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Abstract

A major obstacle that hinders medical and social research is the lack of reliable data due to people’s
reluctance to reveal confidential information to strangers. Fortunately, statistical inference always
targets a well-defined population rather than a particular individual subject and, in many current
applications, data can be collected using a web-based system or other mobile devices. These two
characteristics enable us to develop new data collection methods with strong privacy protection.
These new technologies hold the promise of removing trust obstacle, promoting objective data col-
lection, allowing rapid data dissemination, and helping unrestricted sharing of big data.

The new method, called triple matrix-masking (TM?), ensures that the raw data stay with re-
search participants and only masked data are collected , which can be distributed and shared freely.
TM? offers privacy protection with an immediate matrix transformation at time of data collection
so that even the researchers cannot see the raw data, and then further uses matrix transformations
to guarantee that the masked data will still be analyzable by standard statistical methods. A critical
feature of the method is that the keys to generate the masking matrices are held separately,which
ensures that nobody sees the actual data. Also, because of the specially designed transformations,
statistical inference on parameters of interest can be conducted with the same results as if the origi-
nal data were used, hence the new method hides sensitive data with no efficiency loss for statistical
inference of binary and normal data, which improves over Warner’s randomized response technique.

In addition, we add several features to the proposed procedure: an error checking mechanism
is built into the data collection process in order to make sure that the masked data used for analysis
are an appropriate transformation of the original data; and a partial masking technique is introduced

to grant data users access to non-sensitive personal information while sensitive information remains
hidden.

Key Words: Orthogonal transformation, Privacy-preserving data collection, General linear model,
Contingency table analysis, Logistic regression

1. Introduction

There is opportunity and need in medical and social research today to collect more and
better data, while at the same time there is increasing pressure to safeguard the privacy of
study subjects whose data are collected and analyzed. This sounds much like the “grow-
ing tension between confidentiality and data access” (Duncan and Pearson, 1991) in use of
government databases. The medical community has recognized the need for systematic de-
velopment of methods for data privacy (American Association of Medical Colleges, 2010);
however, statistical methods for data privacy have not focused on the needs of medical
research as much as on those of social science research.

A common scenario where data confidentiality is a problem in social science research
involves four parties: a statistical agency, data users, data providers, and intruders. The
statistical agency plans and carries out the data collection, and once the data have been
collected, plans the release of a possibly masked version of the data. The data users, who
may be the same as the statistical agency, wish to do research at a population level using
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the data; such research is intended to provide benefit to society. The intruders wish to get
around the built-in security and privacy barriers, to identify sensitive data about particular
data providers, and to use this information in harmful ways. In this scenario, the goal of
data masking or other methods to guarantee privacy of the data is to protect each individual
data provider from having his data exposed to intruders, while allowing legitimate use of
the data for beneficial research. Various statistical disclosure limitation methods have been
proposed to achieve this goal, such as addition of noise (Kim, 1986; Kim and Winkler,
1995; Chawla et al., 2005), multiple imputation (Rubin, 1993), information preserving
statistical obfuscation (Burridge, 2003), the post-randomization method (Gouweleeuw et
al., 1998), controlled tabular adjustment (Cox et al., 2004), data shuffling (Muralidhar and
Sarathy, 2006), random projection based perturbation (Liu et al., 2006), random orthogo-
nal matrix masking (Ting et al., 2008). In addition, there are many approaches that were
particularly developed for privacy protection of contingency table data, especially for the
release of high-dimensional contingency tables. They include generalized shuttle algorithm
(Dobra and Fienberg, 2009), synthetic data (Fienberg and Slavkovic, 2008; Winkler, 2008;
Slavkovic and Lee, 2010), algebraic statistics (Dobra et al, 2008; Slavkovic and Fienberg,
2009), and differential privacy (Blum et al., 2005; Dwork, 2006; Barak et al., 2007; Fien-
berg et al., 2010; Yang et al., 2012), among others.

On the other hand, in a typical clinical study (such as a multi-center medical trial), the
privacy scenario involves the funding agency (such as the National Institutes of Health), the
study investigators (data collectors), the study participants (data providers) and potential
intruders. In this scenario, the data users include the study investigators, as well as external
researchers if the investigators make the data available to them. The usual approach to
privacy is regulated by the Health Insurance Portability and Accountability Act of 1996 and
subsequent rulings. Among other things, the law requires all researchers in both the clinical
and data branches to undergo regular training on ethics and methods of guaranteeing data
privacy and safety. The methods are to restrict access to all personal identifiers (such as
name and social security number) from research databases, and to follow standard computer
security practices. Data masking or transformation methods have not been used much if at
all. One negative impact of the privacy regulations is that it often takes many months to get
approval from the Institutional Review Board (IRB) before a clinical study can start, and
even then the use of the data is subject to stringent restrictions. General linear regression,
contingency table analysis, and logistic regression are commonly used in a typical multi-
center medical trial. Furthermore the statistical analysis plan is often prespecified in the
study protocol before recruitment and data collection. Once the data are analyzed and main
results are published by the research team, researchers on government-funded grants are
required to release the data for academic and public use, and the only privacy protocol is
that all personal identifiers are removed from the data.

