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Abstract 

Most of the studies in practice concern comparison of the difference of group means. The 

goal of this study is testing the equality of the means of normal population when the 

variances are unequal.  We compare the performance of the proposed tests such as the 

generalized F-test (GF), the parametric bootstrap test (PB) and test based on fiducial p-

value (FP). Monte Carlo simulation studies are conducted to compare the empirical size 

and power of these tests. 
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1. Introduction 

 

Testing the equality of the means of normal populations when the variances are unknown 

and unequal is a fundamental problem in clinical trials and biomedical research. This 

problem, when only two normal means are involved, is referred to as the Behrens-Fisher 

problem. In the classical treatment of the problem, the homoscedasticity is usually made 

for convenience and mathematical tractability rather than anything else. The current 

literature on this problem does not provide standard statistical testing procedure. For 

example, the classical F test fail to reject the null hypothesis even for large samples when 

the population variances are unequal. There are numerous solutions for testing equality of 

means for normal data under heterogeneity, such as Welch’s (1951) approximate test, 

James’s (1951) second-order test, Brown and Forsythe’s (1974) test, Weerahandi’s 

(1995) generalized F test, Krishnamoorthy et al.’s (2007) parametric bootstrap test, Xu 

and Wang’s (2008) test, Li et al.’s (2011) fudicial test and so on.  

Recent advances in statistical computation have made a tremendous positive impact 

on fundamental sciences. In this study, we proposed some tests based on Monte Carlo 

simulation such as the generalized F-test (GF), the parametric bootstrap test (PB) and test 

based on fiducial p-value (FP). An simulation study was conducted to comparison the 

size and powers of these three tests. 

 

2. Problem and Basic Solution 

 

Assume            ,         are k sets of random samples independently generated 

from the normal population  (     
 )      . Let  ̅  and   

  be the sample mean and 

variance, respectively. That is,  
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problem of interest can be formulated as the following hypothesis: 
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 ( ̅   ) therefore can be used for testing hypothesis ( ) and the corresponding p-value 

can easily be obtained.  

 When population variances   
 s are equal unknown, a test statistic can be 

obtained by replacing   
  by   

 ,        , and is given by  
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which can be simplified as  
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when    is true.  

 

3. Recently Proposed Test 

 

In this section, three solutions for the problems of testing several means have been 

developed to overcome some drawbacks in literature; i.e., the GF test by Weerahandi 

(1995), the parametric bootstrap (PB) test by Krishnamoorthy et al. (2007) and test based 

on fiducial p-value (FP) test by Li et al. (2011). We briefly review these three solutions.  

 

3.1. The Generalized F (GF) Test 

Weerahandi (1995a) proposed the following generalized test variable  
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under the null hypothesis. Note that    (    )  
   

    ⁄  are independently chi-squared 

variables with degrees of freedom (    ) for         , respectively. Then the 

generalized p-value is defined as  

 

    (        )    [( ̅  
 )   { ̅ (    )  

      ⁄ (    )  
   ⁄ }] 

    [ (   )
 [ { ̅ (    )  

      ⁄ (    )  
   ⁄ }]         ]        ( ) 

 

where      is the observed value of     at ( ̅   )  ( ̅   ) and is actually equal to 1 

and  (   )
  denotes the cumulative distribution function of    distribution with     

degrees of freedom. The GF  test rejects the null hypothesis in ( ) whenever the 

generalized p- value in ( ) is less than a given nominal level. 

 

3.2. The Parametric Bootstrap (PB) Test 

 

The parametric bootstrap (PB) involves sampling from the estimated models. That is, 

samples or sample statistics are generated from parametric models with the parameters 

replaced by their estimates. Recall that under             all   ’s have the same 

mean. As the test statistic    in (4) is location invariant, without loss of generality, we 

can take this common mean to be zero. Using these facts, the parametric bootstrap pivot 

variable can be developed as follows. 

