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Abstract 

Diabetic patients with chronic kidney disease (CKD) are at much higher risk of 

morbidity, so it is of great importance to understand the disease mechanism. We used 

metabolomics data to explore the association between estimated glomerular filtration rate 

(GFR) values, a kidney function outcome, and a panel of urine biomarkers consisting of 

about 100 metabolites. A total of 114 type II diabetic patients were included in this 

analysis. We used two approaches, LASSO and k-TSP, to classify patients into 

DM+CKD and DM-CKD groups. We also used LASSO to explore the metabolites that 

were associated with disease severity in which eGFR values were used as a continuous 

outcome. A bootstrap-permutation based stability analysis was performed to assess the 

reproducibility of each variable in a LASSO model. We also showed that LASSO 

produced a lower leave-one-out cross-validation error rate than k-TSP in the training data 

set (1.3% vs. 6.6%), and also a slightly lower prediction error rate in the validation set 

(5.3% vs. 7.9%). A newer top scoring method may help to improve the error rates.  
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1. Introduction  

 

It is estimated that over 19 million adults and children in the US (8% of the population) 

have diabetes (ADA: http://www.diabetes.org/diabetes-basics/diabetes-statistics/). 

Diabetes can lead to serious complications, such as chronic kidney disease (CKD).  

Diabetes is the leading cause of kidney failure, accounting for 44% of new cases in 2011; 

over 200,000 people with end-stage kidney disease due to diabetes were living on chronic 

dialysis or with a kidney transplant in the United States in 2011 (ADA). Effective 

therapies to prevent diabetic patients from progressing to CKD have remained elusive. 

Protein and genetic biomarkers can provide insight into biological underpinnings of CKD 

within the context of existing diabetes but may have limited value in a primary 

metabolic/environmental based disease such as diabetic complications.  Metabolomics is 

a systematic evaluation of small molecules and may provide fundamental biochemical 

insights into disease pathways. Urine metabolomics offers a wide range of measurable 

metabolites (Sweetman, et al, 1971; Nyhan, et al, 1969; Aramaki, et al, 1989) as the 

kidney is responsible for concentrating a variety of metabolites and excreting them in the 

urine. In addition, urine metabolomics may offer direct insights into biochemical 

pathways linked to kidney dysfunction.  

 

We have previously identified a signature of diabetic kidney disease that separated 

patients with diabetes and CKD from healthy controls (Sharma, et al, 2013). This led to 
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novel insights into the underlying biochemical basis for diabetic kidney disease. 

However, from a clinical perspective, it will be more useful to identify a subset of 

metabolites that best discriminates diabetics with CKD (DM + CKD) from diabetics 

without CKD (DM – CKD). By separating out the effects of diabetes itself from the 

markers of diabetic kidney disease, we will gain a better understanding on which patients 

are at greatest risk for complications. This will provide more insight into markers of renal 

dysfunction, and subsequently elucidate possible therapeutic targets for treating CKD. 

Thus, we aimed to develop a multivariate metabolomic signature that discriminates 

DM+CKD from DM-CKD, using the established definition of CKD as estimated 

glomerular filtration rate (eGFR) < 60 ml/min/1.73m
2
. In addition, to examine predictors 

of the full range of kidney function, we also identified metabolic biomarkers that 

predicted the continuous spectrum of eGFR values. In this analysis we focused on type II 

diabetes (T2DM), the more common diabetic condition, accounting for 90% of adult 

diabetes. In addition, evaluating markers of CKD amongst T2DMs, rather than including 

all diabetic types (i.e. Type I and Type II) reduces the chance of confounding since 

disease etiology and biological signatures are likely to differ between Type I and Type II 

diabetics. Data from a cohort of 114 diabetic patients were utilized.  

 

A large number of statistical methods have been developed to classify patients into two or 

more classes, such as penalized logistic regression (Zhu & Hastie 2004), decision trees 

(Breiman et al, 1984) and random forests (Breiman 2001), nearest neighbor methods 

(Ripley 1996), linear discriminant analysis (McLachlan 2004), bagging and boosting 

(Breiman 1996; Alfaro et al, 2013), support vector machines (Bennett & Campbell 2002), 

prediction analysis of microarrays (PAM) (Tibshirani, et al, 2002) and many others  

(Ripley 1996; Venables & Ripley 2002; Lu & Han 2003). Here we focused on two recent 

statistical approaches LASSO (Tibshirani, 1996; Friedman 2008) and k-TSP (Geman et 

al, 2004; Tan, et al, 2005; Leek, 2009; Damond, 2011). Both are state-of-arts approaches 

that have been shown to be efficient for variable selection when there are a large number 

of predictors, so that one can build parsimonious models for classification. LASSO is a 

regression based approach and k-TSP is rank-based. Detailed description about these two 

methods can be found in Section 3.  

