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Abstract
In 2010, the passage of the Biologics Price Competition and Innovation Act (BPCI) created an ab-
breviated licensure pathway in section 351(k) of the PublicHealth Service Act (PHS). This new law
allows for an expeditious approval process for a generic follow-on biological product shown to be
biosimilar to a licensed reference biological product. Traditional statistical methods used to test for
average bioequivalence as in a generic drug development maynot be the most efficient way to apply
to biosimilarity. We adopt a Bayesian approach to establishbiosimilarity for a composite endpoint.
Specifically, we propose a hierarchical bias model to capture the effect difference between the ref-
erence and follow-on products. Within a non-inferiority framework, we formulate a statistical test
using the posterior distributions to demonstrate biosimilarity. We illustrate this proposed methodol-
ogy using a recombinant polypeptide example used to treat rheumatoid arthritis and the composite
endpoint of ACR20. Using simulation, we have shown that the type I error is preserved when refer-
ence product is not performing worse in current trial than historical trial. Statistical power is better
than the frequentist approach as sample size increases.

Key Words: Biosimilarity, Follow-on biologics, Non-inferiority, Bayesian inference, Composite
endpoint, Rheumatoid arthritis.

1. Introduction

The concept of biosimilarity has received increasing popularity within the scientific com-
munity recently. One big motivation to explore biosimilar products is the unprecedented
opportunity gradually opened up by numerous soon-to-be expiring licenses of major bio-
logical products. In 2010, the passage of the Biologics Price Competition and Innovation
Act (BPCI) created an abbreviated licensure pathway in section 351(k) of the Public Health
Service Act (PHS). This new law allows for an expeditious approval process for a generic
follow-on biological product shown to be biosimilar to a licensed reference biological prod-
uct. Section 351(i) of the PHS Act defines biosimilarity to mean “that the biological prod-
uct is highly similar to the reference product notwithstanding minor differences in clinically
inactive components” and that “there are no clinically meaningful differences between the
biological product and the reference product in terms of thesafety, purity, and potency of
the product.” Due to their large and complex molecular structures, biological products are
fundamentally disparate from small synthetic drugs, and soare their mechanisms of action.
Traditional statistical methods used to test for bioequivalence as in a generic drug develop-
ment may not be the most efficient way to apply to biosimilarity (Kang and Chow, 2012).
Many of the recently proposed methods to establish biosimilarity between an innovator ref-
erence biological product and a generic follow-on biological product primarily borrowed
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ideas from average bioequivalence (ABE) trials. An ABE trial using a 2× 2 crossover de-
sign is the standard approach suggested by the U.S. Food and Drug Administration (FDA)
to test for the equivalence between a reference drug and a newgeneric drug.

Biological products are fundamentally different from small-molecule compound. They
are large polypeptide molecules with a much larger molecular weight than small-molecule
synthetic drugs. Therefore, they tend to have a longer half-life and require a longer wash-
out period. In this case, the standard crossover design normally used for bioequivalence
trial may not be efficient if applied to biosimilarity trials. A more appropriate design would
be the parallel group design. Various biosimilarity criteria have been suggested and they
depend on the study designs and objectives. For a parallel three-arm trial with two of
the arms for the reference product from two different manufacturing lots and the other
one for the follow-on biological product, Kang and Chow (2012) proposed the relative
distance as a biosimilarity criterion. The authors developed a test that assumes asymptotic
distribution of its maximum likelihood estimator (MLE). Lin et al. (2012) presented the
parallel line assay design that requires two dose-responsetrials for both the reference and
follow-on biological products. Under the assumption of theparallel line bioassay, they
assumed a linear relationship between the binary efficacy endpoint and the dose-dependent
mean product characteristic. The biosimilarity criterionin this case is the relative potency.

This paper is motivated by the need to develop an innovative statistical method for
proving biosimilarity. Here is the organization of the subsequent sections. Section 2 in-
troduces the composite endpoint of interest and describes the proposed clinical study for
the demonstration of biosimilarity that uses this composite endpoint. This section also pro-
vides the rationale for a non-inferiority (NI) testing framework and a Bayesian inferential
approach to achieve the study’s objectives. Section 3 describes the details of a simulation
plan to examine the operating characteristics of this proposed method and also summarizes
the simulation results with comparison to the frequentist approach. Section 4 discusses the
overall results and proposes further work in this area.