Our overall aim in the present work is development of a system for privacy-preserving
data collection and analysis which will be useful in both medical and social research. We
propose a new method called triple matrix-masking (TM?) that is performed at the time of
data collection. There are three key ideas behind the approach we take in this paper. We use
specially designed matrix transformations that preserve data features needed for standard
statistical analyses, an idea developed by Ting et. al. (2008) for the purpose of microdata
release for social science research. A new twist in our approach is the application of a
transformation at the moment the data is collected, so that not even the study investigators
know the actual values of sensitive variables. And in addition, we have incorporated ideas
from computer science work on data security, including a protocol for handling of keys
which involves an additional entity in the scenario, termed a masking service provider.
Keller-McNulty (1991) made the valid point that statisticians working on data privacy need
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to incorporate ideas that have been developed by computer scientists working on private
sector data security.

The TM? method works as follows. A masking service provider only receives masked
data from data providers and then applies another mask. The data collectors who hold the
key to the first mask partially decrypt the doubly masked data and apply a third mask before
releasing the data to the public. The critical feature of the method is that the keys used to
generate the masking matrices are held separately by the masking service provider and the
data collectors. This ensures that nobody sees the actual data, but statistical inference on
parameters of interest can be conducted with the same results as if the original data were
used.

One motive for this work is to contribute to security of sensitive data, beyond the simple
removal of personal identifiers from databases. In the medical area, this additional security
may lead to a less cumbersome IRB approval process, and it may encourage more sharing
of data when research is completed. In addition, there is a need to persuade potential study
participants up front that any sensitive data that will be gathered will be secure from intrud-
ers. In studies about sensitive topics such as illegal activities, medical history and personal
finance, research could be hindered by the potential subjects’ concern about privacy. Peo-
ple often refuse to participate in research altogether. Or, they may consent to participate,
but then purposely provide wrong information because they do not have enough trust in
confidentiality protection or simply are reluctant to release private information.

The method we present here is an improvement of Warner’s (1965) randomized re-
sponse technique, which is well summarized in a monograph by Chaudhuri and Mukerjee
(1988) and has been used in many applications (Ostapczuk et al., 2009; Quercia et al.,
2011). This technique requests an interviewee to report whether or not his true binary
answer to a sensitive question is the same as a randomly generated response, which only
the interviewee sees. That is, the algorithm randomly flips an interviewee’s true binary
response with probability (1 — ¢), where c is the chance of “yes” answer from the ran-
dom device. The investigator’s ability to guess the response may be calibrated by adjusting
the distribution of the randomly generated response, but the investigator cannot determine
absolutely the interviewee’s response. Therefore this technique meets the dual objectives
of generating enough reliable data to yield fruitful inference and protecting respondents’
privacy despite their truthful replies. However, Warner’s randomized response technique
can apply only to binary data and it is inefficient (see Section 4 for more details), while the
TM? method loses no efficiency for statistical inference of binary and normal data because
sufficient statistics are preserved.

The rest of the paper is organized as follows. In Section 2, we summarize the known
facts that orthogonally record-transformed data preserve sufficient statistics for the general
linear model and contingency table analysis; and under logistic regression the same infer-
ence results on parameters of interest can be obtained from certain attribute-transformed
data as they would have obtained with the original data. In Section 3, we apply these re-
sults to matrix masking at the time of data collection. We show that, by distributing the
keys of the random transformations, we can ensure that nobody sees the actual data, yet the
masked data provides the same statistical inference results. We also add several features
to the proposed procedure: an error checking mechanism is built into the data collection
process in order to make sure that the masked data used for analysis are an appropriate
transformation of the original data; and a partial masking technique is introduced to grant
data users access to non-sensitive personal information while sensitive information remains
hidden. In Section 4, we compare the TM? method with related work on privacy-preserving
data collection, including Warner’s randomized response technique, various cryptographic
solutions, and anonymous communications. We summarize our contributions and further
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research in Section 4, while

2. Properties of Matrix Masked Data

We use two types of matrix transformation in order to change data values yet preserve
that information in the data which is essential for statistical analysis. In this section we
summarize the properties of matrix masked data.