 

In this paper, in Section 2, we described the study sample and the data processing steps 

for the metabolomics data. In Section 3 and 4, we briefly introduced the two statistical 

methods LASSO and k-TSP, and then we developed and compared classifiers using these 

two methods; a rigorous training versus validation paradigm was used. We also proposed 

a novel approach to perform stability analysis for models selected by LASSO; using this 

approach, a selection p-value was calculated for each selected variable in the models to 

assess the variable significance. In section 5, we discussed our contribution of the 

stability analysis to the LASSO method, summarized our findings and introduced new 

developments in the top scoring approach; at the end, we described our plans for future 

approaches.   

 

 

                                       2. Data collection and processing 

 

2.1 Materials, methods and patient samples 

As previously noted, we used eGFR values as a main measure for kidney function and 

grouped patients into the DM+CKD group if eGFR <60 ml/min/1.73m
2
 at the time of 24h 

urine collection and in the DM-CKD group otherwise.  eGFR was determined from two 

serum creatinine measurements based on the four-variable Modification of Diet in Renal
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Disease study equation (Levey, 1999).  Gas chromatography-mass spectrometry was 

employed to quantify 104 urine metabolites from a total of 114 type II diabetic patients. 

These patients were participants from our previous studies; they came from different 

geographic regions from the United States and Finland (Groop, et al, 2009; Sharma, et al, 

2011; Sharma, et al. 2013). Stratified by CKD status, the sample was randomly split into 

a training set (N= 76) for model development and validation set (N=38) for testing the 

model on an independent set.  

 

Baseline Characteristics of the DM+CKD vs DM-CKD patients were compared using 

Kruskal-Wallis tests or Fisher’s Exact tests (Table 1). On average, compared to the DM-

CKD patients, the DM+CKD patients were  marginally older, more likely to be non-

white,  and had higher BMI,  lower blood pressure,  longer diabetic duration, lower 

HbA1c %, and higher serum creatinine level.  Age, gender, race, BMI, DM2 duration, 

MAP (mean arterial pressure = (2xDiastolic BP+Systolic BP)/3), HbA1c %, and urine 

ACR were included in the analyses below as predictors for eGFR outcomes. 

 

Table 1. Baseline characteristics (mean +/- SD for continuous variables, count (%) for 

binary variables) of the study sample. 

 

1:training 

DM+CKD 

2:training 

DM-CKD 

3:validation 

DM+CKD 

4:validation 

DM-CKD 
p 

n 49 27 24 14 
 

Age, years 64.7 +/- 9.9 59.4 +/- 7 63.1 +/- 8.5 58.5 +/- 6.7 0.014 

Race: non-white 25 (52%) 0 (0%) 10 (42%) 1 (7%) 4.40E-07 

Race: white 23 (48%) 27 (100%) 14 (58%) 13 (93%) 
 

Gender Male 

           Female 

31 (63%) 

18 (37%) 

14 (52%) 

13 (48%) 

17 (71%) 

7 (29%) 

9 (64%) 

5 (36%) 
0.59 

BMI, kg/m2 34.7 +/- 7.3 
23.9 +/- 

2.8 
31.1 +/- 5.6 26.5 +/- 4.7 5.50E-11 

Smoking: Never 22 (45%) 10 (37%) 10 (48%) 7 (50%) 0.84 

Smoking: Ever 27 (55%) 17 (63%) 11 (52%) 7 (50%) 
 

Systolic BP, mmHg 131 +/- 14.8 
136.6 +/- 

16 

131.2 +/- 

17.5 

143.4 +/- 

14.7 
0.037 

Diastolic BP, 

mmHg 
70.2 +/- 7.2 

80.6 +/- 

8.7 

73.1 +/- 

10.4 
86.2 +/- 7.1 4.00E-08 

Type 2 DM 

Duration, years* 
16 (10, 25) 11 (8, 18) 13 (9, 18) 10 (8, 14) 0.034 

HbA1c, % 7.3 +/- 1.2 8.6 +/- 1.3 7.3 +/- 1.2 8.1 +/- 1.3 0.00084 

Serum Creatinine, 

mg/dL 
2.2 +/- 0.7 0.9 +/- 0.1 2.1 +/- 0.8 1 +/- 0.2 1.90E-16 

Albumin/Creatinine 

Ratio* 

0.19 (0.04, 

1.22) 

0.08 (0.04, 

0.13) 

0.26 (0.14, 

0.82) 

0.14 (0.06, 

0.35) 
0.11 

eGFR, 

ml/min/1.73m
2
 

35.2 +/- 11.1 
82.8 +/- 

16.6 

35.9 +/- 

11.6 
74 +/- 10.2 6.30E-17 

*Median and interquartiles are presented.  

 

 

2.2 Data filtering, manipulation and imputation 

A total of 104 metabolites were considered. Metabolite distributions were examined and 

assessed for excessive number of zeros and missing values, and 87.9% of the metabolites 
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did not have any missing values. Among those with missing values, the proportion of 

missing values per metabolite ranged from 1% to 47.5%. Five metabolites were excluded 

from the analysis set due to a large number of missing values (> 15%).  If over one-third 

of values for a metabolite were zero, that metabolite was dichotomized to 1 if it had a 

nonzero value, and 0 otherwise; 5 were excluded due to fewer than 15% nonzero values.  

