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Abstract
Most of the studies in practice concern comparison of the difference of group means. The
goal of this study is testing the equality of the means of normal population when the
variances are unequal. We compare the performance of the proposed tests such as the
generalized F-test (GF), the parametric bootstrap test (PB) and test based on fiducial p-
value (FP). Monte Carlo simulation studies are conducted to compare the empirical size
and power of these tests.

Keywords: Generalized F-test, parametric bootstrap, fiducial p-value, empirical size,
power

1. Introduction

Testing the equality of the means of normal populations when the variances are unknown
and unequal is a fundamental problem in clinical trials and biomedical research. This
problem, when only two normal means are involved, is referred to as the Behrens-Fisher
problem. In the classical treatment of the problem, the homoscedasticity is usually made
for convenience and mathematical tractability rather than anything else. The current
literature on this problem does not provide standard statistical testing procedure. For
example, the classical F test fail to reject the null hypothesis even for large samples when
the population variances are unequal. There are numerous solutions for testing equality of
means for normal data under heterogeneity, such as Welch’s (1951) approximate test,
James’s (1951) second-order test, Brown and Forsythe’s (1974) test, Weerahandi’s
(1995) generalized F test, Krishnamoorthy et al.’s (2007) parametric bootstrap test, Xu
and Wang’s (2008) test, Li et al.’s (2011) fudicial test and so on.

Recent advances in statistical computation have made a tremendous positive impact
on fundamental sciences. In this study, we proposed some tests based on Monte Carlo
simulation such as the generalized F-test (GF), the parametric bootstrap test (PB) and test
based on fiducial p-value (FP). An simulation study was conducted to comparison the
size and powers of these three tests.

2. Problem and Basic Solution

Assume Xjy, ..., Xin, , L =1, ..., k are k sets of random samples independently generated

from the normal population N(,ui,aiz), 1<i<k LetX;andS? be the sample mean and
variance, respectively. That is,
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X = n_izi=1Xij and S =
Denote p = (g, ..., i), 0% = (0£,...,0%), X = (Xy, ..., X)) and $% = (5%, ...,S%). The
problem of interest can be formulated as the following hypothesis:
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When all o7s are known, it is well known that
K

T(X;0%) = Z%{o& ) -

i=1 !

= 2

T X — w)/of 2 5
K 1"1’/0'2 ~X(k-1) (2)
= L

T(X; o) therefore can be used for testing hypothesis (1) and the corresponding p-value
can easily be obtained.
When population variances s are equal unknown, a test statistic can be

obtained by replacing ¢ by S7, i = 1, ..., k, and is given by

k i = 22
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which can be simplified as
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when Hy is true.
3. Recently Proposed Test

In this section, three solutions for the problems of testing several means have been
developed to overcome some drawbacks in literature; i.e., the GF test by Weerahandi
(1995), the parametric bootstrap (PB) test by Krishnamoorthy et al. (2007) and test based
on fiducial p-value (FP) test by Li et al. (2011). We briefly review these three solutions.

3.1. The Generalized F (GF) Test

Weerahandi (1995a) proposed the following generalized test variable

o T(X;0?) .
6F = T(%;s202/S2, .., s202/SE) ®)
where
S v* i (X)/SA)
T(X; §2) = Z_l{()?_) - L} (6)
( ) —~ st i ni/St
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under the null hypothesis. Note that U; = (n; — 1)S?/a? , are independently chi-squared
variables with degrees of freedom (n; —1) for i=1,...,k, respectively. Then the
generalized p-value is defined as

p = Pr(Ter = tops) = Pr[(X;02) = T{x; (ny — 1)s?/Uy, ..., (ny — s /Uy }]
=1-E[xl_p[T{x; (g = DsE/Us, ..., (g = DsE /U \ Uy, ., U] (D)

where t,ps is the observed value of T;r at (X; %) = (x;s%) and is actually equal to 1
and )((Zk_l) denotes the cumulative distribution function of x? distribution with k — 1

degrees of freedom. The GF test rejects the null hypothesis in (1) whenever the
generalized p- value in (7) is less than a given nominal level.

