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Abstract

In 2010, the passage of the Biologics Price Competition andvation Act (BPCI) created an ab-
breviated licensure pathway in section 351(k) of the Puiéalth Service Act (PHS). This new law

allows for an expeditious approval process for a generioviebn biological product shown to be

biosimilar to a licensed reference biological product.ditianal statistical methods used to test for
average bioequivalence as in a generic drug developmentotdoe the most efficient way to apply
to biosimilarity. We adopt a Bayesian approach to estaliskimilarity for a composite endpoint.

Specifically, we propose a hierarchical bias model to captue effect difference between the ref-
erence and follow-on products. Within a non-inferioritgrinework, we formulate a statistical test
using the posterior distributions to demonstrate biogintyt. We illustrate this proposed methodol-
ogy using a recombinant polypeptide example used to treainlatoid arthritis and the composite
endpoint of ACR20. Using simulation, we have shown thatyipet error is preserved when refer-
ence product is not performing worse in current trial thastdrical trial. Statistical power is better

than the frequentist approach as sample size increases.

Key Words. Biosimilarity, Follow-on biologics, Non-inferiority, Bgesian inference, Composite
endpoint, Rheumatoid arthritis.

1. Introduction

The concept of biosimilarity has received increasing papiyl within the scientific com-
munity recently. One big motivation to explore biosimilaogucts is the unprecedented
opportunity gradually opened up by numerous soon-to-bé&iaggicenses of major bio-
logical products. In 2010, the passage of the BiologicsePdompetition and Innovation
Act (BPCI) created an abbreviated licensure pathway in@e851(k) of the Public Health
Service Act (PHS). This new law allows for an expeditiousrapal process for a generic
follow-on biological product shown to be biosimilar to aditsed reference biological prod-
uct. Section 351(i) of the PHS Act defines biosimilarity toanéthat the biological prod-
uct is highly similar to the reference product notwithstagdmninor differences in clinically
inactive components” and that “there are no clinically nmiegful differences between the
biological product and the reference product in terms ofstifety, purity, and potency of
the product.” Due to their large and complex molecular $tnas, biological products are
fundamentally disparate from small synthetic drugs, anaredheir mechanisms of action.
Traditional statistical methods used to test for bioedaivee as in a generic drug develop-
ment may not be the most efficient way to apply to biosimyafi€ang and Chow, 2012).
Many of the recently proposed methods to establish bioatylbetween an innovator ref-
erence biological product and a generic follow-on biolagieroduct primarily borrowed
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ideas from average bioequivalence (ABE) trials. An ABEltnising a 2x 2 crossover de-
sign is the standard approach suggested by the U.S. FoodragdAdministration (FDA)
to test for the equivalence between a reference drug and gemeevic drug.

Biological products are fundamentally different from shmblecule compound. They
are large polypeptide molecules with a much larger moleauaght than small-molecule
synthetic drugs. Therefore, they tend to have a longerlifi@lknd require a longer wash-
out period. In this case, the standard crossover designatigrosed for bioequivalence
trial may not be efficient if applied to biosimilarity trial& more appropriate design would
be the parallel group design. Various biosimilarity cidenave been suggested and they
depend on the study designs and objectives. For a paratkd-trm trial with two of
the arms for the reference product from two different mactufgng lots and the other
one for the follow-on biological product, Kang and Chow (2DpJroposed the relative
distance as a biosimilarity criterion. The authors devetba test that assumes asymptotic
distribution of its maximum likelihood estimator (MLE). iiet al. (2012) presented the
parallel line assay design that requires two dose-resptiade for both the reference and
follow-on biological products. Under the assumption of iegallel line bioassay, they
assumed a linear relationship between the binary efficadgant and the dose-dependent
mean product characteristic. The biosimilarity criteriorhis case is the relative potency.

