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Abstract 

Compositional data are data where the elements of the composition are non-negative and sum to unity. The 
key question is what is the appropriate analysis for data from this restricted sample space. We start by 
summarizing more than a century of progress towards answering this question. 

Aitchison(1986) provides a framework appropriate for data that satisfies sub-compositional coherence, i.e., 
where conclusions about a sub-composition should be the same based on the full composition or the sub-
composition alone. However, not all compositional data satisfies this principle and it is helpful to consider 
the complete cycle of processes that yield any specific dataset and hence the appropriate analysis for data 
generated in this manner. 

Key Words: compositional data analysis, sub-compositional coherence, multivariate data 
analysis 

1. Introduction 

Compositional data are data where the elements of the composition are non-negative and sum to unity. 
While the data can be generated directly (e.g. probabilities), they often arise from non-negative data (such 
as counts, area, volume, weights, expenditures) that have been scaled by the total of the components. 
Geometrically, compositional data with D components has a sample space of the regular unit D-simplex 

The key question is whether standard multivariate analysis, which assumes that the sample space is RD, is 
appropriate for data from this restricted sample space and if not, what is the appropriate analysis? Ironically, 
most multivariate data are non-negative and hence already have a sample space with a restriction to RD+, 
making standard multivariate analysis unsuitable. 

We first summarize more than a century of progress towards answering this question, drawing heavily on 
the review papers by (Bacon-Shone 2011) and (Aitchison and Egozcue 2005). 

2. History 

The starting point for compositional data analysis is the paper of (Pearson 1897), which first identified the 
problem of “spurious correlation” between ratios of variables, showing that if X,Y and Z are uncorrelated, 
then X/Z and Y/Z will not be uncorrelated. Pearson then looked at how to adjust the correlations to take 
into account the “spurious correlation” caused by the scaling. However, this ignores the implicit constraint 
that scaling only makes sense if the scaling variable is either strictly positive or strictly negative. In short, 
this approach ignores the range of the data and does not assist in understanding the process by which the 
data are generated. (Tanner 1949) made the essential point that a log transform of the data may avoid the 
problem and that checking whether the original or log transformed data follow a Normal distribution may 
provide some guidance as to whether a transform is needed. (Chayes 1960) later made the explicit 
connection between Pearson’s work and compositional data and showed that some of the correlations 
between components of the composition must be negative because of the unit sum constraint. However, he 
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was unable to propose a means to model such data in a way that removed the effect of the constraint. 

The first step towards modern compositional data analysis was McAlister (McAlister 1879)’s use of Log-
Normal distributions to model data that are constrained to lie in positive Real space. Interestingly, he 
proposed this as the law of the geometric mean (versus the Normal distribution as the law of the arithmetic 
mean) and pointed out the lack of practical value for variance of a variable that must be positive, which can 
be seen in retrospect as recognition of the need for a non-Euclidean metric for data from restricted sample 
spaces. Instead, he emphasized the meaning of the cumulative distribution. This is by no means the only 
way to model data on the positive real line and competes with, for example, the gamma and Weibull 
distributions. It is equivalent to taking a log transform of the data, so that the non-negative constraint is 
removed, and then assuming a Normal distribution. However, this only addresses the non-negative 
constraint of compositional data and does not address the unit sum constraint. 

3. Logratio Transforms 

The simplest meaningful example of a composition is with just two components, so the unit- sum constraint 
implies that the second component is just one minus the first component, such as probabilities for a binary 
outcome. (Cox and Snell 1989) use the logit or logistic transformation of the probability in this case, which 
enables the use of regression models for the logit transformed probabilities. The first public introduction of 
the properties of the logistic-normal distribution can be found in (Aitchison and Shen 1980). This 
distribution is written in terms of logratios relative to the last component, so that 

y(x) = {log(x1/xd), . . .log(xD−1/xD)}  

follows a Multivariate Normal distribution. Unlike the Dirichlet distribution, which has some very 
restrictive properties, such as complete subcompositional independence, i.e. for each possible partition of 
the composition, the set of all its subcompositions must be independent, the logistic-normal distribution 
yields a distribution on the interior of the simplex that does not require these inflexible properties, but 
instead they become testable linear hypotheses on the covariance matrix within a broad flexible modeling 
framework.  Use of the logistic-normal distribution opens up the full range of linear modeling available for 
the multivariate Normal distribution in RD. 

