as’ criterion”, Statistics in

Medicine, 22, 187–200.
Liu, J-p., Hsueh, H-m., Hsieh, E., and Chen, J.J. (2002), “Tests for equivalence or non-inferiority for paired

binary data”, Statistics in Medicine, 21, 231–245.
Mehta, C.R., Patel, N.R. and Tsiatis, A.A. (1984), “Exact significance testing to establish treatment equivalence

with ordered categorical data”, Biometrics, 40, 819–825.
Pesarin F. (2001), Multivariate Permutation Tests, with Applications in Biostatistics, Wiley, Chichester, UK.
Pesarin F. and Salmaso L. (2010), Permutation Tests for Complex Data, Theory, Applications and Software,

Wiley: Chichester, UK.
Pesarin, F. and Salmaso, L. (2011) “A review and some new results on permutation testing for multivariate

problems”, Statistics and Computing, 22, 639–646.
Roy, S.N. (1953), “On a heuristic method of test construction and its use in multivariate analysis”, The Annals

of Mathematical Statistics, 24, 220–238.
Sen, P.K. (2007), Union–intersection principle and constrained statistical inference, Statistical Planning and

Inference, 137, 3741–3752.
Wellek, S. (2010), Testing Statistical Hypotheses of Equivalence and Noninferiority, Chapman & Hall/CRC:

Boca Raton, USA.

Zhong, Z., Chen, W. and Jin, H. (2012), “A new test for testing non inferiority in matched-pairs design”,

Communications in Statistics - Simulation and Computation, 41, 1557-1565.

JSM 2014 - Section on Nonparametric Statistics

2580