This paper is motivated by the need to develop an innovatiatisscal method for
proving biosimilarity. Here is the organization of the sedpsent sections. Section 2 in-
troduces the composite endpoint of interest and descriteeproposed clinical study for
the demonstration of biosimilarity that uses this commositdpoint. This section also pro-
vides the rationale for a non-inferiority (NI) testing framork and a Bayesian inferential
approach to achieve the study’s objectives. Section 3 ithescthe details of a simulation
plan to examine the operating characteristics of this pgeganethod and also summarizes
the simulation results with comparison to the frequeniigtraach. Section 4 discusses the
overall results and proposes further work in this area.

2. Biosimilarity Using Composite Endpoint

Although in the past few years some statistical methods bhaee proposed for the case of
a single primary efficacy endpoint, some biological prodwate designed to treat medical
conditions with improvement measured by several endpoiRts example, rheumatoid
arthritis (RA) is a disease of the immune system that leattsstinflammation in the joints.
In clinical trials studying RA, the current standard measfrefficacy is the ACR20 criteria
recommended by the American College of Rheumatology (ACBhRittee. For each
individual patient in a trial, it measures if this patienslexperienced a clinical response of
overall improvement by evaluating the percentage of imgneent in a core set of variables
during the trial. Generally speaking, if a patient expesesnat least 20% improvement from
baseline in multiple variables simultaneously, this pdtie defined as having satisfied the
definition of a clinical response. Therefore, ACR20 is a cosilg criterion and has served
as a working model to other disorders that currently requitétiple primary endpoints
(Offen et al,, 2007). The percent change in each of these variables isnassured at
different time points such as 3, 6 and 12 months and one ofiithe points is used to
establish primary efficacy. Tallé 1 summarizes the ACR2Gargment criteria (Felson,
Anderson, Boerst al., 1993).
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Table 1: ACR20 Improvement Criteria

Quantitative criterion Endpoints

percent reduction 1. Tender joint count, and
> 20% improvementin 2. Swollen joint count, and
At least 3 of the following:
3. Physician global assessment of disease activity
4. Patient global assessment of disease activity
5. Patient assessment of pain (e.g. Visual Analog Scale)
6. Physical disability or functionality
7. Inflammatory marker: erythrocyte sedimentation rateRE® C-reactive protein (CRP)

2.1 Non-Inferiority Hypothesis

Motivated by the need to decrease sample size for a clintcalyswe propose a non-
inferiority framework to test for biosimilarity using thdimical data. This non-inferiority
trial design allows the current biosimilarity trial to meagfully connect to any similarly
conducted historical trials that have evaluated the efiéthe licensed reference biolog-
ical product. Since a standard treatment is already availmlo the medical condition,
including a placebo arm in the current trial will not be etlicWe can usé: to index the
biological product withk = 1 representing the innovator reference product ard 2 the
proposed follow-on biological product. In this case, we iaterested in testing if, based
on the composite endpoint, the proposed biological protuebt inferior to the licensed
biological product.

In this two-arm design, patients are randomized to eitherotiiginal reference or the
follow-on generic biological product. For each patienticomes on/ multiple endpoints
will be measured at pre-specified follow-up times. Thdsendpoints can be generally
considered as independent measures. We canyséo denote thejth endpoint(; =
1,2,...,J) observed in théth patient receiving the produét In this case, we can assume
that it is normally distributed as

Thji ™~ N(:ukjvo-lz’) 1)

wherek = 1 or2, andi = 1,2, ...,n,. The fixed randomization ratio is therefore equal to
R = ny/n1. py; is the mean response for thith endpoint and?; is the variance which is
assumed to be the same for &lendpoints but different between the products. In addition,
we want to consider combining thedeendpoints into a single composite binary efficacy
endpointy;; which can be generally defined as

1 T > w
Yki = { 0 otherwise @

wherexy; = (zx1i, T2i, -, Trsi)' 1S the random vector of outcomes for thb patient and

w = (w1,ws, ...,wy)" is aJ-dimensional vector of cutoff points for the endpoints coomm

to both biological products, assuming that higher values:gf's are desirable. If we

denote the probability of a response on the composite entfmi productk asp;, then

pr = P(yr; = 1) = P(xy; > w) , and our non-inferiority hypotheses of interest can be

constructed as

Hy:py—p1 < -0 Versus Hp:pos—p1 > —9. (3)

whered(é > 0) is the pre-specified non-inferiority margin for the diffeoe between the
two probabilities.
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2.2 Bayesian Hierarchical Bias M odel

