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Abstract 
Time is often modeled using Survival Analysis. The ability to consider the time element 

of event occurrences by proportional hazards models has meant that the logistic 

regression has played a less important role in the analysis of survival data (Abbott, 1985). 

This paper, however, discusses the situations in which the censored indicator can be 

modeled using Correlated Logistic Regression based on the binary nature of it and 

compares it to the model using Survival analysis which is rarely compared. 

This paper presents a comparison between Survival Analysis models and Logistic 

regression models for both independent and correlated observations. Applying these 

methods, this paper presents an example of the length of stay in the transitional housing 

facility in the greater Rocky Mountain Region which is an autocorrelated longitudinal 

data that are subject to both left truncation and right censoring. The results are explained 

in terms of the comparisons of models mainly based on the significance of the 

independent variables.  

 

Key Words: Survival Analysis, Logistic Regression, Correlated data, Longitudinal 

data, Proportional Hazard Models, Right Censoring 

 

1. Introduction 

 
Survival analysis is a branch of applied statistics concerning the sequential occurrences of 

incidents to model the time to a specific event applying the probabilistic laws (Liu, 2012). 

Survival analysis which is a combination of statistical methods for analyzing longitudinal 

data on the occurrence of events derives from the historical development of the field 

going back to mortality tables from hundreds of years ago. This method of analysis used 

to be applied when studying death at the beginning but nowadays, different methods in 

survival analysis is being applied in modeling time not only to death but also to any event 

that success or failure can be defined for it. This method of analysis has the advantage of 

being capable of dealing with censored and truncated data which arise when partial 

information about the random variable of interest is available. There might be some 

incompletion due to factors that are random for each subject that is called censoring or 

due to a selection process inherent in the study design which is known as truncation 

(Hosmer, Lemeshow, & May, 2008).  

In the other hand, in logistic regression, we are interested in studying the association of 

the risk factors with the occurrence or nonoccurrence of an event. However, if the interest 

is on the effect of the risk factor or treatment on the time to event, logistic regression 

would not be appropriate anymore (Hosmer & Lemeshow, 2013).  

When dealing with correlated data, by violating the assumption of the observations 

independence, some problems such as overestimation of the statistical significance and 

underestimation of variance may arise (Williams, 1995). The correlated measurements 
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add a complexity to the statistical model which requires some adjustments. Logistic 

regression and survival analysis assume independence of the observations; therefore, they 

won’t work with the correlated data anymore (Bena & Mclntyre, 2008). There are 

different models that can be applied when dealing with correlated data and among those, 

shared frailty model can be applied to autocorrelated observations to generalize the 

survival model. In the other hand, Generalized Linear Mixed Model (GLMM) which is a 

particular type of mixed models is a useful approach to be applied instead of the regular 

logistic regression. Shared frailty model and the GLMM are comparable and so are 

applied to the data used for this study to compare their results in terms of significance. 

 

2. Survival Analysis versus Logistic Regression 

 
Unlike linear regression, survival analysis has a dichotomous outcome but is also 

different from the logistic regression. Survival analysis analyzes the time to an event 

which is an important distinction because this is what enables us to account for censoring 

which takes into account the fact that each subject has its own entry time into the study.  

Survival analysis is known to do a better job than logistic regression when modeling the 

processes with multiple time measures. While logistic regression suffers an important 

difficulty when dealing with multiple time measures, survival analysis and specifically 

the proportional hazard model is very efficient in this situation considering both the time 

and censoring at the same time which is a major advantage (Wang, Brown, An, Yang, & 

Ligmann-Zielinska, 2013). 

 

2.1 Survival models  
Survivor and hazard functions are the two functions that are of central interest in survival 

analysis. As mentioned by Kleinbaum and Klein (2012), the survivor function  ( ) gives 

the probability that a person survives longer than some specified time t. Survivor function 

is defined as  ( )   (   )which gives the probability of the random variable   

exceeding  .   
In contrast to the survivor function which focuses on not failing, the hazard function 

focuses on failing so gives the opposite side of the information given by the survivor 

function. The hazard function, denoted by  ( ), is given by the formula below that is 

difficult to explain in practical terms. The easiest way to explain this function is as stated 

by Liu (2012) that the hazard function  ( ) gives the instantaneous potential per unit time 

for the event to occur, given that the individual has survived up to the specific time   or 

the conditional failure rate which can be from 0 to infinity. 