2.1 Orthogonally Record-Transformed Data Preserve Sufficient Statistics

First, we review the known fact that orthogonally record-transformed data preserve suf-
ficient statistics for parameters of interest with the use of general linear model and con-
tingency table analysis. Consequently, the exact same analytical results can be obtained
with orthogonally-transformed data as with the original data. This fact has been used by
Ting et al. (2008), who proposed a method they called random orthogonal matrix masking
(ROMM) that preserves sufficient statistics under a linear model. In ROMM and earlier
work (Duncan & Pearson, 1991), the data collectors have the raw data matrix, which is
multiplied by an orthogonal masking matrix before sending the resulting matrix to data an-
alysts or others who request the data. This procedure assumes that the data collectors know
the raw data before performing their masking operation. We propose a new method that
improves privacy protection by preventing anyone other than data providers (participants
themselves) from knowing the raw data; the procedure is performed distributively, allowing
the data to be incrementally masked for each participant. Before presenting our procedure,
we show that orthogonal transformation of data preserves sufficient statistics. For clarity,
we decompose the data matrix X, (,41) into two parts, X = [Y, Z], where Y, is the
vector for the outcome variable and Z,,«, denotes the model matrix. First, consider the
general linear model,
Y =708 +c¢,

where 3,x1 is the vector of unknown parameters, and €, is the vector of zero-mean
random error terms (usually assumed to be normally distributed). The usual least-squares
estimate 3 is the vector which minimizes the sum of squared errors ||Y — ZB|3; it is also
the maximum likelihood estimate when € is normal. Recall that when matrix Z is of full
rank, the minimizer of the sum of squared errors is unique and the estimate /3 can be ex-
pressed as 3 = (Z'Z)~1Z'Y, where apostrophe (') denotes transpose.

We consider applying an orthogonal transformation to the outcome vector Y, 1, and
the same transformation to the model matrix Z. An orthogonal transformation is a mapping
from R™ to R™ which preserves lengths of vectors and angles between vectors. It may be
represented by a square matrix A, such that A’A = I, where I is the identity matrix.
Now we fit the model based on AY and AZ rather than the original model based on Y
and Z. That is, AY = AZBnew + A€, where A is a row operator that transforms data
records (each row represents one case). Denote the original least-squares estimate by Borig,

and the new least-squares estimate on orthogonally-transformed data by Brew. We have
Brew = ((AZ)(A2)) " (AZ)(AY) = (2'2) " (Z'Y) = Borg:

In other words, the least-squares estimates from the original and transformed data
are the same when left-multiplying the data by an orthogonal matrix. This result can be
confirmed by considering the usual geometric representation of the least-squares estimate.
Stated in terms of the original estimate, the geometric interpretation is that Borig provides
a linear combination of the column vectors in Z such that the distance between the vector
Y and the vector of predicted values Z B is the shortest, among all vectors in the subspace
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spanned by the column vectors of Z. Using the facts that orthogonal transformations pre-
serve distances and angles between vectors, it is a short argument to show that Bnew = Borig.
From this perspective, it is also a short argument to show that the regression parameter es-
timates are identical for the two models even if only a subset of variables from Z (and the
corresponding subset from AZ) is used.

The residual vector for the original data is definedtobee =Y — 7 B . For the new data,
the residual vector is AY — AZS = AY - Z B) = Ae, which is the original residuals
transformed by A. Since length is preserved by orthogonal transformation, the residual sum
of squares will be the same for the two models. Furthermore, because the covariance of 3
depends on only Z'Z = (AZ)'(AZ) and the variance of e, the estimate of the covariance
matrix as well as the usual inference procedures will be identical. However, the individual
residuals will be transformed so that residual plots and diagnostic methods will no longer
be valid.

When an intercept term is included in a regression analysis, 1,, is a column of Z, where
1,, denotes the vector of n 1’s. In this case, Al,, is a column of AZ, therefore the first and
second sample moments of Z can be derived from AZ. On the other hand, if we restrict A
to be an orthogonal matrix that keeps 1,, invariant, i.e., A1,, = 1,,, then the sample means
and sample covariance matrix for X and AX are the same (see Theorem 1 of Ting et al.,
2008). In Remark 2, we describe a simple algorithm to generate such an orthogonal matrix.

Next we consider analysis of data in 2 x 2 tables. The raw data are two binary (0-1)
vectors, Z1 and Z, containing n observations. The data are commonly summarized as
counts in a 2 x 2 table shown in Table 1, with rows labeled by the values of variable Z;
and columns labeled by the values of variable Z5. More specifically, the four cell values
are: a is the number of observations that are 0’s in both vectors Z; and Z5, b the number
of observations with 0 in Z; and 1 in Z5, ¢ with 1 in Z; and O in Zs, and d with 1’s in
both Z; and Zs. The contingency table can also be computed as follows: Z1Z, = ¢+ d
is the number of 1’s in vector Z1, Z,Zy = b+ d is the number of 1’s in vector Z3, and
Z1Zy = d is the number of 1’s that Z; and Z5 have in common. From these three values
and the sample size n, we can easily compute a, b, ¢ and d.