4. Subcompositional Dependence 

As mentioned above, the logistic–normal distribution has the ability to model useful dependence structures. 
In his seminal book, (Aitchison 1986) developed this idea, showing that the covariance structure can be 
modeled in terms of covariances on the log scale and is completely determined by the D(D − 1)/2 logratio 
variances 

τij =var{log(xi/xj)}(i=1,...D−1;j =i+1,..D). 

However, finding a convenient matrix formulation seems tricky, yielding formulations that either require 
selecting a specific component as divisor (when using Sigma, which is the logratio covariance matrix for 
the D-1 log-ratios relative to one component as divisor), have a zero diagonal (when using T, which is the 
variation matrix for all pairs of logratios) or are singular (when using Gamma, which is the centred logratio 
covariance matrix). However, it turns out that there are simple linear relationships between these alternative 
formulations, so it is feasible to choose whichever formulation is simplest to use in any specific context. 
Indeed, as shown in (Aitchison 1986) and further developed in (Aitchison et al. 2000) linear statistical 
methods with compositional data as the dependent variable are invariant to the choice of divisor as the 
implicit linear transformations between different representations cancel out in any F ratio of quadratic or 
bilinear forms, so this is a conceptual rather than practical problem. One way of avoiding this problem of 
choosing a divisor is to divide by the geometric mean, known as the clr (centered logratio) transformation. 
The disadvantage of this is that the centred logratio covariance matrix is singular, making it difficult to use 
some standard statistical procedures without adaption. However, compositions can be represented by their 
coordinates in the simplex with a suitable orthonormal basis. This suggests an alternative transformation 
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known as ilr (isometric logratio transformations) (Egozcue et al. 2003), which avoids the arbitrariness of alr 
and the singularity of clr. Thus ilr has significant conceptual advantages, but unfortunately, there is no clear 
“simplest” or canonical basis, unlike RD. One possibility is to use a sequential binary partition of the 
components (Egozcue and Pawlowsky-Glahn 2006), known as balances, although this alone still does not 
ensure uniqueness. Hence, despite the mathematical elegance of this approach, it has practical 
disadvantages in the relative difficulty of choosing the basis and relating the coordinates back to the 
original statistical questions. 

5. Principles as a starting point for compositional data 

Compositional data analysis may appear as a pragmatic approach to avoiding the unit sum constraint, that 
may have mathematical weaknesses. Indeed, mathematical geologists, typified by (Rehder and Zier 2001) 
argued that logratio analysis implied an illogical and arbitrary distance metric. In fact, the logratio approach 
can be derived entirely from a few key principles, which enable the derivation of the entire mathematical 
framework including an appropriate distance metric on the simplex. As explained in (Aitchison et al. 2000) 
et al., it should be obvious that compositional data analysis can only make meaningful statements about 
ratios of components, i.e. the first principle is scale invariance. This should be obvious in that 
compositional data is unit-free, but some geologists, such as (Watson and Philip 1989), did not find this 
obvious. The second key principle is subcompositional coherence (Aitchison 1991), which states that 
inferences about subcompositions should be consistent, regardless of whether the inference is based on the 
subcomposition or the full composition. For RD, this would translate into the self-evident principle that 
inference about a subset of variables should be the same regardless of whether we base the inference on the 
subset of variables or the full set.  

6. Limitations of the log-ratio approach 

While the log-ratio approach provides a powerful toolkit for many compositional datasets, it is important to 
be aware of the limitations of this approach. The two key problems are that firstly, some compositional data 
has zero components, which are inconsistent with the log-ratio approach and secondly, there may be linear 
constraints on the simplex, which become non-linear in log-ratio terms. There is a literature on how to 
avoid the problem of zeroes, but we will instead consider a process modelling approach to identifying an 
appropriate analysis. Other approaches include (Watson and Philip 1989) and (Stanley 1990) who map 
compositions onto the positive orthant of the hypersphere and (Butler and Glasbey 2008) who use the Tobit 
approach of modelling the zero boundaries as the censored probabilities. These approaches can be helpful 
in that the Butler model can handle compositional data with many zeros, but they also yield their own 
problems, such as what possible process would generate data on the hypersphere (in the case of Watson) 
and a model that yields no meaningful inferences for ratios of components (in the case of Butler). 
Arguably, all statistical models should relate to an underlying process that generated the data we observe, 
so we now consider this approach.  