 

 ( )     
    

 (            )

  
  

where 

 (            )
  (                                 [      ]                      )  

 

Due to the skewness and censoring issues when dealing with survival data, standard 

techniques, such as t-tests and linear models are not usually appropriate anymore. There 

are distribution-free or non-parametric, parametric, and finally, semi-parametric 

approaches for analyzing survival data. The main focus of this paper is on the semi-

parametric, Cox’s Proportional Hazards (CPH), model because it has a lot similarity with 

logistic regression and so is comparable to it based on the purpose of this paper 

(Kleinbaum & Klein, 2012). 
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The distinguishing feature of the CPH model, sometimes referred to as the Cox model, is 

its demonstration that the relationship between the hazard rate and explanatory variables 

could be estimated without making any assumptions about the shape of the baseline 

hazard function (cf. the parametric models). The result derives from the use of the 

proportional hazard assumption with many other insights and assumptions, and a partial 

likelihood method of estimation rather than maximum likelihood (Jenkins, 2005).  

A linear model for the log-hazard or as a multiplicative model for the hazard in a 

parametric model based on the exponential distribution may be written as   

 

     ( )                         
or, equivalently,            ( )     (                     )  

 

In contrast to the parametric models, the Cox model, leaves the baseline hazard function 

 ( )       ( ) unspecified and the model may be written as 

 

     ( )   ( )                 
or, equivalently,       ( )    ( )    (             ). 

 

Having two observations that differ in their  -values, with the corresponding linear 

predictors leaves us with the hazard ratio for these two observations that is independent 

of time   (Kleinbaum & Klein, 2012). 

 

2.2 Logistic models  
Logistic regression, which is a multivariate analysis model, is useful for predicting the 

presence or absence of a characteristic or an outcome based on values of a set of predictor 

variables. Through the addition of an appropriate link function to the usual linear 

regression model, the variables may be either continuous or discrete, or any combination 

of both types and they do not necessarily have normal distributions (Hosmer & 

Lemeshow, 2013).   

As explained by Hosmer and Lemeshow (2013), the relationship between the occurrence 

of any event and its dependency on different independent variables can be expressed as 

 

   
     ⁄   

 

where   is the probability of the occurrence of an event. Then, logistic regression fits an 

equation of the following form to the data  

 

                    
 

where    is the model’s intercept,      (         ) are the slope coefficients of the 

logistic regression model, and       (                     )  are the independent 

variables.   

In logistic regression, the probability of the outcome is measured by the odds of 

occurrence of an event. Change in probability is not constant (linear) with constant 

changes in  . This means that the probability of a success given the predictor variable is 

a non-linear function, specifically a logistic function. 

The most common form of logistic regression uses the logit link function which gives us 

the logistic regression equation as  

 

      (  )                    
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3. Correlated Data 

 
As mentioned in Bena and Mclntyre (2008), an added complexity occurs when not all of 

the observations are independent. Often subjects may have multiple interventions of the 

same type at the same time point. When there are multiple observations per subject in a 

model, standard errors of the survival estimates underestimate the true amount of 

variability that exists. 

 

3.1 Generalization to survival models  
Using a method that employs Taylor series linear approximations makes the necessary 

adjustments of the standard errors after obtaining Kaplan-Meier estimates which are non-

parametric estimates. Williams (1995) described a method based upon Taylor series 

approximations of the survival estimates for each observation followed by applying the 

between-cluster variance estimator that is mostly used in multi-stage surveys.  

Employing adjustments by using a sandwich estimator of standard errors by Lin (1994) 

can be also used to fit a model which is referred to as a marginal model. 