Table 1. Correspondence between two forms of counts in 2 X 2 table

Usual Vector
Values of Z5  Totals | Values of Zy Totals
0 1 0 1
Values 0 a b a+b | — — —
of Z1 1 C d c+d — Z{ZQ Z{Zl
Totals | a+c b+d n A n

If we want to hide values of Z; and Z5, we can transform the data by multiplying them
with an orthogonal matrix A before release. Note that even though the transformed data
take real values, we can obtain the same contingency table from AZ; and AZ> as we would
have gotten from the original data Z; and Zs. Specifically, because (AZ1)'(AZ) = Z| Z,
(AZy) (AZy) = Z4Zs, and (AZ1)'(AZs) = Z{Z,, we have the same counts for the
three quantities considered previously. However, with the transformed data, nobody knows
the original value in Z; and Zs for any of the participants. Moreover, the usual analysis,
including the chi-squared test and estimation of relative risk and odds ratio, will yield
identical results for the transformed data as for the original data.

Remark 1 (Categorical variables with multiple levels and high-dimensional contin-
gency tables) Contingency tables, whose cells contain frequency counts from cross-classifying
a sample or a population according to a collection of categorical variables (attributes), are
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among the most prevalent forms of statistical data. It is easy to check that, for variables
with multiple levels and for high-dimensional contingency tables, the cell counts remain
invariant if we include multiple dummy binary indicator variables. For an extensive liter-
ature on the contingency table analysis such as logit and log-linear models, see Bishop et
al. (1975), Fienberg (1980) and Agresti (1990).

In certain applications, it is not enough to hide the values of the variables. For exam-
ple, a particular contingency table cell may be too sensitive to be released if the number
of respondents is smaller than a threshold. In such a case, we should protect privacy by
combined use of the TM? method and other disclosure limitation techniques, including
cell suppression, rounding, sampling, data swapping, and other sampling and simulation
techniques (for more details see Duncan et al., 2001; Oganian and Domingo-Ferrer, 2003;
Domingo-Ferrer and Saygin, 2008; Fienberg and Slavkovic, 2008; and Slavkovic, 2010).
The TM? method makes sure that the data collectors do not see the raw patient data (Z;
and Z5) but they can still derive the correct contingency table (a, b, ¢ and d). If the data
collectors find that some cells in the contingency table are sensitive according to a thresh-
old rule, they can use the disclosure limitation techniques to protect these cells from being
disclosed to others.

2.2 Attribute-Transformed Data Enable Logistic Regression

In many applications, we study the association between a binary outcome and a continuous
variable, or it is necessary to adjust for some covariates in the investigation of relationship
between a binary outcome and a categorical variable. In such cases, we employ a logistic
regression model, in which logit[n(Z)] = Z, where n(Z) = Pr(Y = 1|Z) for binary
response Y. One usually estimates the parameter 5 by the method of maximum likelihood
and estimates the covariance matrix by COV(B) = (Z2'DZ)~', where D is a diagonal
matrix with 7;(1 — 7;) on the main diagonal and 7; is the maximum likelihood estimate of
the response probability for the ith subject (Agresti, 1990; p. 114).

We consider a data transformation X B where B is a (p + 1) x (p + 1) matrix con-
structed so that some of the analyses for logistic regression can be carried out on the trans-
formed data with the same results as for the original data. Specifically, we choose the
column operator B to be a block diagonal invertible matrix that keeps the response vari-
able invariant, i.e., B = diag(I1,C). Now we fit the logistic regression model based
on W = Z(C rather than the original model based on Z for the same response, i.e.,
logit[r(W)] = W Bhew = ZC Bnew It is easy to see that: (i) the maximum likelihood esti-
mates satlsfy ﬁnew =C! ﬁ (i1) D is the same under two models; and (iii) Cov(ﬁnew) =
(W'DW)~' =Cc-YZ'Dz)'C'' =C~ 1Cov(ﬁ)C” L. Therefore, the maximum likeli-
hood estimate of the treatment effects and their estimated standard errors are the same for
the original data and the matrix-masked data if we choose C' from block diagonal matri-
ces with an identity matrix on the top left corresponding to variables of treatment effects.
That is, the column operator B keeps the response and treatment group variables invari-
ant and applies the column transformation only to other covariates. However, it should be
acknowledged that the results may be different for other estimators of variance in the lo-
gistic regression and the effects of other covariates cannot be estimated based on the above
masking procedure.

Because the binary response and treatment group variables are kept invariant, we can
calculate the exact residuals and log likelihood for the fitted and null models. Consequently,
we can perform most goodness of fit assessments, including the Pearson or likelihood-ratio
chi-squared statistics (Agresti, 1990; p. 107 — 112). For example, for the fitted model the
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maximized log likelihood is > ; [V; log(7;) + (1 —Y;) log(1 —7;)]; and for the null model
itis n[Y log(Y) + (1 — Y)log(1 — Y)], where Y = " Y;/n. In addition, we can evaluate
the association between the observed binary responses {Y;} and their fitted values {7;}, as
well as the proportional reduction in error obtained by using 7; instead of Y as a predictor
of Y;. However, much work remains to be done in this area, including diagnostic analysis
on the relationship between the response and the covariate variables and the appropriate
choice of link function.