Since multiple endpoints are considered in developing theposite endpoint, the Bayesian
approach allows for the borrowing of estimative strengtitwieen the/ multiple endpoints
on the precision parameters in addition to the borrowing/ben historical trials. This also
means that fewer subjects may be needed for the referendagbrand more subjects can
be randomized to the new and potentially biosimilar produdiis is a realization of the
FDA guidance regarding its suggestion to use smaller dirstudies and to convene them
based on results from previously conducted studies. Funibre, the composite endpoint
can be defined by criteria on the multiple endpoints whicthvigie clinically meaningful
interpretation. According to (2}, will be defined as a function of the parameters such
thatpr = f(uk1, k2, -y ks 0,%) fork =1or2.

In this proposed hierarchical bias model, we allow the isicn of any number of
historical trials for the licensed reference product. Bareple, if there ared historical
trials available before the conduct of the current biosanity trial, we can letry;;; be
the value of thejth endpoint observed for thigh patient receiving the original reference
productk = 1 in the hth historical trial such that

T1pji ~ N(pipg, 07) 4)

wherei = 1,2,....,n15,h=1,2,..., H,andj = 1,2, ..., J. In the above model, we assume
that theseH trials and the current biosimilarity trial share the sam#himistudy variance
parameter? and it is also assumed to be constant acrosg atidpoints. This assumption
allows borrowing between the historical trials and alsaveen the/ endpoints. In addi-
tion, we can represent th¢h sample mean as,;; which is equal ta(> """ 21,;)/n1p-
Other sample means can be similarly defined.

Additionally, under exchangeability, we consider the mparametersy; of the cur-
rent biosimilarity trial and.;,; of the hth historical trial, for the original reference product,
come from the same distribution as

fi1j, ng ~ N(ulj, 01p) (5)

whereh = 1,2,.... H. 195 is the overall mean andfb is the between-trial variance pa-
rameter, which is assumed to be the same across #redpoints. Hierarchical modeling
is a logical way of combining historical data when exchamhgiégp between parameters is
highly plausible, and as in the current problem, these héstbtrials used an efficacy re-
sponse defined by the same criterion. This hierarchicattstrel implies heterogeneity of
the mean endpoints.

For the new generic follow-on product in the current bioamity trial, we think of its
mean response on thieendpoint .z, as having a bias term from that of the mean endpoint
of the original productyu;;. Pocock (1976) discussed the parameterizing a bias term to
model the difference between mean of historical control tredsame control but in the
current trial. Therefore, we propose this relationship

f1j = p2j + & (6)

where¢; represents the bias gh; from uy;. If &; is equal to O, thems; = pi; meaning
that the follow-on product has the same mean as the licer$erdence product on thgh
endpoint. If§; < 0, then it means the follow-on product exhibits a better ¢ftean the
reference product in thgth endpoint, and the opposite interpretation follows;if> 0.
Since we do not know the true value gf we can assume a model for this bias parameter
as

& ~ N(0,0%) 7
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wherej = 1,2,...,J. We center the expectation ¢f skeptically at the null hypothesis,
0, to allow the data to reflect and influence its true directind magnitude away from the
null value. The null valu@ is the margin on the scale of individual endpoints, such that
when this margin is uniformly subtracted from all of the measponses, the probability
of the binary composite endpoint will decrease by exactyyamount o as in f (g1 —

0, k2 — 0, ooy iy — 0,02) — F(fk1, ks -y ik, 02) = —06. This relationship between
0 and@ is one-on-one. Therefore, centering the meag;obn 6 also suggests that, ;
and pip; are dissimilar to begin with. We also assume that the vaeiqm’ameterrg to

be the same across allendpoints but a Iargeg will suggest that this distribution is only
weakly informative. Figurgll displays the graphical repreation of this model with each
circle representing a random node, a single-line arronesaprting the dependent stochastic
relationship and a double-line arrow representing a ldgelationship.

