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Abstract
Computer experiments are used to study processes that are too difficult or dangerous to experiment
with in the physical world. Complex computer code that simulates these experiments often results
in an extremely long run time. The design points at which to run the simulations must be chosen
carefully and intelligently; thus, sequential designs that allow users to focus their attentions on
interesting areas of the response are a logical choice. We propose a family of sequential design
methods that are developed for use when it is believed that the response surface may exhibit non-
stationary behavior. These criteria, which were inspired by an expected improvement criterion,
focus on the search for areas with large changes in slope, with the idea that sudden changes in slope
are an indication of non-stationary ”breaks” in the response. While seeking out these boundary
points, our methods still result in an effective fit of the entire response surface using a small number
of design points. The merits of these methods are exhibited in a two-dimensional example, including
comparisons to existing sequential design methods.
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1. Introduction

Computer experiments are used to study physical processes that are too costly, difficult,
or dangerous to experiment with in the physical world. Engineers and computer scientists
produce the simulator (computer code) that they feel is a relatively close approximation of
the complex reality that they wish to investigate. The computer code is a “black box”: val-
ues of the input (predictor) variables go in, and values of the output (response) variable(s)
come out. It is the job of statisticians to handle what goes in (the design) and what comes
out (the analysis of the responses).

Of course, we wish to understand the input-output relationship. Since the computer
code that simulates these physical experiments is often very complex, it is not an efficient
use of time to run the simulator over the entire input space. Instead, we build an inexpen-
sive (fast) approximation to the unknown response surface, known as a “surrogate model”
or “emulator.” In order to build this surrogate, we require some data from the simulator.
Since the simulator is assumed to have a long run time, each data point is considered to be
costly. Hence, the design points must be chosen carefully by an efficient design method
that can investigate the response surface in a small number of samples. An especially effi-
cient design method is sequential (or adaptive) design. In a sequential design, a small initial
space-filling sample is taken, and an estimated model for the response surface is built based
on this sample. Based on this estimated model, the statistician decides where the next sam-
pled point should be. Sequential designs are a natural choice for computer experiments,
where obtaining each data point is costly, because users can focus their attentions on inter-
esting areas of the response surface, as described by features of the predicted model from
already-sampled points. In this way, we can get more relevant information in a smaller
number of samples than if we were to take one large batch of randomly-scattered design
points. The choice of the next sampled point will depend on the experimental goals: local
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or global optimization, global fit of the response surface, calibration to some physical ex-
periment, sensitivity analysis, or prediction/estimation of a particular subset of the response
are all popular choices. Different sequential designs have been developed for all of these
applications. (See Santner et al. (2003) for an overview, or Lam (2008) for a comparison
study of several methods.)

Historically, the outputs of computer experiments have been modeled using a Gaussian
stochastic process model (GP), which assumes stationarity in the response surface (see
Sacks et al. 1989b; Santner et al. 2003). However, work in the last ten years by Gramacy
and Lee (see Gramacy et al. 2004; Gramacy 2005; Gramacy and Lee 2008a,b) relaxes that
assumption and allows us to accurately build surrogate models for non-stationary processes
using their treed Gaussian process model (TGP). Most existing experimental design criteria
for computer experiments are built on the assumption of stationarity and the use of the
stationary GP model. Thus, there exists opportunity for new contributions to design in
situations where we believe there may be non-stationarity behavior in the response surface.

In Frazier and Notz (2014), the authors introduced the Expected Difference of Slopes
(E∆M), a new sequential design method for the purpose of obtaining a good global fit of
the entire response surface when the response is non-stationary. They found that when
non-stationary behavior was present – the true response surface has well-defined bound-
ary points, or when the “interesting” areas are highly localized – E∆M was successful at
achieving an efficient fit. But in cases where the “interesting” areas are more spread out
over the input space, or when there are not distinct boundaries between regions, E∆M was
less successful; its search was too localized.

The focus of this work is modification of the E∆M criterion, with the goal of achieving
good global fit on a wider array of surfaces. Section 2 introduce the details of the Gaussian
stochastic process (GP) and treed Gaussian process (TGP) models, along with the predic-
tion and estimation of these models. Section 3 reviews the Expected Difference of Slopes,
along with two competing methods, and introduces our modification. An empirical study
comparing these methods on a synthetic 2-dimensional function is carried out in Section 4.
Finally, Section 5 discusses the advantages and disadvantages of the four design criteria,
and proposes several areas for future research.