One of the other methods that can be used in this situation is based on the Jackknife 

variance estimator discussed by Lipsitz and Parzen (1996). Wei, Lin, and Weissfeld 

(1989) and Lee, Wei, Amato, and Leurgans (1992) showed that if the marginal 

distributions of the correlated survival times follow a proportional hazards model, then 

the Cox's partial likelihood gives estimates that naively treat the correlated survival times 

as independent and therefore give consistent estimates of the relative risk parameters. 

However, because there still is correlation between survival times, the inverse of the 

information matrix may not be a consistent estimate of the asymptotic variance. Wei et al. 

(1989) and Lee et al. (1992) proposed a robust variance estimate that is consistent for the 

asymptotic variance. They showed that a "one-step" jackknife estimator of variance is 

asymptotically equivalent to the other variance estimator.  

In 2000, Florin and Ronghui, proposed a general proportional hazards model with 

random effects for handling clustered survival data that works better in terms of 

comparison with the generalized logistic regression. They generalized the usual frailty 

model by allowing a multivariate random effect with an arbitrary design matrix in the log 

relative risk, in a way similar to the modelling of random effects in linear, generalized 

linear, and non-linear mixed models. This model is sometimes called Shared Frailty 

Survival model. The random effects are generally assumed to have multivariate normal 

distribution, but other (preferably symmetrical) distributions are also possible.  

Shared frailty survival model accounts for heterogeneity and random effects and captures 

the stochastic dependence by allowing the Gaussian random effects of the linear model to 

be correlated with the frailty term of the CPH model (Philipson et al., 2012) which can be 

expressed as 

 

   ( )    ( )    (                  )  

 

where observations   are in cluster  , and    is typically normal with mean 0 and also    

is uncorrelated with    . 

  

3.2 Generalization to logistic models  
The modelling of correlated binary outcomes in a way that the marginal response 

probabilities are still logistic has been discussed in different articles along with the 

association measures for the dependence between correlated observations. For paired 

correlated data, the full likelihood can be evaluated and for an arbitrary number of 
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correlated observations, a pseudo likelihood approach for obtaining parameter estimates 

is proposed by Cessie and Houwelingen (1994). A discussion of the various approaches 

to model correlated binary observations can be found in Prentice (1988), Zeger, Liang, 

and Albert (1988), and also in Neuhaus, Kalbfleisch, and Hauck (1991). 

In the population average model, estimation is based on Generalized Estimating 

Equations (GEE). Liang and Zeger (1986) and Zeger et al. (1988) first used the GEE with 

the binary data population average model. The set of equations used in the GEE approach 

look like weighted versions of the likelihood equations. Requiring an assumption about 

the structure of this correlation, the weights involve an approximation of the underlying 

covariance matrix of the correlated within-cluster observations. Under the independent 

model,    (   ,     )    for     and the GEE equations simplify to the likelihood 

equations obtained from the binomial likelihood (Hosmer & Lemeshow, 2013). 

The correlation among responses depends on the lag between the observations and is 

assumed to be constant for equally lagged observations. Settings where there is an 

explicit time component are more specialized and need additional approaches to handling 

such data covered in texts such as Diggle et al. (2002, as cited by Hosmer & Lemeshow, 

2013) or Hedeker and Gibbons (2006, as cited by Hosmer & Lemeshow, 2013).  

In the unstructured correlation case, one assumes that the correlation of the possible pairs 

of responses is different,    (   ,    )       for    . The disadvantage of using this 

method is that it requires estimating a large number of parameters that are, for the most 

part, of secondary importance. In most applications researchers are only interested in 

estimating the regression coefficients and need to account for correlation in responses to 

obtain the correct estimates of the standard errors of the estimated coefficients. The idea 

is to choose a correlation structure for estimation that seems plausible for the setting and 

then this structure is used in adjusting the variance’s estimator (Hosmer & Lemeshow, 

2013).  

For data without a clear choice of structure, a reasonable and parsimonious choice is the 

“exchangeable correlation” structure. One of the advantages of the GEE approach is the 

“robustness” of the estimates to choice of correlation. In other words, even if the 

correlation structure chosen is not the true structure, the parameter estimates from the 

GEE are often still valid. 