Uzj

X2ji

Figure 1. Graphical representation of the proposed Bayesian hidraal bias model,
j=1,2,...,J.

This hierarchical bias model completely specifies the ilikdd function, and we can
consider generally uninformative prior distributions Is@s Jeffery’s priors for the param-
eters. Using Gibbs sampling, we can then directly estinfegosterior probability

P(p2 —p1 > _6’3:1]'7&:11]'7 "'7w1Hj7w2j7j = 1727"'7J)
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= E[l(p2 — p1 > —9)|T1j, 115, -, T1mj, T2j,§ = 1,2,..., J].

The decision rule is to reject the null hypothesis when thist@rior probability is greater
than a critical probability. which can be pre-specified as high as 95% or 97.5% depending
on the clinical significance.

2.3 Determination of Bayesian Non-Inferiority Margin

Another major challenge in a non-inferiority trial designtd determine the NI margit
and hence its correspondidigfor each of the individual endpoints. One way to spedify
is to mirror the fixed margin method in the frequentist pagadin the current Bayesian
paradigm (Gamalo, Wu, Tiwari, 2012; Gamalo, Tiwari, LavVang013). In the frequentist
paradigm, the NI margin is set to be the lower bound of thé%(1 — «) confidence
interval for the effecp;;,, — pons in a selected historical placebo-controlled trial where
Oh' represents the placebo arm and represents the innovator reference product arm in
this trial. This historical placebo-controlled trial was usually a trial that led to its first
FDA approval.

If we assume a similar model as in (4) for the placebo andrreat arms in this
placebo-controlled trial

Tinji ~ N (ks O )
wherek = 0 or 1 and elicit a flat non-informative prior fqiy, ; as inP(ug ;) o< 1 and a
Jeffery’s prior for the variance?,, as inP(c7,,) « 1/0%,,, then

2
g
. — kh/
prnjlXen, g = 1,2,..,J ~ N (wkh/j, >
Nk

J Mgps
. Jnkh/ 1
Uzh/‘wkh/‘jh] = 1,27...,J ~ IG 9 ,§ZZ(xkh/ji _,ukh,j)2 . (8)
j=11i=1

We can use Gibbs sampling to simulate f@f — por,, and solve for as the lower bound
of the100%(1 — «) credibility interval such that

9)

P(plh’ — Pon’ > 5‘w0h’j7w1h’j7j = 1,27...,J) 2 1—

|9

In addition, we want to explore a slightly more conservativargind, = (1 — A\)J where
0 < X < 1. This margind, can represent the clinically relevant effect that the foton
generic product should not be worse than the innovatoreeter product. Examples af
are 0% (full margin:dy = ¢), 25%, or 50% (half of the marginiy 5 = §/2).

3. Simulation Study

3.1 Simulation Objectivesand Plan

In order to characterize the operating characteristichisBayesian non-inferiority design
for biosimilarity, we will conduct a simulation study that motivated by our previous
example of rheumatoid arthritis. The primary compositecatfy endpoint is the ACR20 at
6 months (or 24 weeks) although ACR50, ACR70, or ACR20 atrdihge points can be

secondary endpoints for generating future hypothesesteTibeo safety endpoint in this
study and it can be assumed that doses higher than the recwlachdose do not create
safety concerns.
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Table 2: Historical trial on monotherapy of Etanercept (25mg/mt$ anonths - Moreland
etal, 1999

k Treatment ny P(ACR20=1)0rpr  fikr  fue  fks  [ka  fks (ke fix7 o}
0R’ Placebo 80 11% 6% 7% 2% -3% -22% 2% -207% 1600%
11’ Etanercept (25mg/mL) 78 59% 56% 47% 44% 46% 53% 39% 31% 1600%

Note: Forfi;7, CRP is used instead of ESR. The variance was reported inldMuafet al, 1997 and was assumed to
be 1,600% for the calculation of sample size.