2. Stationary and Non-stationary Gaussian Processes

In a computer experiment, the output z(·), evaluated at a mX ×1 vector of inputs xxx ∈ XXX ⊂
RmX , is thought of as a realization of the random process

Z(xxx) =

p∑
j=1

βjfj(xxx) + Y (xxx) = fffT (xxx)βββ+Y (xxx), (1)

where fff(xxx) = (f1(xxx)), f2(xxx)), . . . , fp(xxx))T is a p×1 vector of known regression functions
ofxxx,βββ = (β1, β2, . . . , βp)

T is a p×1 vector of regression coefficients, and Y (xxx) is a mean-
zero random process with covariance given by

Cov[Y (xxx1), Y (xxx2)] = σ2YR(xxx1,xxx2). (2)

If we further assume that Y (xxx) is a Gaussian stochastic process (Gaussian random func-
tion), model (1) is called a Gaussian stochastic process (GP) model (Sacks et al. 1989b,a;
Santner et al. 2003).

Traditionally (Santner et al. 2003), the stochastic process Y (·) is assumed to be station-
ary, so that the correlation between two points depends only on the distance between two
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points, not on the location of those points:

R(xxxi,xxxj) = R(xxxi−xxxj).

We want to predict the output Z(xxx0) at a single untried xxx0 ∈ X based on n training points
D = {XXX,ZZZn}. The distribution of outputs at xxx0 is Gaussian with mean and prediction
variance

ẑ(xxx0) = fffT (xxx0)β̂ββ + rrrT (xxx0)RRR
−1(ZZZn−FFF β̂ββ), (3)

σ̂2(xxx0) = σ2Y

[
1− rrrT0 RRR−1 rrr0 +(fffT0 −rrrT0 RRR−1FFF )(FFF T RRR−1FFF )−1(fffT0 −rrrT0 RRR−1FFF )T

]
,

(4)

where

FFF = (fff(xxx1), . . . , fff(xxxn))T

fff0 = fff(xxx0)

RRR = [R(xxxi,xxxj)] for i, j ∈ 1, . . . , n

rrr0 = rrr(xxx0) = (R(xxx1,xxx0), . . . , R(xxxn,xxx0))
T

β̂ββ = (FFF T RRR−1FFF )−1FFF T RRR−1ZZZn .

2.1 Bayesian Treed GPs

The sequential design method proposed in Section 3 is specifically developed for use when
it is believed that the response surface may exhibit non-stationary behavior. Thus, use
of the stationary Gaussian process model described above may not be adequate. To this
end, surrogate modeling in this work will be performed using the Bayesian treed Gaussian
process model (TGP) developed by Gramacy and Lee (Gramacy et al. 2004; Gramacy 2005;
Gramacy and Lee 2008a,b, 2009, 2010).

TGP models build on classification and regression tree (CART) models popularized
by Breiman et al. (1984), and the Bayesian versions developed Chipman et al. (1998)
and Chipman et al. (2002). The TGP consists of splitting the input space into N non-
overlapping regions, then fitting independent stationary Gaussian process models to each
region.

Each region bν (ν = 1, . . . ,N ) contains data Dν = {XXXν ,ZZZ
nν
ν } from already-sampled

points. The TGP model fits an independent stationary GP with linear trend (Equation 1) to
the data Dν within each region. For a particular region ν, the hierarchical model is

ZZZν |βββν , σ2ν ,RRRν ∼Nnν (FFF ν βββν , σ
2
νRRRν)

βββν |σ2ν , τ2ν ,WWW,βββ0 ∼NmX (βββ0, σ
2
ντ

2
ν WWW )

βββ0 ∼NmX (µµµ,BBB) (5)

σ2ν ∼IG(ασ/2, qσ/2)

τ2ν ∼IG(ατ/2, qτ/2)

WWW ∼W ((ρVVV )−1, ρ)

whereFFF ν = (111,XXXν) is the design matrix ofZZZν , andWWW is a (mX + 1)× (mX + 1) matrix.
The hyperparameters µµµ,BBB,VVV , ρ, ασ, qσ, ατ , and qτ are constants and are treated as known.
IG is the Inverse Gamma distribution and W is the Wishart distribution. The correlation
matrix RRRν is specific to each region, but it is assumed that all RRRν (ν = 1, . . . ,N ) come
from the same family of correlation functions, the separable Gaussian correlation with scale
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parameters di,ν (i = 1, . . . ,mX ; ν = 1, . . . ,N ), plus a nugget parameter gν (Gramacy
and Lee 2010):