3.2. The Parametric Bootstrap (PB) Test

The parametric bootstrap (PB) involves sampling from the estimated models. That is,
samples or sample statistics are generated from parametric models with the parameters
replaced by their estimates. Recall that under Hy: yy = -+ = uy all X;’s have the same
mean. As the test statistic Ty in (4) is location invariant, without loss of generality, we
can take this common mean to be zero. Using these facts, the parametric bootstrap pivot
variable can be developed as follows.
an

Let Xg;~N (0 ) and Sz;~ D) ,i =1, ..., k. Then the PB pivot variable based on the
-
test statistic is given by
2
k N X2
ko -
& G (2 niXi2 (Zl ! 512 )
i=1 ¢

i=1g¢2
L

Noticing the fact that Xp; is distributed as Z;(S;/,/n;), where Z; is a standard normal
random variable, it can be easily verified that the PB pivot variable in (8) is distributed as

k \/_ Zi (nl
W e

k
~ Z%(n; —
Spe(Zi X2, _1; S? =z — 9
bB( i an 1 1) L szli_ Zk n: (nl _ 1) ( )
i=1 SZan
H 2 2 2 2 : :
17 0) ) ey y
For agiven (s?, ..., sZ) of (S,...,S?) and level a, the PB test rejects H, in (1) when
P{Sps(Zi xi—15s7) > Sp} < a (10)

where Ty, is an observed value of Ty (Krishnamoorthy, Lu and Mathew 2007).
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3.3. The Fiducial Approach (FP) Test

Li, Wang and Liang (2011) developed new test for (1) by using the concept of fiducial
and generalized p-value approach (FG).

Let U;;~N(0,1), U2i~)(,§i_1, i=12,..,k and be mutually independent. Note that
_ 2 .
X;~N (ul‘;—l) (n; — 1) Sf~xh—10f for i=12,..,k and these statistics are all

mutually independent. We therefore can express X; and (n; — 1)S? as functions of Uy;
and U,;; i.e.,

_ 2
X =+ 22Uy and (n; — 1DS? = 07Uy i = 1,2,k

2
Given an observation (¥;, s?) and (uy;, u,;), the equations of x; = y; + %uli and

(n; — 1) s? = a?uy; have the unigue solutions

i} — Dsf

Uy s? n;
Ui = x; — —1l L and O'l'z = _( L (11)
VUuyi/(my — 1)+ Uy

hence for given (%;,s?), the fiducial distribution of y; is the same as that of T,,, = &; —

t; /siz/nl- i=12..k here t;~t(n;—1) , i=12,..,k and they are mutually
independent. Then the fiducial distribution could be derived by

t;

i=1 Sl i

|
Te(t;s2) = z tiz I Fa— (12)

=1 1=1SL_2

Here t = (tq,...,t;). Because T(x;s?) is the observed value of Tr under the null
hypothesis, the p-value for (1) is given by

p = Pr{Tr = T(x;s%)} (13)

Accordingly, we reject the null hypothesis when p < a for a given level a (Li, Wang and
Liang 2011).

4 Simulation study
This section provides simulation studies for type | error probabilities and powers of the
five methods proposed in Section 3. In this study, two configuration factors were taken

into account to evaluate the performances of type I error probabilities and powers; sample
size and variance.
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k=3 n=(5,5,5) n=(10,10,10,10) n=(10,15,20,25) n=(25,20,15,10)
(02,02, 02) GF PB FP GF PB FP GF PB FP GF PB FP
(1,1,1) 0.075 0044 0030 0072 0054 0038 0058 0054 0049 0054 0045 0.026
(0.5,1,1.5) 0.076 0.048 0.023 0064 0.054 0030 0058 0049 0047 0.061 0046 0.019
(1,2,3) 0.076 0.048 0.023 0064 0.054 0030 0058 0049 0047 0.061 0046 0.019
(1,2,4) 0.078 0.049 0018 0066 0057 0028 0060 0052 0039 0064 0046 0.017
k=4 n = (5,5,5,5) n = (10,10,10,10) n = (10,15,20,25) n = (25,20,15,10)
(02, ..., 02) GF PB FP GF PB FP GF PB FP GF PB FP
1,1,1,1) 0.098 0037 0021 0076 0055 0046 0070 0058 0051 0.068 0053 0.044
(0.5,1,1.5,2) 0.097 0.043 0029 0074 0050 0043 0068 0049 0044 0078 0056 0.048
(1,2,3,4) 0.097 0.043 0029 0074 0050 0043 0068 0049 0044 0078 0056 0.048
(1,2,4,8) 0.090 0.046 0031 0076 0.050 0043 0064 0051 0047 0.080 0.055 0.054
k=5 n = (5,55,5,5) n = (10,10,10,10,10) n = (10,15,20,25,30) n = (30,25,20,15,10)
(02, ..., 02) GF PB FP GF PB FP GF PB FP GF PB FP
1,1,1,1,1) 0094 0046 0025 0079 0055 0046 0074 0056 0052 0066 0046 0.040
(051,152,25) 0104 0053 0030 0077 0044 0037 0067 0053 0.048 0066 0.049 0.045
(1,2,3,4,5) 0.104 0053 0030 0077 0043 0037 0067 0053 0047 0070 0049 0.045
(1,2,4,8,12) 0.02 0054 0031 0072 0043 0036 0067 0052 0047 0.069 0049 0.044
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Table 2. Powers for the proposed tests.