Table 3: Simulation setting for the current non-inferiority bioslarity trial

Parameter Values Description
A 0,0.25,0.5 Sizing factor for non-inferiority margin
o= (1-X)0 b0 = 8,00.25 = 0.758, 0.5 = 0.56 Re-sized non-inferiority margin for
0 0o, 60.25,60.5 Re-sized non-inferiority margin fat
A -2,0,2 Impact of constancy assumption
pij, 0% iy = pang + D, o, Use historical trial on Etanercept (25mg/ML) arm in TdHle 2
U2j, O3 w1 — O, 03 For assessing Bayesian type | error
Haj, O3 pj — 0q (0, =0,0,/2), 0%, For assessing Bayesian power
n 60, 120 Overall trial sample size
R 1,2 Fixed randomization ratio
De 95%, 97.5% Critical probability
N determined by simulation Number of posterior Gibbs samaftes 10% burn-in

The ACR20 has seven components and they represent sepaegerees of symptoms
asin Tabl€ll. These components are generally assumed tdpeimdent measures. There-
fore, J is equal to7 such thatu,; anduy, are at least0% and at least 3 of ugs, ..., 7}
are at leasR0% wherek = 0h/,1h/,1h,1,2 andh = 1,2, ..., H. The objectives of this
simulation study are (1) to assess the type | error in the Slageparadigm under the null
hypothesis and to compare it with that in the frequentisaggm, (2) to evaluate the sta-
tistical power in the Bayesian paradigm under the alteradtypothesis given overall sam-
ple sizen and randomization rati®® as well as to compare it with that in the frequentist
paradigm, and (3) to characterize the impact of diffepeas ind, andp. on the aforemen-
tioned characteristics.

As a real-life motivating example, we conducted a literatsearch on historical trials
on Etanercept. Etanercept is a TNF receptor (p75) fusioteprdinked to the Fc portion
of human IgG1. We found five published studies: (1) Morelatdl. (1997), (2) Moreland
et al. (1999), (3) Weinblatet al. (1999), (4) Bathoret al. (2000), and (5) Klareskoegt al.
(2004). Among these studies, only one of them (Morelahdl., 1999) was a confirma-
tory placebo-controlled trial for the monotherapy of Etaegt (25mg/mL) while the other
trials studied either combined therapies of Etanercepbwel doses of Etanercept. Etan-
ercept (25mg/mL) was administered subcutaneously twiceekwnd the primary efficacy
endpoint is ACR20 at 6 months (or 24 weeks). This trial leds2d-DA approval for RA in
1998. Therefored = 1, and we will use this historical trial to determine the NI giaras
well as including it in the hierarchical bias modél = k). Tabld2 summarizes the partial
result from this historical trial. A positive percent chanig interpreted as a reduction in
the corresponding symptom component while a negative pecb@ange means an increase.
Table[3 describes the simulation setting for the follow-@widgical product in the current
proposed biosimilarity study.
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3.1.1 Simulation Results

Using the estimated means from Table 2 and the simulatidimgéaid out in Tablé B, we
simulated patient-level data for the selected historidal. tUsing this hypothetical patient-
level data, we generated Gibbs samplings on the parameigrs, 1115, agh,, andafh,.
Using these chains of sampling, we derived the posteriopkamof the probability of clin-
ical response ACR2(Qyq,, andpyy/, and hence their difference;,, — pon,. The lower
bound of the 95% credibility interval is estimated to(bé604. Therefore, under different
pre-specified sizing factors, we can state the different NI margins for subsequent simula
tion: A = 0 will give §p = 0.4604, A = 0.25 will give dg 25 = 0.3453, and finallyA = 0.5
will give 695 = 0.2302. We can find their correspondingy 0y = 34.7, 0g05 = 22.2,
andd, s = 14.0. Using the same patient-level data, we also calculatedribigapilities of
clinical response ACR20py,; = 0 andp;» = 0.5641 under the frequentist perspective.
The estimate for the treatment arm is not far from the onertedan this historical trial
(59% in TabléR), but the estimate for the placebo arm is uedémated (11% in Tablg 2).
The lower bound of the 95% confidence interval is therefotenaesed to be 0.4019. The
corresponding re-sized NI margins will be 0.4019, 0.301% @.2009. These are some-
what smaller than the corresponding ones estimated in tiiedtan method above. Based
on the same simulation plan as described in Table 3, we ctedisabsequent simulation
using 10,000 simulated identical trials. The same simdlai®-arm trial data will be used
to determine if the trial is a success separately for theqeeg Bayesian method and the
standard frequentist method. Figlite 2 shows the resulteo$ithulated type | error under
both analytical paradigms and Figutés 3 Bhd 4 display thdtrekthe simulated statistical
powers.