Rν(xxxj ,xxxk) = R∗ν(xxxj ,xxxk) + gνδj,k (6)

= exp

{
−
mX∑
i=1

|xij − xik|2

di,ν

}
+ gνδj,k (7)

where δ.,. is the Kronecker delta function.
Using this hierarchical GP model, the predicted value for Z(xxx0), where xxx0 is in region

bν , is normally distributed with mean and variance

ẑ(xxx0) = E(ZZZ(xxx0)|(xxx0,ZZZnν ) ∈ bν) = fffT (xxx0)β̃ββν + rrrTν (xxx0)RRR
−1
ν (ZZZnνν −FFF ν β̃ββν), (8)

σ̂2(xxx0) = Var(ZZZ(xxx0)|(xxx0,ZZZnν ) ∈ bν) = σ2ν
[
κ(xxx0,xxx0)− qqqTν (xxx0)CCC

−1
ν qqqν(xxx0)

]
, (9)

where

β̃ββν = VVV β̃ν
(FFF Tν RRR

−1
ν ZZZnνν +WWW−1βββ0 /τ

2
ν ) (10)

VVV β̃ν
= (FFF Tν RRR

−1
ν FFF ν +WWW−1 /τ2ν )−1,

CCC−1ν =
(
RRRν +τ2ν FFF νWWW FFF Tν

)−1
,

qqqν(xxx0) = rrrν(xxx0) + τ2ν FFF νWWW fff(xxx0), (11)

κ(xxx1,xxx2) = Rν(xxx1,xxx2) + τ2ν fff
T (xxx1)WWW fff(xxx2).

Within a region bν , there are (3 + mX + p) parameters θθθν = {σ2ν , τ2ν , gν , dddν ,βββν} that
must be estimated using the data Dν = {XXXν ,ZZZ

nν
ν }. For derivations, explanations of the

estimation of these parameters, and details on tree structure, see Gramacy (2005).
In Gramacy (2005) and Gramacy and Lee (2008b), the authors suggest the treed Gaus-

sian process with jumps to the limiting linear model (TGP LLM) as a way to reduce com-
putational cost when the surface within a region is approximately linear. The linear model
is as given in (5), except the conditional distribution of ZZZnνν is no longer dependent on a
correlation functionRRR. Instead,

ZZZnνν |βββν , σ2ν ∼ Nnν (FFF ν βββν , σ
2
νIIInν ), (12)

where IIInν is the nν × nν identity matrix.
Under the LLM, the predictive distribution (8) and (9) is simplified; within a region bν

the predicted value for Y (xxx0), is normally distributed with mean and variance

ẑ(xxx0) = fffT (xxx0)β̃ββ (13)

σ̂2(xxx0) = σ2
[
1 + fffT (xxx0)VVV β̃ fff(xxx0)

]
, (14)

where β̃ββ is given in (10) and VVV β̃ = (FFF T RRR−1FFF +WWW−1 /τ2)−1.
All surface modeling in this paper will be done using this model, the treed Gaussian

process (TGP) or TGP with jumps to the limiting linear model (TGP LLM), as implemented
by Gramacy and Taddy (2008) in their R package tgp. 1

1Available on CRAN at www.cran.r-project.org/web/packages/tgp/index.html.
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3. Sequential Design for Non-stationary GPs

3.1 Bayesian Adaptive Sampling

Gramacy and his colleagues (Gramacy 2005; Gramacy et al. 2005; Gramacy and Lee 2009)
argue that some of the more traditional sequential design methods are not useful in the
context of a Bayesian Treed model, given the assumption of stationarity behind these design
methods. Instead, they develop a two-stage sequential design method for the situations in
which TGP models are used, termed “Bayesian adaptive sampling” (BAS).

The first stage of BAS is selection of candidate points from a sequential treed maximum
entropy design. This consists of starting with a relatively dense grid of original candidate
points, then building a sequential maximum entropy design within each region b̂ν proposed
by the current estimated tree structure T̂ (ν = 1, . . . , N̂ ) (Gramacy and Lee 2009). Once
the candidate points from each region are selected, these points are fed to the Cohn active
learning (ALC) algorithm. The goal in Cohn (1996) is to minimize the expected mean
squared error averaged over the entire input space. When a new point x̃xx in region ν is
selected to sample, there is an associated reduction in predictive variance at the other points
in that region (the reduction in prediction variance at points in regions other than ν is
assumed to be zero). We want to select x̃xx such that the resulting prediction variance is
minimized; or rather, such that the global change in prediction variance is maximized. (See
Gramacy (2005); Gramacy and Lee (2009) for the computational details, and Seo et al.
(2000) for more explanation of the ALC algorithm.)