The remaining 99 metabolites (71 continuous, and 28 dichotomized) were used for 

analysis.  Occasional (often < 7.5%) missing values were imputed using the mean for that 

variable across all subjects with available data. If a binary metabolite variable had 

missing values, its value was imputed as a random draw from a Bernoulli distribution 

with proportion  parameter set equal to the proportion of nonzero values in the observed 

non-missing data for that metabolite. A log2 transformation was applied to the 71 

continuous variables; if a metabolite value was observed to be zero, a quantity of half of 

the minimum value of that metabolite was added to ensure that all values were non-zero 

before applying the log-transformation. 

 

 

3. Statistical methods 

 

We used a split-sample training-validation paradigm to avoid overfitting, and to obtain 

optimism-corrected estimates of prediction error. We randomly allocated patients into 

training and validation sets based on a ratio of 2:1 and stratified on CKD status, so we 

had 76 patients in the training set and 38 in the validation set. All models were developed 

using only the training set; prediction accuracy was evaluated and the different classifiers 

were compared using the validation set. 

 

3.1 eGFR as a binary outcome 

 We first developed models to discriminate between diabetics with and without CKD 

(DM+CKD or DM-CKD) based on the clinical cutpoint of eGFR <60 ml/min/1.73m
2
. 

 

3.1.1 Univariate analysis.  

A univariate Welch’s t-test was first used to compare each continuous metabolite marker 

(log2 transformed) between T2DM patients with and without CKD in the training set. For 

dichotomized variables, a Fisher's exact test was used to compare the two groups. P-

values were adjusted to control false discovery rate (FDR), using the Benjamini-

Hochberg procedure (Benjamini and Hochberg, 1995).  Metabolites with FDR≤ 0.05 in 

this training set analysis were then compared in the validation set samples, and 

metabolites with Bonferroni (Abdi, 2007) adjusted p-value ≤ 0.05 were considered to be 

validated, and deemed to be significantly different between DM+CKD and DM-CKD 

groups. 

 

3.1.2 Multivariate analysis   

The univariate approach, useful for identifying differentially expressed metabolites, does 

not provide an algorithm for classifying metabolites to disease groups. Multivariate 

approaches are needed to develop classifiers. We first used Principal components analysis 

(PCA) to reduce dimensionality and examine if the first few principal components are 

able to separate the DM+CKD vs DM-CKD groups (data not shown). A disadvantage of 

PCA is that all metabolites are used to create the principal components, so that a subset of 

most predictive metabolites is not selected.  Thus, to identify parsimonious metabolite 

sets, we applied two methods, the LASSO and k-TSP, to elicit a subset of metabolites 
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that could be used to discriminate the DM+CKD versus DM-CKD classes. We briefly 

describe these methods below. 

 

3.1.2.1 LASSO  
The Least Absolute Shrinkage and Selection Operator (LASSO) is a powerful tool for 

model selection when the number of the predictors is large (Tibshirani, 1996; Park and 

Hastie, 2007). Different from generalized linear models, it adds a L1-regularized term, 

which results in variables with strong associations with outcomes being selected, while 

those with weak associations omitted because their coefficients are set to zero. Since our 

outcome is a binary variable reflecting CKD status, the LASSO model solves for β by 

minimizing the following objective function: 

                                   |log(p/(1-p)) – Xβ|
2
+ λ|β|1 

where p is the probability of having CKD, |.|
2
 is the usual residual sum of squares, and |v|1 

is the L1-norm of a vector v. Five-fold cross validation and a grid search was used to 

determine λmin, the L1-regularization parameter that minimized the misclassification error. 

However, as recommended, we used the value λmin+1se  for the parameter to avoid 

overfitting (Waldmann 2013), where λmin+1se is the largest λ such that the error is 

within 1 standard error of the minimal mis-classification error rate. 

 

Before running LASSO, all the variables were standardized. The analysis was 

implemented using the R-glmnet package (Friedman, et al, 2010). 

 

3.1.2.2 k-Top scoring pairs (k-TSP) 
The Top Scoring Pair classifier is a rank-based approach that searches initially for a pair 

of features (e.g., genes, metabolites)  whose expression values switch most consistently 

(Geman, et al, 2004; Xu, et al, 2005; Leek, 2009).  It classifies patients into disease 

groups based on the relative expression of that pair, say Xi and Xj. The score was defined 

as the absolute difference of two marginal probabilities Pr(Xi<Xj|DM+CKD) and Pr(Xi < 

Xj |DM-CKD). The top scoring pair would be the one that achieves the largest score. For 

prediction, suppose Xi<Xj classifies patients into DM+CKD in the training set, for a new 

sample, if Xi,new < Xj,new, then the “new” sample is classified as belonging to DM+CKD; 

otherwise, the sample is classified to DM-CKD. If there are tied TS pairs, a secondary 

score is created to pick the pair that has the largest average rank difference between two 

classes (Tan, et al 2005).  To improve performance, k disjoint top pairs can be used 

together for classification (Tan, et al 2005; Damond, 2011), and a majority voting 

procedure is used to determine the predicted class of a new patient. For this reason, k is 

set to be odd numbers only, i.e. k=1, 3, 5, 7, 9, etc. Cross validation is used to determine 

the optimal choice for k to minimize classification error rate. It has been shown that 

TSP/k-TSP is simple and accurate, and it is very easy to interpret the results. 