0.95

b=

.= 0.975

000 00s 010
28
o
S8
s
0.05
N

Figure 2: Plot of type | error against value af = yi1; — pyp; for all j. Setting isn = 60,
R=1,andp. =0.95
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0.95
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Figure 3: Plot of type statistical power against value &f = ji1; — 115, for all j. Setting
iSd, = 0x/2,n =060, R =1, andp. = 0.95.

In Figure[2, we observe general preservation of type | ernateu 0.025 when\ =
pij — pin; = 0 or 2, but inflated type | error whedd = —2. That is, when the refer-
ence product is performing identically or better in the eatrbiosimilarity trial than in the
reference historical trial, the type | error is controllender the target size. However, if it
performs worse in the current trial than in the historicallfithe type | error is inflated, for
both the Bayesian and the frequentist methods. Howevey,iasreases t@.5 when the
NI margin gets closer t6.2302, the type | error inflation is possible in the frequentist ap-
proach but not the proposed Bayesian approach. In factypled error under the Bayesian
method is well-controlled under 0.01 even when the refergaroduct is doing worse in
the current trial when is close t00.5. Both methods are able to preserve the type | error
at 0.025 whemA = 0, that is when the effect of the reference product is constahbth
trials. The inflation of type | error, when reference prodisctioing worse in the current
trial, is possibly due to the larger lower bound%% credibility interval in the historical
trial as related to the reduced effect size of the referenodyet comparing to the putative
placebo, which does not exist in the current trial. Howesasp, increases, the re-sized NI
margin narrows, due to the influence of the skeptical prior£fo the proposed Bayesian
method is able to protect the inflation of type | error, everewh < 0 but the frequentist
approach cannot.

In Figured 8 andl4, we can see that wher- 0 andA = 0,2, that is, when the full
NI margin is used, the statistical power of the Bayesian wukth unanimously higher than
that of the frequentist method. As for = 0.25 and A = 0, 2, statistical power of the
Bayesian method is smaller than that of the frequentist atetimly when sample size is
small as inn = 60 and when the alternative is & = dy.25/2. Other than that, the power
of the Bayesian method is superior to the frequentist meti#&i)\ increases to 0.5 and
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Figure 4. Plot of statistical power against value df = j1; — pyp; for all j. Setting is
0e = 0,n =60, R =1, andp. = 0.95.

whenA = 0,2, the NI margin narrows down t6, 5 = 0.2302, whenn = 60 and the
alternative is either af, = d95/2 = 0.1151 or até, = 0, statistical power is very low in
both the Bayesian and frequentist approaches with the Bayesethod suffering more loss
of power due to the strong influence of the skeptical prio€ pwithin the smaller margin.
However, an increase in sample size promises a much betfgpwement in statistical
power whenj, = 0 than the improvement in frequentist power. This is mainlg ttuthe
increasing influence of the data over the skeptical nullrprasulting in improved Bayesian
power.

