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Abstract

We consider the problem of selecting functional variables using the L1 regular-
ization in a functional linear regression model with a scalar response and functional
predictors in the presence of outliers. Since the LASSO is a special case of the penal-
ized least squares regression with L1-penalty function it suffers from the heavy-tailed
errors and/or outliers in data. Recently, the LAD regression and the LASSO methods
have been combined (the LAD-LASSO regression method) to carry out robust param-
eter estimation and variable selection simultaneously for a multiple linear regression
model. However variable selection of the functional predictor based on LASSO fails
since multiple parameters exist for a functional predictor . Therefore group LASSO is
used for selecting grouped variables rather than individual variables. In this study we
extend the LAD- group LASSO to a functional linear regression model with a scalar
response and functional predictors. We illustrate the LAD- group LASSO on both
simulated and real data.

Keywords: Functional Regression Model; LASSO, LAD-LASSO, Outliers,
Variable selection

1 INTRODUCTION

Functional data analysis has become increasingly frequent and important in diverse
fields of sciences, engineering, and humanities because most of the data collected
these days is functional in nature, for instance, genomics data, fMRI data, DTI,
weather data. There has been an evolving literature devoted to understanding the
performance of estimation of functional predictors. Escabias et al. [4], Denhere
& Billor [3], Boente & Fraiman [2], Gervini [5], Bali et al. [1], Sawant et al.
[10], Goldsmith et al. [8] and Ogden & Reiss [9] proposed some robust parameter
estimation techniques in functional logistic regression model, functional principal
component analysis and generalized functional linear models, respectively.
Just as in ordinary data analysis, variable selection is also an important aspect of
functional data analysis. The functional data suffer from high dimensionality and
multicollinearity among functional predictors. This could lead us to wrong model
selection and hence wrong scientific conclusions. Collinearity also gives rise to is-
sues of over fitting and model misidentification. So it is very important to perform
variable selection on functional covariates. With sparsity, variable selection effec-
tively identifies the subset of significant predictors, which improves the estimation
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accuracy and therefore, enhances the model interpretability. Not much work has
been done in the area of variable selection for functional predictors in functional
regression models. Gertheiss et al. [6], Matsui & Konishi [8], Lian [9] and Zhu
& Cox [16] proposed some variable selection techniques for functional predictors
via L1 and L2 regularizations for instance, using various roughness penalties like
groupLASSO, Wavelet Based- LASSO, gSCAD for the generalized functional lin-
ear models. However, these methods do not work well in the presence of functional
outliers that is, the curves that deviate from the overall pattern of the data. Since
these variable selection techniques are not robust in nature thus there is a need for
robust variable selection method which is resistant to outlying curves.
Lilly and Billor [10] have proposed group LAD-LASSO for multiple regression
model, but to our knowledge, there is no work that has been done in the area of
robust variable selection of the functional linear model. In this article we propose a
new methodology, by extending the ideas of functional group-LASSO by Gertheiss
et al. [6], that minimizes the effect of outlying curves in the estimation and selection
of the functional covariates in functional linear models.

2 METHODOLOGY

In this section we will briefly describe functional regression model, estimation of
regression parameters and introduce the proposed method.

Functional Regression Model
Functional data are usually sampled discretely over a continuum, usually time and
we assume that there is an underlying curve describing data. In the usual functional
regression modeling setup, we assume that the response Yi is scalar for the ith sub-
ject and X1, X2, ...., Xp are the random curves where Xi1, Xi2, ...., Xip denote their
independent realizations, respectively.
For the sake of simplicity, each Xij is considered to be observed without measure-
ment error at a dense grid of time points {tj1, tj2, ......, tjNj

}.
Then a functional linear model with the scalar response and a p-functional predic-
tors can be defined as :

Yi = α + Σp
j=1

∫
Xij(t)βj(t)dt+ εi. (1)

The random error terms εi are assumed to be independent normally distributed with
mean 0 and variance σ2 for i=1,....., n. α is a scalar parameter and βj(t) is a param-
eter function for j= i,....., p.

Dimension Reduction
The first part of the problem is to consider ways that minimize multicollinearity and
reduce the high dimensionality which is inherent with functional data.
We consider the coefficient functions, βj as belonging to a finite-dimension space
generated by the some basis, φjb(t), as

βj(t) = Σq
b=1cjbφjb(t). (2)
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The curves Xij(t) can be also discretized as Riemann Integration as described by
Gertheiss et al. [6] ∫

Xij(t)βj(t)dt ≈ ΣmXij(tm)βj(tm). (3)

Using (2) and (3), the right side of the model equation in (1) approximates to the
following∫

Xij(t)βj(t)dt ≈ Σb{δjΣmXij(tjm)φj(tjm)}cjb = ΣbΦijbcjb = ΦT
ijcj. (4)

where,
i= 1,..., n; j= 1, ...., p; δj = tjm−tj,m−1, cj = (cj1, ........., cjq)

T , Φij = (Φij1, ..........,Φijq)
T ,

Φijb = δjΣmXij(tjm)φj(tjm).