Furthermore, it often outperforms some complex machine learning methods such as k-

nearest neighbor and naïve Bayes (Tan, et al 2005).  

 

We applied the TSP/k-TSP algorithm to identify pairs of metabolites for classifying 

patients into DM+CKD vs DM-CKD groups.  All the continuous predictors were 

standardized so that all the variables were comparable.  This analysis was performed 

using the R-ktspair package. 

 

 

3.2 Metabolites and eGFR values on a continuous range 

To examine metabolite predictors of the entire range of kidney function, we used eGFR 

values as a continuous outcome.  
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3.2.1 Univariate analysis:  
Spearman rank correlation was used to explore the association between a continuous 

predictor and the outcome, and a Wilcoxon rank sum test was used for a binary predictor. 

Other steps were the same as those used in Section 3.1.1.  

 

3.2.2 Multivariate analysis 

A linear model with variable selection implemented via the LASSO was fitted to the 

training set. Five-fold cross validation was used to select the regularization parameter that 

minimized mean absolute error. Predictors included the 99 metabolites, and all the 

clinical variables mentioned in section 2.1 right above Table 1. The outcome eGFR 

values were log2 transformed. Root mean square error (RMSE) and Spearman 

correlations were calculated on the validation data set for the observed and predicted 

eGFR values from the final LASSO model.  For this analysis, the TSP approach is not 

applicable as it only applies to categorical outcomes. 

 

3.3 Bootstrap-permutation based stability analysis for LASSO 

We examined if the selected metabolites were reproducible, i.e., would we obtain the 

same “predictive” set of metabolites for a different sample of diabetics with and without 

CKD drawn from the same underlying population as the study sample?  Therefore, we 

conducted the following stability analysis to evaluate reproducibility of the models.  

 

To evaluate the stability of a selected model, first, we drew N bootstrap samples of the 

same size of the training set from the training data set. LASSO was run on each of these 

bootstrap samples. The regularization parameter was re-estimated for each bootstrap 

sample. The proportion of the times that each metabolite was chosen was calculated. To 

be more specific, suppose a variable x was selected M times via the LASSO procedure in 

N bootstrap samples, this proportion is P=M/N. Metabolites chosen with high probability 

across the bootstrap samples were regarded as stable. 

 

Second, we used a permutation test approach to assess if the proportion of a variable 

being chosen, P=M/N, was “significantly” higher than by mere chance. To assess this, 

outcome labels were randomly permuted (DM+CKD vs. DM-CKD for the binary 

outcome or individual eGFR values for the continuous outcome) K times. For the kth 

permuted sample, N bootstrap samples were obtained and LASSO was re-run to obtain Pk 

(=Mk/N), where Mk is the number of times the variable x was chosen in the kth sample; 

k=1, 2, …, K.  

 

Lastly, we assigned a selection p-value to each variable in the selected model by 

calculating  Prob (Pk >P), where k goes from 1 to K.  

 

 In this paper, we used N=500 and K=1000.  

 

3.4 Model comparisons 

For the binary outcome, i.e. DM+CKD vs. DM-CKD, models selected by LASSO and k-

TSP were compared by computing (1) leave-one-out cross validation mis-classification 

error rate using the training data set,  and (2) prediction error rates using the validation 

data set.   In calculating (1), in the LASSO model, the regularization parameter was re-

estimated at every round; in k-TSP, we fixed k=3 every round, but three pairs of variables 

could differ each time.   
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4. Results 

4.1 Metabolite signature of DM+CKD and DM-CKD groups 

4.1.1 Univariate analysis comparing DM+CKD and DM-CKD groups  
Univariate t-tests or Fisher’s exact tests showed that among 99 metabolites, from the 

training set, 75 were significantly different between DM+CKD and DM-CKD patients 

after FDR adjustment ((FDR < 0.05). Based on the validation set, 45 of these were still 

found to be significant after Bonferroni adjustment. The significant results are shown in 

Supplementary Table 1.  

 

4.1.2 Multivariate classification of DM+CKD and DM-CKD groups 

LASSO for variable selection: The LASSO method selected 10 variables to be included in 

the final model (Table 2).  Direction of the association with CKD was indicated by the 

signs of the coefficients (i.e., positive coefficients indicate increased risk of CKD). Re-

fitting the models based on 500 bootstrapped samples showed that the first 6 variables 

were quite robust because over 60% of the models selected them. Stability analysis 

showed that, 8 out of these 10 variables had a p-value<0.05. Exclusion of these two 

insignificant variables should have little impact on the prediction performance. 