2. Biosimilarity Using Composite Endpoint

Although in the past few years some statistical methods havebeen proposed for the case of
a single primary efficacy endpoint, some biological products are designed to treat medical
conditions with improvement measured by several endpoints. For example, rheumatoid
arthritis (RA) is a disease of the immune system that leads tothe inflammation in the joints.
In clinical trials studying RA, the current standard measure of efficacy is the ACR20 criteria
recommended by the American College of Rheumatology (ACR) Committee. For each
individual patient in a trial, it measures if this patient has experienced a clinical response of
overall improvement by evaluating the percentage of improvement in a core set of variables
during the trial. Generally speaking, if a patient experiences at least 20% improvement from
baseline in multiple variables simultaneously, this patient is defined as having satisfied the
definition of a clinical response. Therefore, ACR20 is a composite criterion and has served
as a working model to other disorders that currently requiremultiple primary endpoints
(Offen et al., 2007). The percent change in each of these variables is alsomeasured at
different time points such as 3, 6 and 12 months and one of the time points is used to
establish primary efficacy. Table 1 summarizes the ACR20 improvement criteria (Felson,
Anderson, Boerset al., 1993).
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Table 1: ACR20 Improvement Criteria

Quantitative criterion Endpoints

percent reduction 1. Tender joint count, and
> 20% improvement in 2. Swollen joint count, and

At least 3 of the following:
3. Physician global assessment of disease activity
4. Patient global assessment of disease activity
5. Patient assessment of pain (e.g. Visual Analog Scale)
6. Physical disability or functionality
7. Inflammatory marker: erythrocyte sedimentation rate (ESR) or C-reactive protein (CRP)

2.1 Non-Inferiority Hypothesis

Motivated by the need to decrease sample size for a clinical study, we propose a non-
inferiority framework to test for biosimilarity using the clinical data. This non-inferiority
trial design allows the current biosimilarity trial to meaningfully connect to any similarly
conducted historical trials that have evaluated the effectof the licensed reference biolog-
ical product. Since a standard treatment is already available for the medical condition,
including a placebo arm in the current trial will not be ethical. We can usek to index the
biological product withk = 1 representing the innovator reference product andk = 2 the
proposed follow-on biological product. In this case, we areinterested in testing if, based
on the composite endpoint, the proposed biological productis not inferior to the licensed
biological product.

In this two-arm design, patients are randomized to either the original reference or the
follow-on generic biological product. For each patient, outcomes onJ multiple endpoints
will be measured at pre-specified follow-up times. TheseJ endpoints can be generally
considered as independent measures. We can usexkji to denote thejth endpoint(j =
1, 2, ..., J) observed in theith patient receiving the productk. In this case, we can assume
that it is normally distributed as

xkji ∼ N(µkj, σ
2

k) (1)

wherek = 1 or 2, andi = 1, 2, ..., nk . The fixed randomization ratio is therefore equal to
R = n2/n1. µkj is the mean response for thejth endpoint andσ2

k is the variance which is
assumed to be the same for allJ endpoints but different between the products. In addition,
we want to consider combining theseJ endpoints into a single composite binary efficacy
endpointyki which can be generally defined as

yki =

{

1 xki > ω

0 otherwise
(2)

wherexki = (xk1i, xk2i, ..., xkJi)
′ is the random vector of outcomes for theith patient and

ω = (ω1, ω2, ..., ωJ )
′ is aJ-dimensional vector of cutoff points for the endpoints common

to both biological products, assuming that higher values ofxkji’s are desirable. If we
denote the probability of a response on the composite endpoint for productk aspk, then
pk = P (yki = 1) = P (xki > ω) , and our non-inferiority hypotheses of interest can be
constructed as

H0 : p2 − p1 6 −δ versus HA : p2 − p1 > −δ. (3)

whereδ(δ > 0) is the pre-specified non-inferiority margin for the difference between the
two probabilities.
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2.2 Bayesian Hierarchical Bias Model