7. Random processes as a starting point for compositional data 

As George Box has famously said, “all models are wrong, but some are useful”. I teach my students that to 
a mathematician, numbers are abstract entities, while to a statistician, numbers always have context – we 
are trying to understand how they were generated and that requires understanding what sort of process may 
have generated the data. A good statistical model not only matches the data well, but must also be 
interpretable. 
 
In practice, we often know quite a lot about how data might have been generated and that knowledge can 
make a dramatic difference in how precise our inference can be.  
 
Good statisticians understand the importance of understanding the underlying random processes that 
generate statistical data. For example, we know that the sum of additive random data rapidly converges to a 
Normal distribution under very weak conditions. However, the mathematical beauty of the Central Limit 
Theorem often encourages assuming a Normal error process, even when that is logically inconsistent with 
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the data (e.g. whenever there are constraints or integer data). As the saying goes, when you only have a 
hammer, everything looks like a nail!  
 
Compositional data is usually the outcome of a number of processes. The most obvious process is closure, 
which turns non-negative data into a composition. While we often treat this process as implicit in modeling 
compositional data on the simplex, there are times when explicit inclusion is important.  
 
For example, if our underlying process follows a multivariate log-Normal distribution, it is easy to see that 
applying closure does not affect the log ratios, which must all follow a Normal distribution, which is 
equivalent to the standard log-ratio approach and hence the principles must all apply. Of course, if we have 
a different underlying process distribution, we cannot be sure that this will still hold. Indeed, we may be 
ignoring important information if we try and model the composition directly, both in terms of the 
dependence structure of the data and also in terms of having structural zeros, where structural zeros are 
where we know that a zero component truly means that a component is absent, rather than being simply 
below the detection limit for that component. Structural zeros can also reflect mixing of different groups 
(household expenditure with some teetotallers mixed with drinkers), which lead naturally to a probabilistic 
process determining whether or not a component is present in the composition. For censored zeros, we can 
often model this approximately taking into account the implicit interval censoring normally involved in the 
recording process. For example, if we record proportions to three decimal places, then a proportion between 
0 and 0.0005 will be recorded as zero. If we embed the interval censoring in our statistical model, we have 
a mechanism to handle censored zeros ((Leung and Bacon-Shone 2013)). However, if it is important to 
recognise that detection limits may not be accounted for precisely if we only have the compositional data, 
as closure removes critical information if the detection limits are with reference to the raw data rather than 
the composition. 
 
For fixed mixtures of complete compositions, the resultant compositions often look like unitary 
compositions, but this may not be making best use of all our information. Palmer (Palmer and Douglas 
2008) and Tolosana-Delgado (Tolosana-Delgado, von Eynatten and Karius 2011) have looked at end-
member mixing, which makes use of some of our knowledge about the mixing process. However, work we 
have done elsewhere (Grunsky and Bacon-Shone) shows that linear mixing may take place at the level of 
specific elementary oxides. We may then end up with integer constraints on the compositions when 
expressed in molar terms, reflecting elemental substitutions. This gives the surprising result of having 
important linear dependence on the simplex, in addition to the unit constraint, which clearly cannot be 
accounted for if we insist on the principle of subcompositional coherence for all subcompositions, rather 
than after accounting for the constraints. This suggests again that understanding the process rather than 
blind applications of mathematical principles is essential, if we are to produce meaningful inference. 
 
There are also situations (like Aitchison’s time budget examples) where amalgamation of some 
compositional components are key elements of any sensible model. Again, this may mean that any 
meaningful model should use a combination of amalgamation and log-ratios, which is inconsistent with 
subcompositional coherence for some subcompositions. 
 

8. Conclusion 
 
Mathematical elegance is beautiful, but understanding how to model a data set has a beauty too! We must 
ensure that our analysis fits the problem by building models of the process that generated the data, not the 
other way around. 
 