3. TM? Hides Original Data from Everyone

As Duncan & Pearson (1991) and Du et al. (2004) pointed out, matrix masks are powerful
and they encompass many commonly proposed disclosure-limitation methods. In this sec-
tion, we propose two implementations of the TM? method, which perform data masking at
the time of data collection so that the original data are hidden from everyone, while statis-
tical analysis can still be performed with the same results from the masked data as if they
were from the original data. These new methods will be attractive to both investigators and
participants in studies that involve sensitive personal information.

3.1 The First TM2 Method

Consider stroke rehabilitation research as an application example. Dobkin & Dorsch (2011)
describe technology for continuously monitoring patient mobility and community activity,
which are essential to optimization of therapies and development of new treatments for
patients with neurological problems. These data can be used to construct an accurate mea-
sure of daily living, an objective version of the usual “Activities of Daily Living” variable,
described in Duncan et al. (1999) and elsewhere. One such system consists of an ankle
accelerometer and smartphone, with the smartphone programmed to continuously compute
and transmit positions and activity variables to a clinic, using a geographical positioning
system (GPS). The collected data give detailed information about time and type of places
the patient visits (e.g., shopping, active recreation such as sports and travel, spiritual or
religious activities, and hospital visit), total distance and geographic area traveled, move-
ment patterns, etc. Such information can be sensitive to some patients. In order to include
privacy-sensitive patients, it is worthwhile to develop a smartphone program that directly
converts GPS coordinates to activity variables and then masks the resulting mobility and
activity data before sending them out.

We propose a triple matrix-masking method to address the above requirement. In addi-
tion to data providers, data collectors and data users, the method requires a masking service
provider (see Figure 1). In the previous example, data providers are patient participants,
and data users are study investigators as well as other researchers who can access the infor-
mation. Typically, the data managers and statistical analysts in the study investigative team
are in charge of data collection. Also, they release transformed data to the data users once
the data have been collected. The masking service provider may be a private business or a
government entity established to promote data sharing. It is the first entity that receives the
data in a masked form; and it applies another mask before sending the doubly masked data
to the data collectors. Because the data collectors hold the key to the first mask, they can
partially decrypt the doubly masked data and apply a third mask before releasing them to
the public.

Specifically, let  be a 1 X (p 4+ 1) vector containing a single participant’s sensitive
information and X be an n x (p + 1) data matrix from a cohort of participants. The TM?
method consists of the following steps:
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Masking Service Provider | Step 2 Data Providers
XB 1s A2 xZ, B 1

Step 3 Step 1

Data Collectors

A X By, A1, By

Step 4

Data Users (Public)
A1 A X

Figure 1: The diagram above illustrates each entity’s knowledge about the data and the
masking matrices in the first TM? method. The masking service provider knows X By, the
data collectors know As X, and A1A3X is available to everybody including the public.
Nobody other than data providers (participants) knows the original data X.

Step 1. The data collectors plan the data collection, create the database structure, program
the data collection system. They choose a key to generate a (p + 1) x (p + 1) random
invertible matrix B1, which is distributed to the participants’ data collection devices.

Step 2. At the time of data collection, a participant’s data x are immediately transformed by
B before leaving the participant’s device; only masked data x B; are sent to the masking
service provider.

Step 3. The masking service provider chooses a different key to generate an n X n ran-
dom orthogonal matrix As. After receiving data from all participants, it aggregates the
individual data into X B, applies record transformation and sends the doubly masked data
A9 X Bj to the data collectors.

Step 4. The data collectors multiply A2 X By by By ! to get back A5 X, choose another key
to produce an n x n random orthogonal matrix A; and publish A; A2 X, which is accessible
by data users.

Remark 2 (Choice of Orthogonal Operator) Both orthogonal operators A1 and Ay can
be obtained by the Gram-Schmidt orthonormalization of a random normal matrix, which
is controlled by some random number generator seed (i.e., key). The resulting matrix is a
draw from the uniform distribution on orthogonal matrices under the Haar measure (see
Eaton, 1983; p. 234). Let Zy and Z3 be two n X (n — 1) random normal matrices, and M
and My be Gram-Schmidt orthonormalization of [1,,, Z1] and [1,,, Z3), which have the first
column vector parallel to 1,,. Note that orthogonal matrix A = My M} transforms column
vectors in Mo to those in My, hence A keeps 1, invariant. More information about random
orthogonal matrices can be found in Steward (1980), Anderson et al. (1987), and Diaconis
(2005).

Remark 3 (Improvement of Initial Masking at Step 2) When the data matrix X has few
columns, the masking service provider (or any data intruder who has access to X B1) may
be able to recover By and hence the full data if he or she knows a sufficient number of
original records. To improve the level of privacy protection offered by the column operator
Bi, a participant’s data x can be augmented with extra columns of random noise. These
additional columns will not affect the statistical analysis of A1 A2 X.