Since multiple endpoints are considered in developing the composite endpoint, the Bayesian
approach allows for the borrowing of estimative strength between theJ multiple endpoints
on the precision parameters in addition to the borrowing between historical trials. This also
means that fewer subjects may be needed for the reference product and more subjects can
be randomized to the new and potentially biosimilar product. This is a realization of the
FDA guidance regarding its suggestion to use smaller clinical studies and to convene them
based on results from previously conducted studies. Furthermore, the composite endpoint
can be defined by criteria on the multiple endpoints which provide clinically meaningful
interpretation. According to (2),pk will be defined as a function of the parameters such
thatpk = f(µk1, µk2, ..., µkJ , σ

2

k) for k = 1 or 2.
In this proposed hierarchical bias model, we allow the inclusion of any number of

historical trials for the licensed reference product. For example, if there areH historical
trials available before the conduct of the current biosimilarity trial, we can letx1hji be
the value of thejth endpoint observed for theith patient receiving the original reference
productk = 1 in thehth historical trial such that

x1hji ∼ N(µ1hj, σ
2

1) (4)

wherei = 1, 2, ..., n1h, h = 1, 2, ...,H, andj = 1, 2, ..., J . In the above model, we assume
that theseH trials and the current biosimilarity trial share the same within-study variance
parameterσ2

1
and it is also assumed to be constant across allJ endpoints. This assumption

allows borrowing between the historical trials and also between theJ endpoints. In addi-
tion, we can represent thejth sample mean asx1hj which is equal to(

∑n1h

i=1
x1hji)/n1h.

Other sample means can be similarly defined.
Additionally, under exchangeability, we consider the meanparameters,µ1j of the cur-

rent biosimilarity trial andµ1hj of thehth historical trial, for the original reference product,
come from the same distribution as

µ1j, µ1hj ∼ N(µo
1j , σ

2

1b) (5)

whereh = 1, 2, ...,H. µo
1j is the overall mean andσ2

1b is the between-trial variance pa-
rameter, which is assumed to be the same across theJ endpoints. Hierarchical modeling
is a logical way of combining historical data when exchangeability between parameters is
highly plausible, and as in the current problem, these historical trials used an efficacy re-
sponse defined by the same criterion. This hierarchical structure implies heterogeneity of
the mean endpoints.

For the new generic follow-on product in the current biosimilarity trial, we think of its
mean response on thej endpoint,µ2j , as having a bias term from that of the mean endpoint
of the original product,µ1j. Pocock (1976) discussed the parameterizing a bias term to
model the difference between mean of historical control andthe same control but in the
current trial. Therefore, we propose this relationship

µ1j = µ2j + ξj (6)

whereξj represents the bias ofµ2j from µ1j . If ξj is equal to 0, thenµ2j = µ1j meaning
that the follow-on product has the same mean as the licensed reference product on thejth
endpoint. Ifξj < 0, then it means the follow-on product exhibits a better effect than the
reference product in thejth endpoint, and the opposite interpretation follows ifξj > 0.
Since we do not know the true value ofξj , we can assume a model for this bias parameter
as

ξj ∼ N(θ, σ2

ξ ) (7)

JSM 2014 - Biopharmaceutical Section

2395



wherej = 1, 2, ..., J . We center the expectation ofξj skeptically at the null hypothesis,
θ, to allow the data to reflect and influence its true direction and magnitude away from the
null value. The null valueθ is the margin on the scale of individual endpoints, such that
when this margin is uniformly subtracted from all of the meanresponses, the probability
of the binary composite endpoint will decrease by exactly the amount ofδ as inf(µk1 −
θ, µk2 − θ, ..., µkJ − θ, σ2

k) − f(µk1, µk2, ..., µkJ , σ
2

k) = −δ. This relationship between
δ andθ is one-on-one. Therefore, centering the mean ofξj on θ also suggests thatµ1j

andµ2j are dissimilar to begin with. We also assume that the variance parameterσ2

ξ to
be the same across allJ endpoints but a largeσ2

ξ will suggest that this distribution is only
weakly informative. Figure 1 displays the graphical representation of this model with each
circle representing a random node, a single-line arrow representing the dependent stochastic
relationship and a double-line arrow representing a logical relationship.
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Figure 1: Graphical representation of the proposed Bayesian hierarchical bias model,
j = 1, 2, ..., J .