Gramacy (2005) notes that the ALC is quite costly to compute, especially if the original
grid of candidate points is dense and the problem is high-dimensional. This is the thrust
of the two-stage BAS algorithm: by reducing the number of candidate points for which
the ALC quantity must be computed, we reduce the computing costs while still taking
advantage of ALC’s searching capabilities.

3.2 Expected Improvement for Global Fit

Lam (2008) proposes a sequential design method that he argues is much simpler compu-
tationally than BAS while achieving a global surface fit more efficiently. The expected
improvement for global fit (EIGF) criterion is that which chooses the point xxx0 that maxi-
mizes

EGF (I) = (ẑ(xxx0)− z(xxx∗))2 + Var(Ẑ(xxx0)), (15)

where z(xxx∗) is the observed response at the sampled point xxx∗ that is closest in Euclidean
distance to xxx0. Notice this has both a local component and a global component: the first
part of (15) will be large when the predicted response has a large absolute increase over its
closest sampled neighbor; the second part will be large when there is a large uncertainty
associated with xxx0.

In two dimensions, if the response surface is smooth, the EIGF criterion has the prop-
erty of picking new points close to the midpoint (in Euclidean distance) of two existing
design points. This makes the design nicely space-filling, even in higher dimensions. How-
ever, the presence of the variance component keeps the design points from getting stuck in
areas with steep gradients.

3.3 Expected Difference in Slopes

The EIGF locates the candidate point xxx0 that has the largest expected squared vertical dis-
tance between the candidate and its closest neighbor xxx∗. Thus, EIGF seeks out areas of
the predicted surface with large slope, at least in the local portion of the search (the global
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variance component of the EIGF tempers this by searching for areas of high uncertainty).
However, in a non-stationary situation, we believe that a high priority should be locating
the boundary points of the regions. One way to locate these boundaries is to focus on areas
where the slope is changing rapidly. A sudden change in slope disagrees with the assump-
tion of a smooth function, and thus would be an indication of a possible non-stationary
“break.” With this in mind, we developed the Expected Difference of Slopes (E∆M) cri-
terion (Frazier and Notz 2014), which is based on the difference of slopes between three
points.

Consider three points (xxx1, Z(xxx1)), (xxx2, Z(xxx2)), (xxx3, z3), such that xxx3 has already been
sampled ((xxx3, z3) ∈ D) but xxx1,xxx2 ∈ XXX have not yet been sampled. Similarly to the EIGF,
the choice of the three points xxx1,xxx2 is determined by their Euclidean distance to xxx3. The
difference of the slopes between these three points is∣∣∣∣z3 − Z(xxx2)

∆x32
− Z(xxx2)− Z(xxx1)

∆x21

∣∣∣∣ , (16)

where ∆xij = ‖xxxi−xxxj ‖ is the Euclidean distance between xxxi and xxxj . We would like to
choose a new point that resides in the region where the square of this quantity is expected
to be the largest; thus, we must take the expected value of the square of (16).

E[(slope diff)2] =
1

∆x232∆x
2
21

×
{

[(∆x31ẑ(xxx2)−∆x32ẑ(xxx1))−∆x21z3]
2

+ Var [∆x31Z(xxx2)−∆x32Z(xxx1)]} . (17)

The prediction equations for ẑ(xxxi) and σ̂2(xxxi) under the TGP model are given in (8) and
(9). Cov(xxxi,xxxj) will be estimated by the covariance matrix Ĉ, which is of course based on
the estimate of the correlation matrix RRR and its scale and nugget parameters (ddd, g). All of
these estimates are calculated as part the R package tgp.

Equation 17 makes explicit the connection between the E∆M criterion and the EIGF
criterion in Section 3.2. The EIGF criterion (15) is made up of a local component and a
global component: the global piece is the variance of the predicted response at an untried
xxx value; the local piece is the squared distance between the predicted response at that un-
sampled xxx and the known response at its nearest sampled neighbor. The E∆M criterion has
a similar form: the global component is the variance of the difference between predicted
responses at two untried xxx values; the local component measures the squared distance be-
tween the difference between predicted responses at two untried xxx values and the known
response at the nearest sampled neighbor. Thus, E∆M should balance between exploring
locally and globally in its search for boundary points.