Then the new model is then obtained as

Yi = α + Σp
j=1Φ

T
ijcj + εi. (5)

where Φij are known and α and cj’s are the unknown regression coefficients that
need to be estimated.

Functional LAD-groupLASSO Criterion
The second part of the problem is to consider ways that allow for the parameter
selector and estimator to be resistant to outliers.
The classical existing functional variable selection methods like group SCAD, sim-
ple group LASSO proposed by Lian [9] and Zhu & Cox [16], respectively, have
already been outperformed by group LASSO developed by Gertheiss [6]. How-
ever, the method discussed by Gertheiss [6] suffers from the presence of outlying
curves, therefore necessitating a different type of approach to handle this issue. We
consider a new criterion called functional LAD-groupLASSO to take into account
the effect of outliers.

According to this criterion, α and cj(t) can be estimated by minimizing

Σn
i=1|Yi − α− Σp

j=1Φij
Tcj|+ Pλ,ϕ(βj).

where, Pλ,ϕ(βj) is the penalty function as used by J. Gerthesis et al. [6]

Pλ,ϕ(βj) = λ(||βj||2 + ϕ||β ′′j ||2)1/2.

where

||.||2 =
∫

(.)2dt is the L2 norm and β ′′j is, the second derivative of βj .

λ is the parameter that controls sparseness and ϕ is the smoothing parameter that
controls smoothness of the coefficients. As the sparseness parameter λ increases,
the estimated coefficient functions β(t)’s are shrunk and at some value, set to zero.
As the smoothing parameter ϕ increases, the departure from linearity is penalized
stronger and thus the estimated curves become closer to a linear function. Smaller
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values for ϕ result in very wiggly and difficult to interpret estimated coefficient
functions. For optimal estimates (in terms of accuracy and interpretability), an
adequate (λ, ϕ) combination has to be chosen. λ and ϕ are selected via K-fold
cross-validation.

3 NUMERICAL STUDY

In order to show the goodness of the proposed method we We first applied the
method to a toy example and then conducted a simulation study. In this section we
considered following three cases:

• Case (i): Presence of outliers in the scalar response Y only.

• Case (ii): Presence of outliers both in the scalar response Y and the functional
predictors X(t).

• Case (iii): Presence of outliers in the functional predictors X(t) only.

Due to limitation on space, we present only Case (i) and Case (iii) in this article.

Generating data as below:
STEP 1: Generating Functional Predictors Xj(t)
We consider only two functional covariates X1(t) and X2(t) and generated 50 sam-
ple curves for each Xj(t) which are observed at 50 equidistant time points.
Functional Predictors Xj(t)s are generated similar to Tutz and Gerthesis (15)

Xij(t) = [σ(t)]−1Σ5
r=1(aijrsin(πt(5− aijr)/150)−mijr).

where i = 1, ...., 50 and j = 1, 2.

Here aijr∼U(0,5), mijr∼ U(0,2*π), σ(t) is defined so that var[Xij(t)] = 0.01.

STEP 2: Generating Y
Response Y is defined as:

Yi = α +

∫ 50

0

β1(t)Xij(t)dt+ εi.

where i= 1,..., 50, εi ∼ N(0,4) and the parameter function β1(t) has a sine-wave
function shape as shown in Figure 1.
We set up the model where the response is related to the X1(t) and not on X2(t).
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Figure 1. β1(t)

Contamination of Xij(t)
We consider contaminating only Xi1(t) to produce functional outliers while Xi2(t)
is not contaminated. The contamination process is carried out as described by
Fraiman & Muniz [5]. The following five cases of contamination are considered:

• Case (1): No contamination Xi1(t) are generated as described previously.

• Case (2): Asymmetric contamination Zij(t) = Xi1(t) + cM where c is 1 with
probability q and 0 with probability 1- q and q = {0%; 5%; 10%; 15%; 20%};
M is the contamination constant size equal to 10 and Xij(t) is as defined in
Case (1).

• Case (3): Symmetric contamination Zij(t) = Xij(t) + cσM where Xij(t), c
and M are as defined before and σ is a sequence of random variables indepen-
dent of c that takes the values 1 and - 1 with probability 0.5.