This hierarchical bias model completely specifies the likelihood function, and we can
consider generally uninformative prior distributions such as Jeffery’s priors for the param-
eters. Using Gibbs sampling, we can then directly estimate the posterior probability

P (p2 − p1 > −δ|x1j ,x11j , ...,x1Hj ,x2j , j = 1, 2, ..., J)
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= E[I(p2 − p1 > −δ)|x1j ,x11j , ...,x1Hj ,x2j , j = 1, 2, ..., J ].

The decision rule is to reject the null hypothesis when this posterior probability is greater
than a critical probabilitypc which can be pre-specified as high as 95% or 97.5% depending
on the clinical significance.

2.3 Determination of Bayesian Non-Inferiority Margin

Another major challenge in a non-inferiority trial design is to determine the NI marginδ
and hence its correspondingθ for each of the individual endpoints. One way to specifyδ
is to mirror the fixed margin method in the frequentist paradigm in the current Bayesian
paradigm (Gamalo, Wu, Tiwari, 2012; Gamalo, Tiwari, LaVange, 2013). In the frequentist
paradigm, the NI margin is set to be the lower bound of the100%(1 − α) confidence
interval for the effectp1h′ − p0h′ in a selected historical placebo-controlled trialh′, where
0h′ represents the placebo arm and1h′ represents the innovator reference product arm in
this trial. This historical placebo-controlled trialh′ was usually a trial that led to its first
FDA approval.

If we assume a similar model as in (4) for the placebo and treatment arms in this
placebo-controlled trial

xkh′ji ∼ N(µkh′j , σ
2

kh′),

wherek = 0 or 1 and elicit a flat non-informative prior forµkh′j as inP (µkh′j) ∝ 1 and a
Jeffery’s prior for the varianceσ2

kh′ as inP (σ2

kh′) ∝ 1/σ2

kh′ , then

µkh′j |xkh′j , j = 1, 2, ..., J ∼ N

(

xkh′j,
σ2

kh′

nkh′

)

σ2

kh′ |xkh′j , j = 1, 2, ..., J ∼ IG





Jnkh′

2
,
1

2

J
∑

j=1

n
kh′
∑

i=1

(xkh′ji − µkh′j)
2



 . (8)

We can use Gibbs sampling to simulate forp1h′ − p0h′ and solve forδ as the lower bound
of the100%(1 − α) credibility interval such that

P (p1h′ − p0h′ > δ|x0h′j,x1h′j, j = 1, 2, ..., J) > 1−
α

2
(9)

In addition, we want to explore a slightly more conservativemarginδλ = (1 − λ)δ where
0 < λ < 1. This marginδλ can represent the clinically relevant effect that the follow-on
generic product should not be worse than the innovator reference product. Examples ofλ
are 0% (full margin:δ0 = δ), 25%, or 50% (half of the margin:δ0.5 = δ/2).

3. Simulation Study

3.1 Simulation Objectives and Plan

In order to characterize the operating characteristics of this Bayesian non-inferiority design
for biosimilarity, we will conduct a simulation study that is motivated by our previous
example of rheumatoid arthritis. The primary composite efficacy endpoint is the ACR20 at
6 months (or 24 weeks) although ACR50, ACR70, or ACR20 at other time points can be
secondary endpoints for generating future hypotheses. There is no safety endpoint in this
study and it can be assumed that doses higher than the recommended dose do not create
safety concerns.
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Table 2: Historical trial on monotherapy of Etanercept (25mg/mL) at 6 months - Moreland
et al., 1999

k Treatment nk P (ACR20 = 1) or p̂k µ̂k1 µ̂k2 µ̂k3 µ̂k4 µ̂k5 µ̂k6 µ̂k7 σ2

k

0h′ Placebo 80 11% 6% -7% 2% -3% -22% 2% -207% 1600%
1h′ Etanercept (25mg/mL) 78 59% 56% 47% 44% 46% 53% 39% 31% 1600%

Note: Forµ̂k7, CRP is used instead of ESR. The variance was reported in Morelandet al., 1997 and was assumed to
be 1,600% for the calculation of sample size.