The above method protects the privacy of individual participants because nobody other
than data providers knows the original data X. As illustrated in Figure 1, the masking
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service provider only knows X By and A; A3 X, but has no access to By and Ajp; the data
collectors only know A2 X and A1 A X, but have no access to As; while the public knows
A1 A2 X but does not know A; and As. The privacy protection depends on the distribution
of keys: the data collectors have keys to generate matrices A; and B, while the masking
service provider holds the key to generate matrix As.

The security of the TM? method is briefly given as follows. Let S be the set consisting
of all data matrices that are orthogonal transformations of X, which are equivalent to or-
thogonal transformations of A; A3 X. Because any member in S may result in the masked
data (namely, A1 A>X), for data users who have access to A; A3 X and only know that A;
and Az are random orthogonal matrices, they only know that X belongs to the set S. That
is, for any W = I'’X from S where I is an orthogonal matrix, there exist two orthogonal
matrices /11 and Ag (for example, fil = Ay and Ag = A5I") such that data users receive
/LAQW = A1 A2 X. Similarly, the data collectors who have access to Ao X and Ay Ao X
only know that the original data matrix is an element in S. Lastly, the masking service
provider has access to X B; in addition to A1 A2 X, thus it knows that each column vector
of X belongs to the subspace spanned by the column vectors of X B; and that X is an
element in S. Therefore it does not have enough information to disclose values of data in
X because Bj is a general invertible matrix.

On the other hand, because row operators A; and Ao are orthogonal matrices, A1 As X
preserves sufficient statistics for the general linear model and for contingency table analy-
sis. In other words, A1 A2 X can be analyzed to obtain the same results as if X was used
under either the general linear model or contingency table analysis. The main reason for
right-multiplying the column operator B in the first step is that this operation can be done
one row of X at a time. That is, the masking operation can be done independently at each
participant’s device, allowing the collection of masked data one record at a time.

Furthermore, the TM? method can be designed to enable partial masking, allowing data
users to access part of the data (such as treatment group), while keeping other sensitive in-
formation hidden. Specifically, let X; be an n x p; matrix for insensitive data, and X9 be
an n X po matrix for sensitive information. The data collectors are required to choose B;
from the set of block diagonal matrices with a p; X p; identity matrix at the top left corner
and a pa X po invertible matrix B} at the bottom right corner, i.e., By = diag(lp,, BY).
Hence the masking service provider will receive X By = [ X, X2 B7], where the sensitive
information is masked through attribute-transformation with B7. In addition, the masking
service provider and the data collectors are required to generate orthogonal matrices A;
and As that keep X invariant, which guarantees that data users have access to X because
A1A X = [X4,A1A2X5]. Here, it is important to choose A; and A, that keep X in-
variant, which guarantees that statistical associations between variables in X; and X5 are
the same as those between X7 and A; A5 Xs. Also, in this case, the data users gain more
information than X’ X because of their access to X7.

In addition, a quality assurance technique can be easily implemented in the proposed
privacy-preserving data collection method to aid the data collectors in checking whether
appropriate transformations were applied to the original data X in Steps 2 and 3. To do so,
we require the matrix X to add a column of 1s (i.e., 1,) as the first column, as well as a
column of constants (say, c) as the last column. Then after the data collectors reverse the
Bj transformation to get A2 X, the last column of A2 X should be ¢ times the first column
of A2 X. Also, in the case that A, is an orthogonal matrix that keeps 1,, invariant, the last
column of A5 X should equal to ¢ 1,,.

2452



JSM 2014 - Survey Research Methods Section

Masking Service Provider | Step 2 Data Providers
Agz*, By x*, Ap
Step 3 Step 1
Data Collectors

on*Bh AO? BZ

Step 4

Data Users (Public)
X BBy

Figure 2: The augmented data matrix x* has extra rows of random noise appended to
record x. The masking service provider knows Agx™, the data collectors know x* By, and
X By Bs is available to everybody including the public.

3.2 The 2nd TM? Method

In many applications, we would like to conduct logistic regression. As stated in Section
2, it is sufficient to have access to data X B, where B is a block diagonal invertible matrix
that keeps the response and treatment variables invariant. The first TM? procedure can
be modified so that the data users know X B but nobody except for participants knows
the original data X. In this case, we reverse the usage of the two random matrices, i.e.,
the data collectors generate the row operator Ag and the masking service provider applies
the column operator B;. Both operators are invertible matrices, but not required to be
orthogonal. The new procedure is as follows:

Step 1. The data collectors plan the data collection, create the database structure, program
the data collection system. They choose a key to generate an X r random invertible matrix
Ap, which is distributed to the participants’ data collection devices.

Step 2. At the time of data collection, a participant’s data = are independently augmented
to * with (r — 1) extra rows of random noise (which the data collectors do not know), and
only the transformed data Agz™ is sent by the participant to the masking service provider.
The extra rows are necessary so that the left-multiplication of Ag can be performed.