3.3.1 Modification to the Expected Difference in Slopes

Although the E∆M is built to search both globally and locally, in practice we find that it
tends much more towards a local search. This works well when the true response surface
has well-defined boundary points, or when the “interesting” areas of are highly localized
(Frazier and Notz 2014). In this way, E∆M is effective when the response surface is truly
non-stationary. However, it is less successful when the “interesting” areas are more spread
out over the input space, or when there are not distinct boundaries between regions. Em-
pirical investigation indicates that this is mainly due to the coefficient of E[(slope diff)2],
(∆x232∆x

2
21)
−1. This coefficient tends to overwhelm the global component of (17), and

always results in the criterion choosing new points close to already-sampled points. Not
surprisingly, this is especially pronounced when the grid of candidate points is fine, and
thus the distances between xxx1,xxx2, and xxx3 are very small.
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Thus, we propose a modification of to the E∆M criterion. This modification is called
the E∆M.nocoef method, and uses the following criterion in place of Equation (17):

∆x232∆x
2
21E[(slope diff)2]. (18)

Implementation of the modified E∆M method is the same as implementation of the
E∆M criterion outlined in Frazier and Notz (2014); see Appendix A for an outline.

4. Simulation Study and Results

Below we will investigate the performance of the four design criteria – BAS, EIGF, E∆M,
and E∆M.nocoef – on a 2-dimensional example. Comparing the performance of the BAS
to the EIGF in previous works (Lam 2008; Gramacy and Lee 2009) is nearly impossible
due to the many differences in how they implemented the simulations, unrelated to their
competing design schemes. These differences include different starting designs and sam-
ple sizes, different sets of candidate points, and different surrogate models. Perhaps most
importantly, Lam uses the traditional computer experiments scenario of deterministic out-
put and an interpolating predictor (3). Gramacy and Lee do include random noise in their
data; their predictor (8) is not interpolating and their modeling uses a nugget term in the
correlation structure (see Equation 6). The addition of noise to a response function will
obviously make it more difficult to model the surface accurately. Below we attempt to
compare the BAS, EIGF, E∆M, and E∆M.nocoef methods on a level playing field.

As in Lam (2008), Gramacy and Lee (2009), and Frazier and Notz (2014), the perfor-
mance of the various criteria will be judged based on empirical root mean square prediction
error (ERMSPE) over the grid of N ′ candidate pointsXXXXXX .

EMSPE =
1

N ′

N ′∑
i=1

(ẑ(xxxi)− z(xxxi))2 (19)

ERMSPE =
√

EMSPE (20)

x1

x2

z

x1

x2

z

Figure 1: Two views of the 2-dimensional L1 (Lehman) function.

For a two-dimensional test function we turn to a class used in Lehman (2002):

z(xxx) = (x1 − θ1)(x2 − θ2)(x1 − x2) cos(θ3x1) + 0.1 sin(θ3x2/2), (21)

where x1, x2 ∈ [0, 1]; θ1, θ2 are independent and uniformly distributed on (−1, 1); and θ3
is independent of θ1, θ2 and uniformly distributed on (0, 8π). Lehman reports that this is
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a very flexible class of functions, which can have several local optima, and can be smooth
or wavy. Consider the Lehman function (21) with a randomly-drawn θθθ vector of (0.1350,
0.9710, 23.8251) in Figure 1. This realization, which we will call function L1, has two
distinct regions: the gently wavy portion over most of the space; and the higher-amplitude
area in (x1, x2) ∈ [0.5, 1] × [0, 0.5]. Performance of the EIGF, BAS, and E∆M sampling
methods on this function was investigated in Frazier and Notz (2014).

4.1 Comparison of design methods under Gramacy and Lee’s conditions

For consistency with Gramacy et al. (2004), the starting design was a N0 = 10-point
Latin hypercube sample chosen from the full list of candidate points XXXXXX , which was an
evenly spaced grid of N ′ = 30 × 30 = 900 points in [0, 1] × [0, 1]. All the predictions
are done using the Bayesian TGP LLM, using a linear mean function, and the separable
Gaussian correlation function (6). N(0, σ = 0.001) noise was added to the realizations of
the response.