Table 3: Simulation setting for the current non-inferiority biosimilarity trial

Parameter Values Description

λ 0, 0.25, 0.5 Sizing factor for non-inferiority margin
δλ = (1− λ)δ δ0 = δ, δ0.25 = 0.75δ, δ0.5 = 0.5δ Re-sized non-inferiority margin forδ
θλ θ0, θ0.25, θ0.5 Re-sized non-inferiority margin forθ
△ -2, 0, 2 Impact of constancy assumption
µ1j , σ2

1
µ1j = µ1h′j +△, σ2

1h′ Use historical trial on Etanercept (25mg/ML) arm in Table 2
µ2j , σ2

2
µ1j − θλ, σ

2

1h′ For assessing Bayesian type I error
µ2j , σ2

2 µ1j − θa (θa = 0, θλ/2), σ
2

1h′ For assessing Bayesian power
n 60, 120 Overall trial sample size
R 1, 2 Fixed randomization ratio
pc 95%, 97.5% Critical probability
N determined by simulation Number of posterior Gibbs samplesafter 10% burn-in

The ACR20 has seven components and they represent separate categories of symptoms
as in Table 1. These components are generally assumed to be independent measures. There-
fore,J is equal to7 such thatµk1 andµk2 are at least20% and at least 3 of{µk3, ..., µk7}
are at least20% wherek = 0h′, 1h′, 1h, 1, 2 andh = 1, 2, ...,H. The objectives of this
simulation study are (1) to assess the type I error in the Bayesian paradigm under the null
hypothesis and to compare it with that in the frequentist paradigm, (2) to evaluate the sta-
tistical power in the Bayesian paradigm under the alternative hypothesis given overall sam-
ple sizen and randomization ratioR as well as to compare it with that in the frequentist
paradigm, and (3) to characterize the impact of differentλ as inδλ andpc on the aforemen-
tioned characteristics.

As a real-life motivating example, we conducted a literature search on historical trials
on Etanercept. Etanercept is a TNF receptor (p75) fusion protein, linked to the Fc portion
of human IgG1. We found five published studies: (1) Morelandet al. (1997), (2) Moreland
et al. (1999), (3) Weinblattet al. (1999), (4) Bathonet al. (2000), and (5) Klareskoget al.
(2004). Among these studies, only one of them (Morelandet al., 1999) was a confirma-
tory placebo-controlled trial for the monotherapy of Etanercept (25mg/mL) while the other
trials studied either combined therapies of Etanercept or lower doses of Etanercept. Etan-
ercept (25mg/mL) was administered subcutaneously twice a week and the primary efficacy
endpoint is ACR20 at 6 months (or 24 weeks). This trial led to its FDA approval for RA in
1998. Therefore,H = 1, and we will use this historical trial to determine the NI margin as
well as including it in the hierarchical bias model(h′ = h). Table 2 summarizes the partial
result from this historical trial. A positive percent change is interpreted as a reduction in
the corresponding symptom component while a negative percent change means an increase.
Table 3 describes the simulation setting for the follow-on biological product in the current
proposed biosimilarity study.
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3.1.1 Simulation Results

Using the estimated means from Table 2 and the simulation setting laid out in Table 3, we
simulated patient-level data for the selected historical trial. Using this hypothetical patient-
level data, we generated Gibbs samplings on the parameters,µ0h′j , µ1h′j , σ