  

JSM 2014 - Section on Statistical Learning and Data Mining

2416



References 

Aitchison, J and SM Shen. 1980. "Logistic-Normal Distributions: Some Properties and Uses." Biometrika 
67(2):261. 

Aitchison, J. 1986. The Statistical Analysis of Compositional Data, Vol. 416: Chapman and Hall. 
Aitchison, J. 1991. "Delusions of Uniqueness and Ineluctability." Mathematical Geology 23(2):275-77. 
Aitchison, J., C. Barcelo-Vidal, J. A. Martin-Fernandez and V. Pawlowsky-Glahn. 2000. "Logratio 

Analysis and Compositional Distance." Mathematical Geology 32(3):271-75. 
Aitchison, J. and J. J. Egozcue. 2005. "Compositional Data Analysis: Where Are We and Where Should 

We Be Heading?". Mathematical Geology 37(7):829-50. 
Bacon-Shone, John. 2011. "A Short History of Compositional Data Analysis." Pp. 3-11 in Compositional 

Data Analysis: Theory and Applications: John Wiley and Sons. 
Butler, A and C Glasbey. 2008. "A Latent Gaussian Model for Compositional Data with Zeros." Journal of 

the Royal Statistical Society: Series C (Applied Statistics) 57(5):505-20. 
Chayes, F. 1960. "On Correlation between Variables of Constant Sum." Journal of Geophysical Research 

65(12):4185-93. 
Cox, DR and EJ Snell. 1989. Analysis of Binary Data: Chapman & Hall/CRC. 
Egozcue, J. J., V. Pawlowsky-Glahn, G. Mateu-Figueras and C. Barcelo-Vidal. 2003. "Isometric Logratio 

Transformations for Compositional Data Analysis." Mathematical Geology 35(3):279-300. 
Egozcue, JJ and V Pawlowsky-Glahn. 2006. "Simplicial Geometry for Compositional Data." Geological 

Society London Special Publications 264(1):145. 
Grunsky, Eric and John Bacon-Shone. 2011. "The Stoichiometry of Mineral Compositions." Paper 

presented at the CODAWORK 2011, Girona, Spain. 
Leung, T.C and John Bacon-Shone. 2013. "Compositional Data Analysis and the Zero Problem: 

Comparison of Additive and Multiplicative Replacements with Interval Censoring." Paper 
presented at the CoDaWork 2013, Vorau, Austria. 

McAlister, D. 1879. "The Law of the Geometric Mean." Proceedings of the Royal Society of London 
29:367-76. 

Palmer, M. J. and G. B. Douglas. 2008. "A Bayesian Statistical Model for End Member Analysis of 
Sediment Geochemistry, Incorporating Spatial Dependences." Journal of the Royal Statistical 
Society. Series C: Applied Statistics 57(3):313-27. 

Pearson, K. 1897. "On a Form of Spurious Correlation Which May Arise When Indices Are Used, Etc." 
Proceedings of the Royal Society 60:489-98. 

Rehder, S and U Zier. 2001. "Letter to the Editor: Comment on 'Logratio Analysis and Compositional 
Distance' by J. Aitchison, C. Barcelo-Vidal, Ja Martìn-Fernandez, and V. Pawlowsky-Glahn." 
Mathematical Geology 33(7):845-48. 

Stanley, Clifford R. 1990. "Descriptive Statistics For n-Dimensional Closed Arrays: A Spherical 
Coordinate Approach." Mathematical Geology 22(8):933-56. 

Tanner, JM. 1949. "Fallacy of Per-Weight and Per-Surface Area Standards, and Their Relation to Spurious 
Correlation." Journal of Applied Physiology 2(1):1. 

Tolosana-Delgado, R, H von Eynatten and V Karius. 2011. "Constructing Modal Mineralogy from 
Geochemical Composition: A Geometric-Bayesian Approach." Computers & Geosciences 
37(5):677-91. 

Watson, DF and GM Philip. 1989. "Measures of Variability for Geological Data." Mathematical Geology 
21(2):233-54. 

 

JSM 2014 - Section on Statistical Learning and Data Mining

2417