 

Table 2: Model selected by LASSO using eGFR as a binary outcome (DM+CKD vs. 

DM-CKD) with stability analysis results. Variables were sorted based on selection 

probabilities. 

 

 Variable (HMDB number for 

metabolites) 

Mean 

coefficients  

  P 

Probability 

of being 

selected  

Prob. 

(P>  ) 

 

Glycolic Acid (00115) -0.5775 0.886 0.001 

Sebacic Acid, binary (00792) -0.3372 0.786 0.002 

3-Hydroxy Isovaleric Acid (00754) -0.3729 0.744 0.001 

Methylmalonic acid, binary (00202) -0.2055 0.642 0.005 

BMI 0.1644 0.606 0.033 

Oxalic Acid (02329) 0.2180 0.604 0.021 

2-Hydroxyadipic acid (00321) -0.0910 0.382 0.035 

Aconitic Acid (00072) -0.0753 0.354 0.033 

4-Hydroxybutyric acid, binary (00710) -0.050 0.222 0.091 

4-Hydroxyisovaleric acid, binary (02011) -0.0001 0.210 0.093 

 

 

Classification using k-TSP 

When TSP was applied, i.e., only one pair of the predictors was used to classify patients, 

two metabolites, homovanillic acid and oxalic acid, were chosen as the highest scoring 

pair. When using k-TSP, two more pairs of metabolites were chosen. Five-fold cross 

validation from the k-TSP method chose k=3. The three pairs of metabolites were used 

together to classify patients: a patient was classified to the DM+CKD group if the 

following two or more criteria were satisfied: Homovanillic acid < Oxalic acid; 4-

Hydroxyisovaleric acid (binary) <Succinylacetone (binary); 3-Hydroxyisovaleric acid 
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 < 2-Hydroxyhippuric acid (binary) (Fig. 1). Since the second pair had both dichotomized 

variables, they were not plotted.  Note that the continuous variables were standardized.  

 

Figure 1. Two of the three pairs of metabolites selected by k-TSP to predict CKD vs. no 

CKD. The second pair 4-Hydroxyisovaleric acid and Succinylacetone-1-4 were both 

binary variables was thus not plotted. All the continuous predictors were standardized.  

 
 

 

4.1.3 Comparisons of the discrimination of LASSO and k-TSP  

 

Based on the training set, TSP gave a cross-validation error rate of 0.079, which was 

slightly higher than the rate from using k-TSP which was 0.066 (Table 3). Using more 

variables, the model selected by LASSO had even lower leave-one-out cross-validated 

mis-classification error rates compared to k-TSP (0.013 vs. 0.066).  LASSO also 

produced a lower prediction error rate than k-TSP (0.053 vs. 0.079) using the validation 

data.  

 

Table 3 Classifiers chosen by LASSO, TSP and k-TSP. 

 

method LASSO      TSP k-TSP 

Classifier 

10 

variables as 

shown in 

Table 2 

Homovanillic 

<Oxalic 

Homovanillic <Oxalic; 

4-Hydroxyisovaleric acid 

(binary) < Succinylacetone 

(binary); 

3-Hydroxyisovaleric acid < 2-

Hydroxyhippuric acid (binary) 

 Leave-one-out cross-

validation error rate 

on training set 

0.013 0.079 0.066 

Prediction error rate 

on validation set 
0.053 0.156 0.079 

 

 

4.2 Metabolite predictors of the range of kidney function  

4.2.1Univariate analysis using eGFR as a continuous outcome 
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Univariate Spearman rank correlation tests or Wilcoxon rank sum tests showed that 

among 99 metabolites, from the training set, 88 were significantly associated with eGFR 

levels after FDR adjustment (FDR < 0.05). Based on the validation set, 45 of these were 

still found to be significant after Bonferroni adjustment. These significant results can be 

found in supplementary table 2. Among them, 23 of were also found significant in the 

univariate analysis performed in section 4.1.1. 

 

4.2.2 LASSO model using eGFR as a continuous outcome  

LASSO chose 17 metabolites and 3 clinical variables (DM2 years of duration, MAP and 

age) as the best predictors of eGFR values (Table 4). A stability analysis of 500 

bootstrapped samples showed that these variables were quite robust and stable. We 

noticed that the significance of most (13/17) metabolic variables was confirmed (i.e. 

selection p<0.05) by our bootstrap-permutation based method, the significance of the 

clinical variables (age, MAP, and DM2 duration) did not reproduce. This implies that the 

metabolic changes have greater or more immediate impact on CKD progression than a 

patient’s clinical characteristics. 

   

The Spearman rank correlation using the validated set between the observed and fitted 

eGFR values was 0.68, p<0.001, and the mean absolute error between these two sets of 

values in validation set was 0.36 (95%CI 0.23 -0.48).  

 

Table 4: Model selected by LASSO using eGFR as a continuous outcome with stability 

analysis results. Variables were sorted based on selection probabilities.  