2

0h′ , andσ2

1h′ .
Using these chains of sampling, we derived the posterior samples of the probability of clin-
ical response ACR20,p0h′ andp1h′ , and hence their difference,p1h′ − p0h′ . The lower
bound of the 95% credibility interval is estimated to be0.4604. Therefore, under different
pre-specified sizing factorsλ, we can state the different NI margins for subsequent simula-
tion: λ = 0 will give δ0 = 0.4604, λ = 0.25 will give δ0.25 = 0.3453, and finallyλ = 0.5
will give δ0.5 = 0.2302. We can find their correspondingθ: θ0 = 34.7, θ0.25 = 22.2,
andθ0.5 = 14.0. Using the same patient-level data, we also calculated the probabilities of
clinical response ACR20:̂p0h′ = 0 and p̂1h′ = 0.5641 under the frequentist perspective.
The estimate for the treatment arm is not far from the one reported in this historical trial
(59% in Table 2), but the estimate for the placebo arm is under-estimated (11% in Table 2).
The lower bound of the 95% confidence interval is therefore estimated to be 0.4019. The
corresponding re-sized NI margins will be 0.4019, 0.3014, and 0.2009. These are some-
what smaller than the corresponding ones estimated in the Bayesian method above. Based
on the same simulation plan as described in Table 3, we conducted subsequent simulation
using 10,000 simulated identical trials. The same simulated two-arm trial data will be used
to determine if the trial is a success separately for the proposed Bayesian method and the
standard frequentist method. Figure 2 shows the result of the simulated type I error under
both analytical paradigms and Figures 3 and 4 display the result of the simulated statistical
powers.
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Figure 2: Plot of type I error against value of△ = µ1j − µ1hj for all j. Setting isn = 60,
R = 1, andpc = 0.95
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Figure 3: Plot of type statistical power against value of△ = µ1j − µ1hj for all j. Setting
is δa = δλ/2, n = 60, R = 1, andpc = 0.95.

In Figure 2, we observe general preservation of type I error under 0.025 when△ =
µ1j − µ1hj = 0 or 2, but inflated type I error when△ = −2. That is, when the refer-
ence product is performing identically or better in the current biosimilarity trial than in the
reference historical trial, the type I error is controlled under the target size. However, if it
performs worse in the current trial than in the historical trial, the type I error is inflated, for
both the Bayesian and the frequentist methods. However, asλ increases to0.5 when the
NI margin gets closer to0.2302, the type I error inflation is possible in the frequentist ap-
proach but not the proposed Bayesian approach. In fact, the type I error under the Bayesian
method is well-controlled under 0.01 even when the reference product is doing worse in
the current trial whenλ is close to0.5. Both methods are able to preserve the type I error
at 0.025 when△ = 0, that is when the effect of the reference product is constantin both
trials. The inflation of type I error, when reference productis doing worse in the current
trial, is possibly due to the larger lower bound of95% credibility interval in the historical
trial as related to the reduced effect size of the reference product comparing to the putative
placebo, which does not exist in the current trial. However,asλ increases, the re-sized NI
margin narrows, due to the influence of the skeptical prior for ξj, the proposed Bayesian
method is able to protect the inflation of type I error, even when△ < 0 but the frequentist
approach cannot.

In Figures 3 and 4, we can see that whenλ = 0 and△ = 0, 2, that is, when the full
NI margin is used, the statistical power of the Bayesian method is unanimously higher than
that of the frequentist method. As forλ = 0.25 and△ = 0, 2, statistical power of the
Bayesian method is smaller than that of the frequentist method only when sample size is
small as inn = 60 and when the alternative is atδa = δ0.25/2. Other than that, the power
of the Bayesian method is superior to the frequentist method. As λ increases to 0.5 and
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Figure 4: Plot of statistical power against value of△ = µ1j − µ1hj for all j. Setting is
δa = 0, n = 60, R = 1, andpc = 0.95.

when△ = 0, 2, the NI margin narrows down toδ0.5 = 0.2302, whenn = 60 and the
alternative is either atδa = δ0.5/2 = 0.1151 or atδa = 0, statistical power is very low in
both the Bayesian and frequentist approaches with the Bayesian method suffering more loss
of power due to the strong influence of the skeptical prior onξj within the smaller margin.
However, an increase in sample size promises a much better improvement in statistical
power whenδa = 0 than the improvement in frequentist power. This is mainly due to the
increasing influence of the data over the skeptical null prior, resulting in improved Bayesian
power.