Pseudo likelihood estimation and related estimation techniques are also very helpful if the 

full underlying distribution of the data is unknown or if the true likelihood is difficult to 

evaluate. The pseudo-likelihood method is a very easy method to understand and the 

multivariate correlation model has the advantage that estimates of the joint probabilities 

can be generated relatively easily. There is some loss in efficiency by using pseudo-

likelihood but because it equals the full likelihood for    , only small losses are 

expected when   is small (Cessie & Houwelingen, 1994).  

One of the best models to use when dealing with the correlated data is the GLMM which 

is a particular type of mixed model. It is an extension to the generalized linear model in 

which the linear predictor contains random effects in addition to the usual fixed effects. 

These random effects are usually assumed to have a normal distribution. In the GLMM, 

the default optimization technique that is used is the Quasi-Newton method. Because a 

residual likelihood technique is used to compute the objective function, only the 

covariance parameters are participating in the optimization. This model is not 

complicated and more details about it can be found in Agresti (2007). The GLMM can be 

written as  

 

η      , 

where link function is  ( )      (
 

   
). 
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4. Example: Transitional Housing Facility 

 
Data are presented from a transitional housing facility (THF) in the greater Rocky 

Mountain Region that works as a temporary facility that helps family units find stable 

housing and employment while living within the shelter. The THF aims to help these 

first-time and episodic (experiencing episodes of homelessness) homeless families regain 

stable housing and employment with the goal of mitigating long-term occurrence of the 

problem. Data analysis was conducted using SAS 9.3 (The SAS Institute, Cary, NC). 

This research outlines the changing condition of the homeless in terms of the time it takes 

till finding a job and leaving the transitional house based on the job training they had at 

the center, the number of hours they spent with case worker each month, either they had 

temporary assistance for needy families or not, and some demographic variables that 

seem effective on the length of their stay at the transitional house like child abuse, 

number of children in the family, being either a single parent or not, and finally being 

either unemployed or employed for families living in the THF from 2006 to 2010. 

To apply the survival analysis and fit logistic regression to this dataset, I defined 60 days 

as the end point because families were supposed to leave the transitional house within 60 

days while not everyone did so. The ones who didn’t leave in 60 days are considered 

censored because the focus of the study is 60 days of stay. The number of nights they 

stayed at the THF is used to define the censoring status; if this number is larger than 60, 

then the length of stay is defined as censored (censored = 0) for the related family, but if 

this number for a family is less than 60, the length of stay for that family is defined as 

non-censored (censored = 1). For the regular survival analysis and logistic regression the 

numbers of nights each family stayed at the THF in different months are aggregated that 

gives us one observation for each family creating independent observations in the dataset. 

The non-parametric Kaplan-Meier (KM) method is applied to the aggregated data 

including 415 families. The results of the log-rank-test for equal survival-functions within 

the KM analysis shows that there is not a significant difference between the survival 

functions of families facing child abuse and the ones who haven’t faced this issue (p-

value = .148), between families who were single parent or not (p-value = .175), between 

unemployed or employed families (p-value = .767), among families with different 

number of children (p-value = .586), and between the families who received temporary 

assistance for needy Families or not (p-value = .0516). But there is a significant 

difference at the significance level of .05 among the survival functions of families with 

different numbers of hours spent with the case worker within the THF (p-value < .0001) 

and also families with different numbers of time they went through some job training at 

the THF (p-value < .0001). These results from the KM method are more descriptive and 

not used for making the final comparisons which is the main purpose of this study. 

Applying the semi-parametric survival analysis, Cox regression model, to the aggregated 

data revealed that four of the seven variables that were chosen to be in the model because 

of their importance which are mentioned above were statistically significant in this 

model. The Cox regression model itself was significant with the P-value less than .0001.  

Based on the results from the CPH model which are shown on table 1, variables that are 

significant at the .05 significance level are child abuse (Abuse; p-value = .0277), 

unemployment (Unemployed; p-value = .0252), number of times families went through 

job training within the transitional house (Job_sum; p-value = .0002), and finally the 

number of hours families spent with the case worker within the transitional house 

(Case_sum) which was highly significant with the p-value less than .0001. 