4. Summary and Discussion

In this paper, we have presented a Bayesian method to asesssilarity between a li-
censed reference biological product and a generic followjatso known as a subsequent-
entry) biological product. This approach adopts a nonriofity testing framework that
connects the current trial of biosimilarity to historicahts of the reference product. The
proposed Bayesian analytical approach recognizes thatfilience product was approved
for license in the past and that information in these his&ririals can be meaningfully
incorporated in the analysis of the current trial. Howewere to changing clinical prac-
tices and improvement in the overall delivery of care overeti the effect of a medicinal
product may not be always constant. This is, in the contex nbn-inferiority clinical
trial, sometimes known as the constancy assumption, therisisl difference between the
original product and placebo is assumed to hold in the cugetting of the new trial if a
placebo is in place (D’Agostino, Massaro, and Sullivan, 300l herefore, we presented
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the hierarchical model to incorporate historical trialsilerlaccounting for the potential
lack of biosimilarity via a bias parameter. In this modelnsinformative priors are elicited
for most parameters except for the bias parameter whichhaessa skeptical prior with
expectation centered on the null hypothesis. As most bicdbgroducts are meant to
treat illnesses with improvement in multiple endpoints,illustrate the application of this
method to studying rheumatoid arthritis that uses a congesiicacy endpoint known as
ACR20.

Simulation studies have demonstrated that the Bayesidmaahetsually has type | error
preserved under the-level of 0.025, comparable to a typical level assumed ineasided
non-inferiority trial. This is made possible with the plagent of the skeptical prior on the
bias parameter, even when a more relaxed critical probabili = 0.95 is used. When
the reference product performs worse in the current triad, i potential violation of the
constancy assumption, the NI margin that is based on itsridat trial appears to be wider,
thus inflating its type | error. Both Bayesian and frequemntisthods have no immunity to
this inflation, however, the Bayesian method is able to damaiethis inflation by tapping
into the influence of the skeptical null prior as NI marginnoars, therefore offering some
protection even when constancy assumption is slightlyatéal in the negative direction. It
is important to emphasize that this type | error is an err@ canditional on the outcomes
of the historical trial selected. Under this hierarchicaldal, we presume in (5) that both
p1j andpy,; come from the same underlying distribution, therefore tifiergnce A =
p1; — pan; follows the normal distributionV (0, 20%,). Another way to look at the type |
error is the average type | error rate over all possible wabie\. Further simulation can
be useful in characterizing this average type | error oMepa@gsible trial performance for
the reference product in historical and current trialss Important that, prior to the design
of the biosimilarity trial, a thorough literature searclosld be made to assess if the effect
of the reference product is consistent in the historicaldrand if the design and conduct
of these studies are not too dissimilar. If such large véiigln estimation is observed,
sources of this inconsistency should be investigated.

As for statistical power, it somewhat suffers when NI maigismall. However, as sam-
ple size increases from = 60 to 120 under smaller margins and as the follow-on product
is truly biosimilar to the reference product, we expect tlag&sian statistical power to out-
perform the frequentist approach. In addition, it will béeiresting to explore a Bayesian
two-stage adaptive design using predictive probabilitamsnterim stopping criterion. It
is possible to further reduce the expected sample size iefipec cases when a follow-on
product is biosimilar to the reference product without coompising its statistical power.

Another possibility of using hierarchical modeling is tlve¢ may be able to include
other historical trials which perhaps studied differense® of the reference product or
were conducted under systematically different trial-#pecircumstances. If such char-
acteristics can be assumed to be linearly related to theeffiparameters, their inclusion
into the model may help increase the precision of the estimaind hence the inference.

In this paper, we have illustrated the method using a cortgesidpoint that has sev-
eral separate endpoints combined into a single one. Wherireglg model the compo-
nent endpoints, it is likely that instead of the global nylbbthesis, some of the component
endpoints may have inferior means such that for sgme; < p1; — ¢ but not the oth-
ers, and this trial can still claim success based on the gireglior posterior probability.
Composite endpoint may present different null configuregiovhich may warrant further
study. In our example, we have only presented the globalcanfiguration using as the
non-inferiority margin across all component endpoints.ofiner cases, a single endpoint
or multiple endpoints are used to establish efficacy. Fomgta, for studying psoriasis, a
common chronic inflammatory skin disease characterizedthibl ted flaky patches called
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scales, there are two major endpoints: proportion of stbjetio achieved at leagb%
reduction in PASI score (PASI75) and treatment successePRllysician’s Global Assess-
ment (PGA). This Bayesian hierarchical bias approach aérbstsimilarly applied and
final inference may be based on the joint posterior proliggslithat these endpoints are
greater than their respective non-inferiority margins.
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