  Variable (HMDB number for metabolites) 

Mean 

coefficients 

        P 

Probability 

of being 

selected  

Prob. 

(P>  ) 

 

Oxalic acid (02329) -0.0978 0.908 0.002 

3-Hydroxyisovaleric acid (00754) 0.0888 0.826 0.001 

Glycolic acid (00115) 0.1046 0.822 0.001 

3-Hydroxybutyric acid, binary (00357) 0.0773 0.774 0.002 

Oxoadipic acid, binary (00225) -0.0372 0.738 0.041 

Fumaric acid (00134) -0.0374 0.686 0.02 

Type 2 DM duration, years -0.036 0.652 0.1 

Mean Arterial Pressure (MAP) 0.0326 0.646 0.079 

Palmitic acid (00220) -0.0322 0.636 0.014 

3-Hydroxydecanedioic acid, binary 

(00350) 
0.0334 0.628 0.038 

4-Hydroxyisovaleric acid, binary (02011) 7.00E-04 0.618 0.006 

2-Hydroxyhippuric acid, binary (00840) -0.0297 0.596 0.14 

Citric Acid (00094) 0.0449 0.556 0.018 

Age -0.0245 0.556 0.2 

3-Hydroxyadipic acid (00345) 0.0188 0.500 0.22 

Methylmalonic acid, binary (00202) 0.0339 0.476 0.0499 

Aconitic acid (00072) 0.0263 0.448 0.042 

Uric acid (00289) 0.0152 0.372 0.14 

4-Hydroxyphenylpyruvic acid, binary 

(00707) 
-0.0117 0.358 0.33 

Succinylacetone, binary (00635) -0.0157 0.332 0.035 
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5. Discussion 

 

Selecting a set of biomarkers that discriminate disease subgroups could improve our 

understanding of disease progression, and could eventually impact diagnostic and 

treatment approaches. When the set of biomarkers is large, identifying a “best” subset can 

be a computationally challenging and statistically difficult because of the potential to 

overfit and obtain spurious results. Traditional methods such as step wise logistic 

regression based on AIC would fail. Given the large number of predictors, by chance 

some of them will be able to make a perfect separation between response and 

nonresponses. In addition, a model obtained from a stepwise procedure is often very 

unstable and does not validate in independent samples (Breiman, 1992). Univariate 

analysis could provide a hint of which metabolites might be relevant. However, when  

there are a large number of predictors, a greater penalty is needed  to correct for multiple 

testing, which will cause important but only weakly significant predictors to be filtered 

out before a subsequent analysis such as Gene Set Enrichment Analysis might be 

performed. Also, many of the metabolites selected as significant in the univariate analysis 

were redundant. Thus, we employed modern advanced statistical techniques to develop 

metabolomic signatures for disease classes.  

 

Our main contribution is that we have proposed a bootstrap-permutation based method to 

assess the significance of each variable selected by LASSO, as described in section 3.3. 

We first run LASSO on bootstrapped samples to obtain the observed probability that each 

variable is selected; next, we permute the outcome labels in the original data set and use 

bootstrapping again on these permuted sets to generate a null distribution for these 

selection probabilities.  The significance of these probabilities can be assessed by 

comparing the observed selection probabilities against their own null distributions.   

Our approach is straightforward, intuitive, and it was quite useful. As illustrated in an 

example in section 4.2.2 in which the outcome was a continuous variable, a large number 

of variables were chosen by LASSO, and some of them will surely drop out from the 

model when there were only slight changes in the data set, for reasons such as missing 

values on a few subjects. Thus, it was important to assess what variables were truly 

important or truly stable and what were in fact negligible among those that were selected.      

 

We used a well-researched parametric method LASSO as well as a conceptually simple 

rank-based k-TSP approach to build predictive models. These are two effective methods, 

and LASSO seems to work slightly better in our study, as shown in Table 3 of Section 

4.1.3. LASSO achieved a prediction error of 5.3% in the validation samples whereas the 

corresponding error rate for k-TSP was 7.9%. In spite of this difference, they produced 

non-overlapping predictive sets which could be both very useful in exploring the 

mechanism of the disease progression.  

 

There have been new developments related to the top scoring method since it was first 

proposed in 2004. Among them, TST (top scoring triplets) was proposed to use three 

genes together for classification (Lin et al, 2009), and then there was a further extended 

version, TSN, where N (N≥2) genes were used together to generate scores (Magis & 

Price, 2012). Furthermore, instead of using difference in marginal probabilities to 

produce scores, the Chi-squared statistic was proposed and the corresponding method 

was called TSG (Wang, et al, 2013). Here we used the original TSP/k-TSP approach and 
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we will utilize and compare these newer methods in future work. Using a newer method 

such as TSG may improve the performance. 

 

Future work will also include the interpretation of these selected models in terms of their 

biological relevance. We have developed a novel bioinformatic tool called rsMetabPPI 

that can relate these significantly differentiated metabolites to the metabolic pathways in 

diabetic kidney disease (Saito, 2014). rsMetabPPI integrates currently known human 

metabolic networks with publicly available human protein-protein interaction networks. 