In order to check the potential outperformance of the CPH model in comparison to the 

logistic regression, the Cox regression’s results need to be compared to the logistic 

regression’s results in terms of the significance of variables.  
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Parameter DF 

Parameter 

Estimate 

Standard 

Error Chi-Square Pr > ChiSq 

Hazard 

Ratio 

TANF 1 -0.15879 0.16198 0.9611 0.3269 0.853 

Abuse 1 -0.24750 0.11242 4.8472 0.0277 0.781 

Num_Children 1 -0.04614 0.04232 1.1886 0.2756 0.955 

Unemployed 1 0.24980 0.11157 5.0129 0.0252 1.284 

Single_Parent 1 0.17972 0.12026 2.2334 0.1351 1.197 

Job_sum 1 -0.26633 0.07075 14.1717 0.0002 0.766 

Case_sum 1 -0.40040 0.01883 451.9504 <.0001 0.670 

 

 

The logistic regression model is also applied to the aggregated data looking into the 

censoring variable as the binary variable showing whether the family stayed in the 

shelters after 60 days or as the THF wanted, they left within 60 days. The likelihood-ratio 

test (p-value < .0001) and Wald test (p-value < .0001) showed that the logistic regression 

model is significant. The model fit is also good based on Hosmer and Lemeshow 

goodness of fit test (p-value = .9923). To check the association of predicted probabilities 

and observed response, Somer’s D value was calculated which showed that the 

proportion of variance explained by the variables in the model is 95% which is 

significantly high. Based on analysis of maximum likelihood estimates on table 2, only 

the numbers of hours families spent with the case worker within the THF is significant 

(Job_sum; p-value < .0001) at the significance level of .05.  

 

Analysis of Maximum Likelihood Estimates Logistic Regression 

Parameter  DF   Estimate 

Standard 

Error 

Wald Chi-

Square Pr > ChiSq 

Intercept  1 14.3722 2.2156 42.0805 <.0001 

TANF 0 1 0.1554 0.6818 0.0520 0.8197 

Abuse 0 1 0.0539 0.5116 0.0111 0.9161 

Num_Children  1 -0.0865 0.1925 0.2020 0.6531 

Unemployed 0 1 -0.7524 0.5134 2.1482 0.1427 

Single_Parent 0 1 1.0044 0.5529 3.3001 0.0693 

Job_sum  1 -0.2633 0.2151 1.4976 0.2210 

Case_sum  1 -0.6833 0.1029 44.0752 <.0001 

 

As expected the results from the logistic regression are different from the ones from the 

CPH in terms of the number of significant variables in the model. Fewer variables are 

significant applying the logistic regression model in comparison to the CPH model. 

Table 1: Results of CPH model analysis 
 

Table 2: Results of  logistic regression analysis 
 

JSM 2014 - Biometrics Section

2501



Methods applied above assume independence of the observations. As mentioned in the 

previous section, correlated measurements require adjustment to avoid underestimation of 

the variance and overestimation of the statistical significance (Bena & Mclntyre, 2008). 

An added complexity occurs when not all the observations are independent. This should 

be addressed by applying appropriate models to the correlated data from the THF which 

does not satisfy the independence assumption anymore because of not aggregating 

different observations of the same family over time for the second analysis to keep the 

repeated measure nature of the data that gives more observations including 926 families.  

To generalize the survival model in order to work with the correlated data, shared frailty 

model is applied to the correlated observations. 75.5% of the observations were censored. 

The shared frailty model is significant based on the likelihood ratio test (Chi-square = 

95.5112, p-value < .0001) and Wald test (Chi-square = 85.2975, p-value < .0001) results. 

Finally based on table 3, the results from the shared frailty model analysis of maximum 

likelihood estimate, number of hours families spent with case worker each month is 

highly significant (Case_Hours; p-value < .0001); also employment is significant 

(Unemployed; p-value = .0320) at the significance level of .05. 