4. Summary and Discussion

In this paper, we have presented a Bayesian method to assess biosimilarity between a li-
censed reference biological product and a generic follow-on (also known as a subsequent-
entry) biological product. This approach adopts a non-inferiority testing framework that
connects the current trial of biosimilarity to historical trials of the reference product. The
proposed Bayesian analytical approach recognizes that thereference product was approved
for license in the past and that information in these historical trials can be meaningfully
incorporated in the analysis of the current trial. However,due to changing clinical prac-
tices and improvement in the overall delivery of care over time, the effect of a medicinal
product may not be always constant. This is, in the context ofa non-inferiority clinical
trial, sometimes known as the constancy assumption, the historical difference between the
original product and placebo is assumed to hold in the current setting of the new trial if a
placebo is in place (D’Agostino, Massaro, and Sullivan, 2003). Therefore, we presented
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the hierarchical model to incorporate historical trials while accounting for the potential
lack of biosimilarity via a bias parameter. In this model, non-informative priors are elicited
for most parameters except for the bias parameter which assumes a skeptical prior with
expectation centered on the null hypothesis. As most biological products are meant to
treat illnesses with improvement in multiple endpoints, weillustrate the application of this
method to studying rheumatoid arthritis that uses a composite efficacy endpoint known as
ACR20.

Simulation studies have demonstrated that the Bayesian method usually has type I error
preserved under theα-level of 0.025, comparable to a typical level assumed in a one-sided
non-inferiority trial. This is made possible with the placement of the skeptical prior on the
bias parameter, even when a more relaxed critical probability pc = 0.95 is used. When
the reference product performs worse in the current trial, due to potential violation of the
constancy assumption, the NI margin that is based on its historical trial appears to be wider,
thus inflating its type I error. Both Bayesian and frequentist methods have no immunity to
this inflation, however, the Bayesian method is able to cancel out this inflation by tapping
into the influence of the skeptical null prior as NI margin narrows, therefore offering some
protection even when constancy assumption is slightly violated in the negative direction. It
is important to emphasize that this type I error is an error rate conditional on the outcomes
of the historical trial selected. Under this hierarchical model, we presume in (5) that both
µ1j andµ1hj come from the same underlying distribution, therefore the difference△ =
µ1j − µ1hj follows the normal distribution,N(0, 2σ2

1b). Another way to look at the type I
error is the average type I error rate over all possible values of△. Further simulation can
be useful in characterizing this average type I error over all possible trial performance for
the reference product in historical and current trials. It is important that, prior to the design
of the biosimilarity trial, a thorough literature search should be made to assess if the effect
of the reference product is consistent in the historical trials and if the design and conduct
of these studies are not too dissimilar. If such large variability in estimation is observed,
sources of this inconsistency should be investigated.

As for statistical power, it somewhat suffers when NI marginis small. However, as sam-
ple size increases fromn = 60 to 120 under smaller margins and as the follow-on product
is truly biosimilar to the reference product, we expect the Bayesian statistical power to out-
perform the frequentist approach. In addition, it will be interesting to explore a Bayesian
two-stage adaptive design using predictive probability asan interim stopping criterion. It
is possible to further reduce the expected sample size especially in cases when a follow-on
product is biosimilar to the reference product without compromising its statistical power.

Another possibility of using hierarchical modeling is thatwe may be able to include
other historical trials which perhaps studied different doses of the reference product or
were conducted under systematically different trial-specific circumstances. If such char-
acteristics can be assumed to be linearly related to the efficacy parameters, their inclusion
into the model may help increase the precision of the estimation, and hence the inference.

In this paper, we have illustrated the method using a composite endpoint that has sev-
eral separate endpoints combined into a single one. When we directly model the compo-
nent endpoints, it is likely that instead of the global null hypothesis, some of the component
endpoints may have inferior means such that for somej, µ2j 6 µ1j − θ but not the oth-
ers, and this trial can still claim success based on the predictive or posterior probability.
Composite endpoint may present different null configurations which may warrant further
study. In our example, we have only presented the global nullconfiguration usingθ as the
non-inferiority margin across all component endpoints. Inother cases, a single endpoint
or multiple endpoints are used to establish efficacy. For example, for studying psoriasis, a
common chronic inflammatory skin disease characterized by thick red flaky patches called
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scales, there are two major endpoints: proportion of subjects who achieved at least75%
reduction in PASI score (PASI75) and treatment success on the Physician’s Global Assess-
ment (PGA). This Bayesian hierarchical bias approach can still be similarly applied and
final inference may be based on the joint posterior probabilities that these endpoints are
greater than their respective non-inferiority margins.
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