Step 3. The masking service provider chooses a different key to generate a (p + 1) x (p +
1) random invertible matrix Bj that is block diagonal and keeps invariant the variables
representing the response and treatment groups, applies attribute-transformation and sends
the doubly masked data Agx* B to the data collectors.

Step 4. The data collectors left-multiply Agz* By by Ay ! to get back z* By, extract the
first row of * B to get £ B1, and aggregate data xB; from all participants to get X B.
Then, they choose another key to produce a (p + 1) x (p + 1) block diagonal random
invertible matrix B> that has the same invariant property as By, right-multiply X B; by B,
and publish X B; Bo, which is made publicly accessible to data users.

Remark 4 (Quality Assurance of the 2nd TM? method) Similar to the first TM? method,
we can add a device for the data collectors to check whether appropriate transformations
were applied to the augmented data x*. The trick is to add a row of constants (say, c)
as the last row among the extra rows of noise appended to the original data x and use
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column operator By that satisfies 1,B1 = 1/,. After the data collectors remove the Agy
transformation to obtain x* By, the last row of x* By should equal to ¢ 1),.

Because logistic regression is a widely used method in biomedical and social research,
many people have investigated approaches to conduct privacy preserved logistic regression
with multiple data sources. For example, Fienberg et al. (2006) described “secure” logis-
tic regression when all variables are categorical. And Fienberg et al. (2009) proposed an
approach to carry out “valid” logistic regression with quantitative covariates using secure
multi-party computation (SMC). Their approach proceeds in two steps: 1) An initial es-
timate of regression coefficients is chosen; 2) for every iteration of the Newton-Raphson
algorithm, a new estimate of regression coefficients is found using the following secure
summation process: the first party shares its intermediate statistics with the addition of a
random matrix; each remaining parties add its intermediate statistics to the updated sum;
and at the last step the first party removes random noise and shares the global sum as well
as the updated estimate.

TM? and SMC are designed for different purposes. The former ensures that certain
statistical investigations can be carried out without requiring data providers to reveal their
private data to data collectors. The latter ensures that multiple data collectors can perform
joint statistical investigations without revealing their data to each other. For example, three
hospitals collect private data from their patients respectively and then perform joint data
mining without exchanging their raw data. In this example, each hospital still holds its
patients’ private data, which is against the design goal of TM?2.

If we perform SMC directly among the patients’ devices, the two methods would re-
main different. The TM? method is distributive in data collection but centralized in data
storage and data analysis. By contrast, the SMC approach requires distributed storage of
data as well as distributed computation, which is practically infeasible when data storage
and computation are performed directly by patient devices. Specifically, if we require that
the private data of patients never leave their devices, the SMC method will place significant
computation overhead on patient devices, particularly when a study involves thousands or
more patients. More importantly, all patients have to stand by ready for any statistical anal-
ysis that may happen years into the future, which makes the SMC approach not feasible for
medical studies that collect patient data over a long time - when patients leave a study they
take their data away if we require that private data can never leave patient devices. There is
no such issue with the TM? method since it keeps the patients’ data in a masked form, and
the data is available for analysis at any time into the future after the patients have left the
study.

TM? and SMC methods may appear to be complementary to each other. With multiple
data collectors, TM? can be used to collect data from patients in a masked form to their
respective data collectors, which may then use SMC to perform joint mining. However, we
point out that since the masked data collected by TM? can be made publicly available, it
becomes unnecessary to use SMC for joint mining over already masked data.

Finally, we can modify the second TM? method to allow data users to perform differ-
ent types of statistical analysis. Suppose the masking service provider chooses an n x n
random orthogonal matrix Ap in addition to the block diagonal random invertible matrix
Bi, while the data collectors hold keys to generate an n X n random orthogonal matrix As
in addition to the random invertible matrix Ag and the block diagonal random invertible
matrix By. Once the data collectors recover X By, they left-multiply A5 and send A3 X B
back to the masking service provider, who removes B and returns A; A2 X. Then, the
data collectors release A1 A2 X and X Bj Bs to data users, who can conduct general linear
regression, contingency table analysis or logistic regression. The first TM? method can be
modified similarly to let the data users access both attribute-transformed data and orthogo-
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nally record-transformed data. Specifically, the masking service provider generates a block
diagonal random invertible matrix B in addition to the n x n random orthogonal matrix
Ag and sends A3 X By and X By Bs to the data collectors, who then publish A; A3 X and
X B1 Bs. It should be pointed out that, while release of two data products enables different
types of statistical analysis, it could increase the disclosure risk since the data intruders
may combine the different products to disclose confidential information. Further research
is needed to assess disclosure risk in such scenarios.