We will also evaluate the metabolites chosen from these analyses and the statistical tools 

to larger datasets of patients with diabetes and the presence or absence of kidney disease. 

As there are many controversial definitions as to what constitutes kidney disease with 

diabetes, the application of metabolomics and advanced statistical tools to address this 

issue is of major clinical importance.  

 

In summary, we applied a popular variable selection technique, the LASSO, to identify a 

metabolomics signature of CKD among diabetics. As a novel contribution, we proposed a 

bootstrap-permutation method to assess stability of the signature. Furthermore, we 

compared the more complex model-based LASSO approach to a simple non-parametric 

method, TSP/kTSP, using a rigorous training-validation paradigm for developing and 

evaluating the classification rule. In future work we aim to develop biological 

metabolite/protein interaction networks associated with the metabolomics signature with 

an eye towards improving diagnosis and treatment of CKD among diabetics. 
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Supplementary Table 1. Univariate results comparing DM+CKD and DM-CKD 

patients. Only Significant results were presented here.  

 
                  Variable                             Raw p-value      FDR               Bonferroni  

                                                                                                          adjusted p-value   corrected p-value 

1 B_GLUTARIC   7.00E-08  2.20E-07  1.70E-07 

2 B_GLYCOLIC   6.10E-19  3.00E-17  1.00E-06 

3 B_3.OHPROPIONIC   0.00011  0.00019  3.50E-06 

4 B_CITRIC    2.40E-14  4.00E-13  2.30E-05 

5 B_3.OHISOVALERIC   6.10E-19  3.00E-17  2.80E-05 

6 B_2.ME.30H.BUTYRIC..1.2.  4.70E-15  1.60E-13  3.10E-05 

7 B_AZELAIC    1.70E-10  1.20E-09  6.10E-05 

8 B_HIPPURIC    2.60E-08  9.40E-08  8.80E-05 

9 B_SEBACIC.di   3.00E-10  1.90E-09  2.00E-04 

10 B_SUBERIC    3.30E-09  1.40E-08  0.00037 

11 B_ISOVALERYLGLYCINE.1.2.  2.20E-09  1.10E-08  0.00059 

12 B_2.ETHYL.3.OHPROPIONIC  6.30E-12  6.30E-11  0.00088 

13 B_ETHYLMALONIC   2.40E-07  5.40E-07  9.00E-04 

14 B_GLYCERIC   4.30E-10  2.50E-09  0.001 

15 B_ACONITIC    2.40E-13  3.40E-12   0.0012 

16 B_2.OHADIPIC   1.90E-14  3.70E-13  0.0013 

17 B_ADIPIC    3.20E-05  5.90E-05  0.0017 

18 B_3.HYDROXYISOBUTYRIC  7.90E-15  2.00E-13  0.0019 

19 B_3.OHGLUTARIC   3.00E-09  1.40E-08  0.0019 

20 B_METHYLCITRIC   4.80E-11  4.00E-10  0.0023 

21 B_2.OHISOVALERIC   1.60E-08  6.00E-08  0.0026 

22 B_2.OHPHENYLACETIC   1.10E-12  1.30E-11  0.003 

23 B_4.OH.HIPPURIC   1.10E-07  2.80E-07  0.003 

24 B_4.OHCYCLOHEXYLACETIC..1.2.  1.40E-06   3.00E-06  0.003 

25 B_3.ME.ADIPIC   1.20E-12  1.30E-11  0.0061 

26 B_INDOLELACTIC   2.80E-08  9.80E-08  0.0073 

27 B_DECADIENEDIOIC..1.2..di  1.40E-07  3.30E-07  0.0083 

28 B_4.OHBUTYRIC.di   9.20E-08  2.50E-07  0.012 

29 B_4.OHISOVALERIC.di   9.20E-08  2.50E-07  0.012 

30 B_HEXANOIC   4.70E-10  2.60E-09  0.012 

31 B_3.MEGLUTARIC.di   0.00065  0.00094  0.013 

32 B_5.HIAA    0.00011  0.00019  0.015 

33 B_N.ACETYLTYROSINE.1.2.   5.30E-05  9.30E-05  0.016 

34 B_PHENYLLACTIC   1.10E-07  2.80E-07  0.016 

35 B_4.OHPHENYLLACTIC   2.20E-06  4.40E-06  0.018 

36 B_OCTANOIC   9.90E-08  2.70E-07  0.018 

37 B_ISOBUTYRYLGLYCINE..1.2..di   3.10E-05   5.80E-05  0.021 

38 B_ISOCITRIC   8.60E-08   2.50E-07  0.021 

39 B_3.OHBUTYRIC   7.60E-08  2.30E-07  0.022 

40 B_3.MECROTONYLGLYCINE.1.2.  2.20E-10    1.50E-09  0.027 

41 B_HOMOVANILLIC   5.90E-06  1.20E-05  0.029 

42 B_OROTIC    2.00E-09  9.80E-09  0.035 

43 B_MEVALONIC.di   0.00016  0.00026  0.036 

44 B_METHYLSUCCINIC   1.40E-07  3.30E-07  0.043 

45 B_URACIL    7.50E-12  6.80E-11  0.046 
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Supplemental Table 2. Univariate results assessing the association of each metabolite 

with continuous eGFR levels. Only Significant results were presented here.  