Let  ̅    (  
  
 

  
) and    

  
     
 

(    )
          . Then the PB pivot variable based on the 

test statistic is given by  
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Noticing the fact that     is distributed as   (   √  ), where    is a standard normal 

random variable, it can be easily verified that the PB pivot variable in (8) is distributed as 
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For a given (  
      

 ) of (  
      

 )  and level  , the PB test rejects    in (1) when 

 

 { ̃  (        
    

 )   ̃ }                                                         (  ) 

where     is an observed value of    (Krishnamoorthy, Lu and Mathew 2007). 
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3.3. The Fiducial Approach (FP) Test 

Li, Wang and Liang (2011) developed new test for (1) by using the concept of fiducial 

and generalized p-value approach (FG). 

Let      (   )            
 ,           and be mutually independent. Note that 

 ̅   (   
  
 

  
), (    )   

       
   

   for           and these statistics are all 

mutually independent. We therefore can express  ̅  and (    )  
   as functions of     

and      ; i.e., 
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Given an observation ( ̅    
 ) and (       ), the equations of  ̅     
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hence for given ( ̅    
 ), the fiducial distribution of    is the same as that of      ̅  

  √  
   ⁄               here     (    ) ,           and they are mutually 

independent. Then the fiducial distribution could be derived by 
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Here   (       ). Because  (    ) is the observed value of    under the null 

hypothesis, the p-value for (1) is given by 

 

    *    (   
 )+                                                 (  ) 

 

Accordingly, we reject the null hypothesis when     for a given level   (Li, Wang and 

Liang 2011). 

 

4 Simulation study 

 

This section provides simulation studies for type I error probabilities and powers of the 

five methods proposed in Section 3. In this study, two configuration factors were taken 

into account to evaluate the performances of type I error probabilities and powers; sample 

size and variance. 
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    Table 1. Type I error rates for the proposed tests. 

 

 

 

 

 

 =3  =(     )  =(           )  =(           )  =(           ) 

(  
    

    
 )                                     

(     ) 0.075 0.044 0.030 0.072 0.054 0.038 0.058 0.054 0.049 0.054 0.045 0.026 

(         ) 0.076 0.048 0.023 0.064 0.054 0.030 0.058 0.049 0.047 0.061 0.046 0.019 

(     ) 0.076 0.048 0.023 0.064 0.054 0.030 0.058 0.049 0.047 0.061 0.046 0.019 

(     ) 0.078 0.049 0.018 0.066 0.057 0.028 0.060 0.052 0.039 0.064 0.046 0.017 

      (       )   (           )   (           )   (           ) 

(  
      

 )                                     

(       ) 0.098 0.037 0.021 0.076 0.055 0.046 0.070 0.058 0.051 0.068 0.053 0.044 

(           ) 0.097 0.043 0.029 0.074 0.050 0.043 0.068 0.049 0.044 0.078 0.056 0.048 

(       ) 0.097 0.043 0.029 0.074 0.050 0.043 0.068 0.049 0.044 0.078 0.056 0.048 

(       ) 0.090 0.046 0.031 0.076 0.050 0.043 0.064 0.051 0.047 0.080 0.055 0.054 

      (         )   (              )   (              )   (              ) 

(  
      

 )                                     

(         ) 0.094 0.046 0.025 0.079 0.055 0.046 0.074 0.056 0.052 0.066 0.046 0.040 

(               ) 0.104 0.053 0.030 0.077 0.044 0.037 0.067 0.053 0.048 0.066 0.049 0.045 

(         ) 0.104 0.053 0.030 0.077 0.043 0.037 0.067 0.053 0.047 0.070 0.049 0.045 

(          ) 0.102 0.054 0.031 0.072 0.043 0.036 0.067 0.052 0.047 0.069 0.049 0.044 
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Table 2. Powers for the proposed tests. 