k=3 n = (10,10,10) n = (5,10,15) n = (10,20,30)
(62, ...,0%) (U, - ph3) GF PB FP GF PB FP GF PB FP
(0,0,03) 0115 0.094 0.084 0.115 0.077 0.056 0.177 0.153 0.139
(0,0,0.6) 0254 0.226 0.189 0.317 0.227 0.163 0.534 0.493 0.472
(1,1, (0,0,09) 0500 0455 0400 0.582 0467 0.389 0.868 0.839 0.818
(0,0,1.2) 0726 0.690 0.653 0.816 0.731 0.659 0.991 0.986 0.982
(0,0,1.5) 0903 0.884 0849 0956 0.902 0.857 100 100 1.00
(0,0,03) 0157 0138 0.121 0.188 0.143 0.093 0.325 0.295 0.268
(0,0,0.6) 0453 0408 0367 0553 0494 0397 0.869 0.839 0.820
(0.2,0.4,0.6) (0,009) 0778 0746 0.714 0.882 0.836 0776 1.00 1.00 1.00
(0,0,1.2) 0958 00946 0932 099 0984 0975 100 1.00 1.00
(0,0,1.5) 0999 00998 0998 0.999 0998 0997 100 1.00 1.00
k=4 n = (10,10,10,10) n = (5,10,15,20) n = (10,20,30,40)
(62, ...,02) (Uq, - Ha) GF PB FP GF PB FP GF PB FP
(0,0,0,03) 0.138 0.097 0.072 0.148 0.091 0.066 0.233 0.190 0.172
(0,0,0,0.6) 0278 0.221 0.185 0.402 0259 0208 0.710 0.644 0.620
(1,1,1,1) (0,0,0,09) 0514 0431 0.386 0742 0.613 0538 0971 0960 0.952
(0,0,0,1.2) 0.752 0.690 0.647 0.939 0.867 0.827 0.999 0.998 0.998
(0,0,0,1.5) 0911 0.887 0.853 0.996 0.985 0.977 1.00 100 1.00
(0,0,0,03) 0.146 0.113 0.093 0.137 0.125 0.095 0.329 0.282 0.261
(0,0,0,0.6) 0.360 0.295 0.260 0.350 0.460 0.373 0.895 0.872 0.847
(0.2,0.4,0.6,0.8) (0,0,0,09) 0.665 0598 0.557 0.664 0.839 0.787 0.997 0.997 0.997
(0,0,0,1.2) 0.884 0846 0.809 0889 099 0978 1.00 1.00 1.00
(0,0,0,1.5) 0.970 0.960 0.949 0977 100 1.00 1.00 1.00 1.00
k=5 n = (10,10,10,10,10) n = (5,10,15,20,25) n = (10,20,30,40,50)
(02, ...,02) (U, o H5) GF PB FP GF PB FP GF PB FP
(0,0,0,003) 0.128 0.081 0.063 0.192 0.102 0.076 0.291 0.146 0.221
(0,0,0,0,0.6) 0.254 0.188 0.165 0.527 0.363 0.305 0.791 0.493 0.734
(1,1,1,1,1) (0,0,0,0,09) 0518 0417 0366 0.862 0.749 0.706 0.990 0.877 0.985
(0,0,0,0,1.2) 0.745 0.660 0613 0980 0.958 0937 1.00 0.985 1.00
(0,0,0,0,1.5) 0.909 0.870 0.840 0.999 0.997 0994 100 100 1.00
(0,0,0,0,03) 0.131 0.083 0.067 0.199 0.122 0.085 0.325 0.160 0.257
(0,0,0,0,0.6) 0.285 0.204 0181 0595 0455 0.390 0.863 0.548 0.818
(0.2,0.4,0.6,08,1)  (0,0,0,00.9) 0563 0464 0424 0914 0.850 0.794 0.998 0.917 0.996
(0,0,0,0,1.2) 0.789 0709 0677 0992 0980 0975 100 1.00 1.00
(0,0,0,0,1.5) 0925 00902 0874 1.00 0999 0999 100 1.00 1.00
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To obtain type | error rates and powers of the GP, PB and FP tests, we use a two-
step simulation. First we generated 2500 observed vectors (¥;,%,;s?,s2), and used
5000 runs for each observed vector to estimate the p-value in (7), (10) and (13).

5 Discussion

We compared above proposed three methods for Behrens-Fisher problem. Monte Carlo
simulation conducted to compare the empirical size and power of these tests. Simulation
results show that type | error of the PB test close to nominal level than the other tests.
Type | error of the GF test appears to be very liberal especially when sample sizes are
large. However its power is better than the other tests. Type I error of the FP appears to
be conservative especially when variances are heterogeneity.
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