The ERMSPE (calculated on the grid of 900 points) from N = 10 until N = 65
for all four adaptive sampling methods is in Figure 2. In Frazier and Notz (2014), the
authors found that between the EIGF, BAS, and E∆M, the EIGF leads to the lowest and
most consistent ERMPSE up to N = 35, after which the ERMSPE achieved by E∆M
drops significantly. After N = 45, BAS is comparable to E∆M; after N = 55, these
three methods are essentially comparable. With the inclusion of the new modified method,
E∆M.nocoef, it is clear that E∆M.nocoef leads to the best fit (for all N shown), as it
achieves a lower and more consistent ERMSPE than any of the other methods.

10 20 30 40 50 60

0.
05

0.
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0.
15

0.
20

N

E
R
M
S
P
E

Figure 2: ERMSPE on the 2-d L1 function (noise included) over an evenly-spaced grid of
900 locations, using adaptive sampling methods: BAS (shorter dash-dot green line), EIGF
(longer dash-dot violet line), E∆M (solid black line), and E∆M.nocoef (dashed red line).

The adaptively-chosen points selected by N = 40 are in Figure 5 (in Appendix B),
which give the reader a “snapshot” of the searching behavior of all four methods. BAS starts
with a more global search, then eventually focuses where x2 < 0.6. EIGF concentrates very
heavily in the southeast quadrant (x1 > 0.5, x2 < 0.5), and it emulates that area well but as
a result fit over the rest of the input space is poor until N = 45. E∆M tends to search only
around existing design points (after N = 40 it concentrates in the southeast quadrant). As
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discussed in Section 3.3.1, this method seems to be getting stuck in “bunches” around the
input space, sampling many points in three or four distinct areas, while ignoring the rest of
the input space. The E∆M.nocoef modification (18) seems to solve the issue in this case; it
explores the full input space throughout and only takes a slightly larger sample in that area
of interest.

4.2 Comparison of design methods under Lam’s conditions

Now we compare these three methods using the same conditions as described in Lam
(2008). As in that work, the starting design is now a maximin Latin hypercube sample
(Morris and Mitchell 1995) of size N0 = 10, and the candidate points are an evenly spaced
grid of 302 = 900 points. Consistent with Lam’s modeling conditions, there was no noise
was added to the responses from Equation 21 and no nugget was included in the correlation
function. We used the TGP (without jumps to the LLM2) for surrogate modeling of the
response surface, but forced it to be an interpolator (consistent with Lam’s GP predictor)
However, it should be noted that this allows the predicted response surface to be “treed”,
unlike in Lam (2008). To be consistent with Lam (2008), we will compare methods once
N = 40 total samples are reached.

The ERMSPE values calculated on the 900-point grid for N0 = 10 to N = 40
are in Figure 3, and Figure 6 (in Appendix B) contains the adaptively-sampled points at
N = 30 for all four methods. As we saw in the previous section, BAS searches glob-
ally, E∆M.nocoef and EIGF take slightly more points in the southeast quadrant while
still searching globally, and E∆M concentrates almost exclusively in this quadrant. BAS
achieves an extremely poor fit; in fact, the ERMSPE actually increases from N = 11 to
N = 40. It is difficult to ascertain which of the other methods performs best; E∆M has
a consistently low ERMSPE, although EIGF and E∆M.nocoef achieve smaller values by
N = 30.
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Figure 3: ERMSPE on the 2-d L1 function (no noise) over an evenly-spaced grid of 900 lo-
cations, using adaptive sampling methods: BAS (shorter dash-dot green line), EIGF (longer
dash-dot violet line), E∆M (solid black line), and E∆M.nocoef (dashed red line).

2Due to numerical issues, the limiting linear model does not work when no nugget is included and the
predictor is an interpolator

JSM 2014 - Section on Statistical Computing

2479



5. Conclusion

Consider the three design schemes: Bayesian adaptive sampling, expected improvement for
global fit, and expected difference of slopes investigated in Frazier and Notz (2014). The
authors concluded that in general BAS is the most global search; this is perhaps not sur-
prising since it is based in part on entropy, which favors “space-fillingness.” EIGF balances
between global and local, focusing in “interesting” areas, but not solely these areas. The
E∆M method that they introduce in that work is extremely localized. As such, the most
successful design scheme for a certain set of data depends on whether searching globally or
locally is desired. In that work, the authors found that the E∆M adaptive sampling scheme
was generally successful at achieving an efficient global fit of a response surface, as long as
the true surface exhibits non-stationary behavior. For surfaces with less localized “interest-
ing” areas, like the L1 function, E∆M did not perform as well because it is too localized.
The method was not accomplishing the global-local balance that the authors desired when
developing it.