 

 

 

 

 

 

 

 

 

 

      (        )   (       )   (        ) 

(  
      

 ) (      )                            

(     ) 

(       ) 0.115 0.094 0.084 0.115 0.077 0.056 0.177 0.153 0.139 

(       ) 0.254 0.226 0.189 0.317 0.227 0.163 0.534 0.493 0.472 

(       ) 0.500 0.455 0.400 0.582 0.467 0.389 0.868 0.839 0.818 

(       ) 0.726 0.690 0.653 0.816 0.731 0.659 0.991 0.986 0.982 

(       ) 0.903 0.884 0.849 0.956 0.902 0.857 1.00 1.00 1.00 

(           ) 

(       ) 0.157 0.138 0.121 0.188 0.143 0.093 0.325 0.295 0.268 

(       ) 0.453 0.408 0.367 0.553 0.494 0.397 0.869 0.839 0.820 

(       ) 0.778 0.746 0.714 0.882 0.836 0.776 1.00 1.00 1.00 

(       ) 0.958 0.946 0.932 0.99 0.984 0.975 1.00 1.00 1.00 

(       ) 0.999 0.998 0.998 0.999 0.998 0.997 1.00 1.00 1.00 

      (           )   (          )   (           ) 

(  
      

 ) (      )                            

(       ) 

(         ) 0.138 0.097 0.072 0.148 0.091 0.066 0.233 0.190 0.172 

(         ) 0.278 0.221 0.185 0.402 0.259 0.208 0.710 0.644 0.620 

(         ) 0.514 0.431 0.386 0.742 0.613 0.538 0.971 0.960 0.952 

(         ) 0.752 0.690 0.647 0.939 0.867 0.827 0.999 0.998 0.998 

(         ) 0.911 0.887 0.853 0.996 0.985 0.977 1.00 1.00 1.00 

(               ) 

(         ) 0.146 0.113 0.093 0.137 0.125 0.095 0.329 0.282 0.261 

(         ) 0.360 0.295 0.260 0.350 0.460 0.373 0.895 0.872 0.847 

(         ) 0.665 0.598 0.557 0.664 0.839 0.787 0.997 0.997 0.997 

(         ) 0.884 0.846 0.809 0.889 0.99 0.978 1.00 1.00 1.00 

(         ) 0.970 0.960 0.949 0.977 1.00 1.00 1.00 1.00 1.00 

      (              )   (             )   (              ) 

(  
      

 ) (      )                            

(         ) 

(           ) 0.128 0.081 0.063 0.192 0.102 0.076 0.291 0.146 0.221 

(           ) 0.254 0.188 0.165 0.527 0.363 0.305 0.791 0.493 0.734 

(           ) 0.518 0.417 0.366 0.862 0.749 0.706 0.990 0.877 0.985 

(           ) 0.745 0.660 0.613 0.980 0.958 0.937 1.00 0.985 1.00 

(           ) 0.909 0.870 0.840 0.999 0.997 0.994 1.00 1.00 1.00 

(                 ) 

(           ) 0.131 0.083 0.067 0.199 0.122 0.085 0.325 0.160 0.257 

(           ) 0.285 0.204 0.181 0.595 0.455 0.390 0.863 0.548 0.818 

(           ) 0.563 0.464 0.424 0.914 0.850 0.794 0.998 0.917 0.996 

(           ) 0.789 0.709 0.677 0.992 0.980 0.975 1.00 1.00 1.00 

(           ) 0.925 0.902 0.874 1.00 0.999 0.999 1.00 1.00 1.00 
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 To obtain type I error rates and powers of the GP, PB and FP tests, we use a two-

step simulation. First we generated       observed vectors ( ̅   ̅    
    

 ), and used 

     runs for each observed vector to estimate the p-value in ( ), (  ) and (  ). 

 

5 Discussion 

 

We compared above proposed three methods for Behrens-Fisher problem. Monte Carlo 

simulation conducted to compare the empirical size and power of these tests. Simulation 

results show that type I error of the PB test close to nominal level than the other tests. 

Type I error of the GF test appears to be very liberal especially when sample sizes are 

large. However its power is better than the other tests. Type I error of the FP appears to 

be conservative especially when variances are heterogeneity. 
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