4. Differences between TM? Method and Related Work

The TM? method is different from the standard frameworks in the literature on statistical
confidentiality. Most disclosure limitation methods in previous research assume trustwor-
thy data collectors who have full access to original data, and the goal of data masking is
to prevent data users from obtaining confidential information. In this trusted model, data
providers are willing to provide their sensitive information to data collectors. In our case,
we assume an untrusted model treating everyone (including the data collectors) as potential
intruders, and data providers are reluctant to share their sensitive information unless their
answers will be used only in aggregate and cannot be linked back to them. The system is
designed so that nobody other than data providers knows the original data.

Our method is an improvement of Warner’s randomized response technique, which re-
quests an interviewee to report whether or not his true binary answer to a sensitive question
is the same as a randomly generated response that only the interviewee sees. Let 7 be the
true proportion of interest (probability of “yes” answer to the sensitive question if truthfully
disclosed) and c is the chance of “yes” answer from the random device. Then the probabil-
ity of getting a “yes” response is A = mc+ (1 —)(1—c¢). With n randomized responses, an
unbiased estimator of A is the sample proportion )\, and hence the unbiased estimator of
is 7t = (c—1)/(2c—1)+\/(2¢—1), with a variance {m(1—n)+1/[16(c—0.5)2—1/4]} /n.
The data collectors may guess but cannot determine absolutely the interviewee’s response.

Both Warner’s technique and our TM? method meet the dual objectives of generating
enough reliable data to yield fruitful inference and protecting respondents’ privacy despite
their truthful replies. However, Warner’s randomized response technique is inefficient if
there are ways to obtain truthful answers from all interviewees. Note that, when 7 = 0.5
and ¢ = 0.75, the variance of 7 based on a randomized response survey is 1/n, which is 4
times of the variance from a direct response survey, provided that all interviewees told the
truth. The TM? method provides nearly the same privacy protection for interviewees as the
Warner’s technique, but it loses no efficiency for statistical inference of binary and normal
data because sufficient statistics are preserved.

There are several other methods that are designed with the intention to collect data
anonymously without revealing the providers’ identities, including various cryptographic
solutions (Yang et al., 2005; Gehrke, 2006; Fung et al., 2010) and anonymous communica-
tions (Chaum, 1981; Jakobsson et al., 2002; Brickell and Shmatikov, 2006). These methods
try to achieve unlinkability, that is, they try to prevent data collectors and data users from
learning which input came from which provider. But they do not hide the data values — they
merely make it impossible (or very difficult) to link data values to the providers. However,
linkage attack can still occur in many situations. Dinur and Nissim (2003) showed that an
attacker can reproduce the original database almost exactly based on queries answered with
bounded noise. Dwork and Naor (2010) have several results stating that it is not possible to
provide privacy and utility without making assumptions about how the data are generated.
For example, they proved that it is not possible to publish anonymized data that prevents an
attacker from learning information about people who are not even part of the data unless the
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anonymized data has very little utility or some assumptions are made about the attacker’s
background knowledge. For more information, see Kifer and Lin (2012) and Lin and Kifer
(2014), which proposed a framework for extracting semantic guarantees from privacy def-
initions (or sets of data sanitizing algorithms). Also, as long as the raw sensitive data are
collected and some people have access to them, leaking of private information is always
a possibility due to unintentional mishandling or intentional transfer of data by those who
have gained access; these mishaps occur even when de-identification and sanitizing before
data release is done according to the current standard.

5. Conclusions

In this article, we propose the use of triple matrix-masking to protect participant privacy
from the moment of data collection. The method lets the masking service provider and the
data collectors separately hold keys for the generation of random matrices. It ensures that
nobody other than the data providers sees the original data, but standard statistical analysis
can still be performed with the same results from the masked data as from the original
data. Therefore, confidentiality of the data and privacy of participants are well protected.
In addition, an error checking mechanism is built in the data collection method to make
sure that the data used for analysis are an appropriate transformation of the original data
and a partial masking technique is introduced to grant data users access to non-sensitive
personal information. The new technique holds the promise of removing the lack of trust
obstacle and promoting privacy-preserving data collection. With the ever growing amount
of data generated by electronic devices and the increasing demand for privacy protection,
the method can be a great tool for survey research or clinical studies.

There are several relevant research questions not fully addressed in this article. First,
further research is needed to evaluate the effectiveness of obtaining truthful answers using
the new approach. Intuitively, people should be more willing to reveal truthful data if they
know that nobody has access to their sensitive information. However, one drawback of
the TM? method is that the masking service provider and the data collectors jointly can
reconstruct exactly the individual records by sharing their keys, which is different from the
randomized response technique of Warner (1965). Second, additional research is needed
for developing methods to perform model-checking, missing data imputation, and data
exploration under more complex models while maintaining limited data disclosure. We
believe that the partial masking technique may offer help here. In many applications, it is
enough for privacy protection to release the original main outcome while masking all other
sensitive information. This will allow statistical analysts to access residuals of the fitted
model and to some extent perform model diagnostics.
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