Herein, we have proposed a modification to the E∆M criterion that results in a global-
local search balance that is more successful than its competitors at efficiently fitting re-
sponse surfaces with somewhat localized areas of interest, like the L1 surface. It is notable
that it is successful under both the traditional (Lam) conditions and the non-deterministic
(Gramacy and Lee) conditions. Other work (Frazier 2014) includes many examples show-
ing this modification, E∆M.nocoef, is more efficient than E∆M, BAS, or EIGF on many
different types of surfaces, under varying starting designs and modeling conditions.

Planned future work includes a sampling scheme that incorporates both the E∆M and
the EIGF criteria, to take advantage of the strengths of both methods. Alternatively, a
weighted version of the E∆M, to encourage a more local or global search, is a logical next
step.
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A. Implementation of the Modified Expected Difference in Slopes

Implementation of the modified E∆M method is the same as implementation of the E∆M
criterion outlined in Frazier and Notz (2014). A relatively dense grid ofN ′ candidate points
XXXXXX is chosen ahead of time. The prediction model (TGP or TGP LLM) is fit to an initial
set of N0 training points, shown as black circles in Figure 4. A predicted response surface
is fit using this initial sample. To find the next point satisfying the E∆M.nocoef criterion,
follow this algorithm:

1. Pick a candidate point, xxx1, fromXXXXXX .

2. Determine which c points in XXX (the existing design points) are closest in Euclidean
distance to the candidate point. (By default, c is twice the dimension of the input
space mX .) So there will be c xxx3 values.
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Figure 4: Implementation of the E∆M.coef method with c = 4 in two dimensions for a
sample candidate point xxx1 (red x).

3. For each of the c points, find the point inXXXXXX that is halfway between this point and
xxx1. These are called the “midpoints,” xxx2.

4. We now have c sets of three points: xxx1 (which is inXXXXXX), the closest point xxx3 (from
XXX), and the midpoint between them xxx2 (also in XXXXXX). (A visual representation can
be seen in Figure 4.)

5. For each of the c sets, calculate the E∆M.nocoef criterion value (using (18) with the
predicted surface) for that set.

6. Determine which ∆x232∆x
2
21E[(slope diff)2] value is largest among the c points; this

tells us which direction has largest expected numerical second derivative for that
candidate xxx1.

7. Return to Step 1 and repeat for all xxx1 inXXXXXX that are not already part of the sample
XXX .

8. We now haveN ′−N values of max
{

∆x232∆x
2
21E[(slope diff)2]

}
. The new sampled

point is in the set with the largest max
{

∆x232∆x
2
21E[(slope diff)2]

}
. Specifically,

the new point is xxx2, the midpoint of that set.

A few points of clarification are needed here. The midpoint xxx2 is chosen as the new sample
point (rather thanxxx1) because the idea is that we want to move in the direction of the highest
∆x232∆x

2
21E[(slope diff)2], and the midpoint is in that direction. As described in Step 3, a

midpoint is that which is halfway (in Euclidean distance) between xxx3 and xxx1, but it must
be in XXXXXX . Thus, usually xxx2 is not exactly half the distance, but is slightly closer to either
xxx3 or xxx1. Finally, existing design points xxx ∈ XXX are barred from being chosen again (even
in cases when noise has been added to the responses, so they are not strictly deterministic).
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B. Fitted surfaces and point selection for examples in Section 4
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Figure 5: Point selection by N = 40 for the four design methods under Gramacy and
Lee’s conditions for the 2-d L1 data (noise included in responses). Plots are of posterior
predictive variance (white = highest variance, through green = lowest variance), with tree
T̂ (boxes), sampled pointsXXX (dots), and candidate pointsXXXXXX (circles).
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Figure 6: Point selection by N = 30 for the four design methods under Lam’s conditions
for the 2-d L1 data (no noise in responses). Plots are of posterior predictive variance (white
= highest variance, through green = lowest variance), with tree T̂ (boxes), sampled points
XXX (dots), and candidate pointsXXXXXX (circles).
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