• Case (4): Partial contamination Zij(t) = Xij(t) + cσM if t >T and Zij(t) =
Xij(t) if t <T, where T∼ U [0,10].

• Case (5): Peak contamination Zij(t) = Xij(t) + cσM if T ≤ T ≤ +l and
Zij(t) = Xij(t) if t /∈ [T, T + l ] wherel = 2 and T ∼ U [0, 10− l ].

The effects of these different types of contamination are shown in Figure 2.
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Figure 2. The contaminated Xi1(t) curves for cases 2-5 (q = 15%)

Contamination of Yi
We consider contaminating Y at 15% contamination level by generating the errors
from the standard normal distribution, the t-distribution with 2 degrees of freedom,
and the t-distribution with 7 degrees of freedom. This will allow for heavy-tail error
distributions and some outliers in the response direction.
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Toy Example
Case(i): Presence of outliers in the scalar response Y only.
Figure 3 below shows the comparison of the classical functional group LASSO with
new proposed method functional LAD-group LASSO which is robust in nature in
the presence of outliers in the scalar response Y. The green curve is the true function
β1(t). The red line in the plots represents the estimation done by classical functional
LASSO and the blue line represents the estimation done by robust functional LAD-
group LASSO at fixed combination of (λ= 0.5, ϕ=100). We can see from the Figure
3 that in the presence of outliers in scalar response, the classical method does poor
estimation and shrinkage, whereas new robust method does good both in estimation
and shrinkage.

Figure 3. Fitting results for the comparison classical of functional groupLasso and
robust functional LAD-groupLASSO for Case (i).

Case(iii): Presence of outliers in the functional predictors X(t) only.
Figure 4 below shows the comparison of the classical functional group LASSO with
new proposed method functional LAD-group LASSO which is robust in nature in
the presence of functional outliers. The green curve is the true function β1(t). The
red line in the plots represents the estimation done by classical functional LASSO
and the blue line represents the estimation done by robust functional LAD- group
LASSO at fixed combination of (λ=0.4, ϕ=100). We can see from the Figure 4 that
in the presence of outliers, classical method does poor estimation and shrinkage,
whereas new robust method does good both in estimation and shrinkage. Due to
the limitation on the length of the manuscript, we only give results based on the
q=15% level.
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Figure 4. Fitting results for the comparison classical of functional groupLasso and
robust functional LAD-groupLASSO for Case (iii)(15% contamination).
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Simulation Study
We used the same technique as described above to generate the scalar responses
y, the coefficient functions and the functional predictors. The functional predictors
were contaminated the same way as described in five cases above. We consider:
1) 1000 observations for the scalar response.
2) Two functional Predictors are considered. We generated 1000 sample curves for
each Xj(t) which are observed at 1000 equidistant time points.
3) The true model is

Yi = α +

∫ 1000

0

β1(t)Xij(t)dt+ εi.

where, εi ∼ N(0,4) and the parameter function β1(t) is observed at 1000 equidistant
points in (0, 1000) and has a sine-wave function shape as shown in Figure 1 above.
So the β2(t) is essentially 0.

Then we consider the Mean squared Errors of prediction 1/n
∑

i(Yi − Ŷi)
2 to as-

sess the predictive ability of the proposed method. Figure 5 shows the boxplots of
MSE from 50 simulation runs. We can see from this figure that robust functional
LAD-group LASSO, which is represented by blue color, outperforms the classical
functional group LASSO, which is represented by red color.

As pointed out earlier due to limited space, we could not present simulation results
for Case (i) and Case (ii), but we get satisfactory results for these two cases as well.
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Figure 5. Comparison of MSE’s of prediction of Functional groupLasso and robust
functional LAD-groupLASSO (15%contamination).
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4 Summary and Discussion

We considered a robust variable selection procedure for functional linear regression
models in the presence of functional outliers, where various functional predictors
are considered but only a few of these predictors are actually related to the response.
Typical variable selection procedures for functional models do not consider the is-
sue of outliers while selecting the useful predictors, and thus may suffer from wrong
models. Our proposed procedure simultaneously selects functional variables and
estimates the important regression coefficients functions.
We found that our proposed method performs well in terms mean squared errors of
prediction for the estimated coefficient functions compared to classically fitting a
model without taking outliers into consideration. Although we used contamination
levels varying from 15% to 40% , but reported the results based on only 15% due
to the limitation of space, we are happy to report that our method performed well at
all contamination levels as well.
We believe that the proposed method may be an efficient solution for analyzing
functional data in the presence of outliers in scalar response and functional predic-
tors.
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