 

Table 3: Results of the shared frailty analysis 
 

Analysis of Maximum Likelihood Estimates 

Parameter DF 

Parameter 

Estimate 

Standard 

Error Chi-Square Pr > ChiSq 

Hazard 

Ratio 

Child_Abuse 1 -0.02981 0.17429 0.0292 0.8642 0.971 

Case_Hours 1 -0.24826 0.03202 60.1114 <.0001 0.780 

Job_Training 1 0.11611 0.15936 0.5308 0.4663 1.123 

Single_Parent 1 0.07826 0.14659 0.2850 0.5935 1.081 

Unemployed 1 -0.34605 0.16133 4.6008 0.0320 0.707 

Num_Children 1 0.07333 0.04907 2.2334 0.1351 1.076 

TANF 1 0.17635 0.18793 0.8806 0.3480 1.193 

 

As mentioned before to generalize the logistic regression for the autocorrelated data, one 

of the best models is the GLMM which is a particular type of mixed model. A lower 

boundary constraint is placed on the variance component for the random center effect. 

The solution for this variance cannot be less than zero. After the initial optimization, the 

GLIMMIX procedure performed 16 updates before the convergence criterion was met. At 

convergence, the largest absolute value of the gradient was near zero which indicates that 

the process stopped at an extremum of the objective function. This model is statistically 

significant as twice the negative of the residual log likelihood in the final pseudo-model 

equaled 4764.52. The ratio of the generalized chi-square statistic and its degrees of 

freedom is close to 0.3. This is a measure of the residual variability in the marginal 

distribution of the data. From the covariance parameter estimation procedure, the 

variance of the random center intercepts on the logit scale is estimated as  ̂ 
 =5.2757. 

Finally looking into table 4 to check the significance of different variables, it is obvious 

that the number of hours families spent with case worker each month is highly significant 

(Case_Hours; p-value = .0032) and employment is also significant at the .05 significance 

level (Unemployed; p-value = .0211). After doing the comparison, the results in terms of 

significance from both the frailty models and the GLMM are the same.  
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Table 4: Results of the GLMM analysis 

 

Solutions for Fixed Effects 

Effect Estimate 

Standard 

Error DF t Value Pr > |t| 

Intercept 3.2436 0.5461 413 5.94 <.0001 

Child_Abuse -0.2864 0.4396 505 -0.65 0.5150 

Case_Hours -0.1541 0.05205 505 -2.96 0.0032 

Job_Training -0.6988 0.4233 505 -1.65 0.0994 

Single_Parent -0.03898 0.3794 505 -0.10 0.9182 

Unemployed 0.7847 0.3391 505 2.31 0.0211 

Num_Children -0.1358 0.1308 505 -1.04 0.2998 

TANF -0.3568 0.4594 505 -0.78 0.4378 

 

 

5. Conclusion 

 
In this paper a comparison between survival analysis models and logistic regression 

models is presented along with the comparison of the generalized methods when dealing 

with the correlated data applying the shared frailty model and the GLMM. 

Due to the real situations dealt with when analyzing the THF data and based on the lack 

of studies comparing the logistic regression and survival analysis, this study focused on 

this comparison. The biggest gap was the comparison of these two methods when there is 

clustering and so some correlation in the dataset among the subjects. Although there are 

many different methods of analyses for both models such as the methods based on the 

Jackknife estimation, Tayler series, and frailty models to handle survival models and the 

GEE or mixed models for Logistic models, not all of them are comparable and there 

should be methods applied to both analyses that make the results equivalent. Based on the 

review of literature for this study and the data analysis, the best way to do this 

comparison for correlated data is to add a random term to both models so the analyses 

would be comparable. The appropriate model as an extension to logistic regression is 

generalized linear mixed model and the extension to the Cox survival model is made by 

adding a random effect to the model which is called shared frailty model and they are 

comparable as discussed above. 

Analyzing the real data approved getting different results using logistic regression in 

comparison to survival analysis for the aggregated data as expected since survival model 

performed better by not losing information about length of stay in the THF. For the 

correlated data, getting the same results based on the different nature of the two models 

applied to the dataset is promising to be able to finally make the distributional 

comparisons. 

Ongoing research includes the distributional comparisons through simulation study and 

some data analysis 
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