 
                             Variable               Raw p-value   FDR          Bonferroni  

                                                                                                                     adjusted p-value     corrected p-value 

1 B_2.OXOADIPIC..S.A..di   3.98E-29  7.97E-28   9.83E-14 

2 B_PHENYLPROPIONYLGLYCINE..1.2..di 2.17E-29  7.97E-28  9.83E-14 

3 B_2.MEBUTYRYLGLYCINE..1.2..di  2.96E-29  7.97E-28  1.40E-13 

4 B_HEXANOYLGLYCINE..1.2..di  1.57E-29  7.97E-28  1.40E-13 

5 B_PROPIONYLGLYCINE..1.2..di  3.98E-29  7.97E-28  2.63E-13 

6 B_4.OHPHENYLPYRUVIC..S.A..di  1.87E-28  2.33E-27  4.50E-13 

7 B_TRANSCINNAMOYLGLYCINE0.di  2.87E-28  2.61E-27  4.50E-13 

8 B_2.OXOBUTYRIC..A.S..di   2.87E-28  2.61E-27  5.70E-13 

9 B_GLUTACONIC.di    5.30E-29  8.83E-28  5.70E-13 

10 B_ISOBUTYRYLGLYCINE..1.2..di  2.87E-28  2.61E-27  7.07E-13 

11 B_LINOLEIC.di    5.08E-28  4.24E-27  7.07E-13 

12 B_PALMITOLEIC.di    1.17E-28  1.67E-27  7.07E-13 

13 B_SUCCINYLACETONE..1.4..di   8.27E-28  5.91E-27  1.03E-12 

14 B_METHYLMALONIC.di   2.06E-27  1.09E-26  1.20E-12 

15 B_MEVALONIC.di    7.10E-28  5.46E-27  1.38E-12 

16 B_SUBERYLGLYCINE..1.2..di   1.24E-27  8.27E-27  1.56E-12 

17 B_2.OH.HIPPURIC.di    2.52E-27  1.09E-26  1.73E-12 

18 B_OLEIC.di     1.56E-27  9.73E-27  1.73E-12 

19 B_SEBACIC.di    2.22E-27  1.09E-26  1.89E-12 

20 B_3.OHVALERIC.di    2.77E-27  1.09E-26  2.15E-12 

21 B_2.OXO.3MEVALERIC.S.MU.1620.di  2.87E-27  1.09E-26  2.24E-12 

22 B_4.OHBUTYRIC.di    2.77E-27  1.09E-26  2.24E-12 

23 B_4.OHISOVALERIC.di   2.77E-27  1.09E-26  2.24E-12 

24 B_2.MEGLUTACONIC..E.Z..di   2.22E-27  1.09E-26  2.29E-12 

25 B_3.MEGLUTARIC.di    3.06E-27  1.09E-26  2.29E-12 

26 B_3.OHDECANEDIOIC.di   3.01E-27  1.09E-26  2.31E-12 

27 B_DECADIENEDIOIC..1.2..di   3.01E-27  1.09E-26  2.31E-12 

28 B_PHENYLACETIC.di    2.52E-27  1.09E-26  2.31E-12 

29 B_GLYCOLIC    2.81E-15  9.38E-15  5.13E-08 

30 B_3.OHISOVALERIC    2.28E-15  7.85E-15  3.34E-06 

31 B_AZELAIC     2.63E-10  7.31E-10  2.97E-05 

32 B_CITRIC     4.78E-11  1.37E-10  7.20E-05 

33 B_2.ME.30H.BUTYRIC..1.2.   3.11E-12  9.72E-12  8.67E-05 

34 B_3.HYDROXYISOBUTYRIC   9.44E-12  2.86E-11               0.0001067 

35 B_ACONITIC     3.70E-14  1.19E-13               0.0001453 

36 B_2.ETHYL.3.OHPROPIONIC   3.95E-10  1.07E-09               0.000419 

37 B_3.OHPROPIONIC    0.0001724 0.0002573             0.0004672 

38 B_2.OHISOVALERIC    9.34E-06  1.70E-05  0.00126 

39 B_ISOCITRIC    3.73E-11  1.10E-10  0.001272 

40 B_2.OHGLUTARIC    0.0002145 0.0003154 0.002735 

41 B_HIPPURIC     7.01E-05  0.0001079 0.005046 

42 B_GLUTARIC    0.0007523 0.001017  0.006833 

43 B_URACIL     9.82E-10  2.52E-09  0.007077 

44 B_SUBERIC     2.09E-05  3.55E-05  0.01794 

45 B_OCTANOIC    1.48E-07  3.52E-07  0.04734 
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