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ABSTRACT 
 

 This paper proposes a simple method of obtaining a predictive density for a future 

observation from a lognormal distribution, using data from an accelerated life test. It is based on 

the Maximum Likelihood Predictive Density method proposed by Lejeune and Faulkenberry in 

[1]. The resulting predictive density is a t-distribution.  A Monte Carlo simulation study was 

carried out using parameter values motivated by the data from Crawford [2] which reported a 

temperature accelerated study of motorettes insulation and used lognormal distribution to model 

the data.  Monte Carlo methods show that the predictive density provides liberal prediction 

bounds but a simple modification to the degrees of freedom yields slightly conservative coverage 

probabilities.  

 

 

I. INTRODUCTION 

 
 Life testing of components designed to last a relatively long time under field (design, 

nominal use) conditions may result in only a few, if any, failures within a reasonable amount of 

time. Under field conditions, products are subjected to stresses such as humidity, mechanical load, 

pressure, temperature, voltage, vibration, and use rate. Subjecting the components to higher than 

nominal stresses can result in more failures and such data from an “accelerated life test” can be 

employed to estimate one or more attributes of the life distribution under nominal use if a 

reasonable model relating one or more parameters of the life distribution to the stress can be 

assumed. In the following a methodology for employing data from an accelerated life test to obtain 

prediction intervals for a future log-normal observation under design stress is proposed. 

 

 A common objective in accelerated life testing is to estimate one or more quantiles of the 

life distribution under the design stress (see [3], [4], and [5]).  For example, lower quantiles are 

important for purposes such as warranty assurance. Traditionally, the point estimate for the quantile 

under investigation is obtained by substituting parameter estimates of the life distribution into the 

equations which express the quantiles in terms of these parameters. In contrast, estimating a 

predictive density for a future observation at the design stress level may be a better approach. 

This density can then be used not only to estimate quantiles of the associated life 

distribution, but also to obtain prediction bounds.  

 Parametric accelerated life testing models have two components: 1) a parametric 

distribution for the lifetime of a unit; and 2) an assumed relationship between one or more 
of the parameters of the distribution and the stress. The proposed method is developed for   
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lognormal life distributions with the mean and the log of the standard deviation of the normal 

distribution assumed to be linear functions of the stress. A modified version of maximum likelihood 

predictive density (MLPD) first proposed in [1] is used to estimate the predictive distribution of a 

future observation under nominal use.  These modifications are a direct result of our efforts to 

arrive at a predictive density with readily available percentile points. The proposed method is 

derived from procedures based on the concept of "predictive likelihood" (see [6]) and was 

introduced as a non-Bayesian method. It does have a Bayesian interpretation but we investigate its 

properties in the frequentist sense.   

 

 The field of accelerated life testing is quite extensive with many authors assuming 

exponential or Weibull life distributions with the scale parameter expressed as some function of 

stress. Others assume a lognormal (normal) life distribution with the scale (location) parameter 

expressed as a function of the stress level. A sample of these formulations are discussed in the 

following.    

 

 Reference [7] considers maximum likelihood estimation of the failure rate of an 

exponential distribution at the design stress and assumes that the exponential mean is a quadratic 

function of the stress and that failure rate is an exponential function of the stress. Reference [8] 

considers the least squares estimation of the mean of a normal distribution at the design stress and 

assumes this mean to be a simple linear regression function of the stress while the standard 

deviation is a constant. Reference [3] considers the estimation of percentiles of a Weibull 

distribution at the design stress and assumes that the scale parameter is a polynomial function of the 

reciprocal of the stress level and the shape parameter to be a constant function of stress. Reference 

[4] considers maximum likelihood estimation of a percentile of an extreme-value distribution at the 

design stress with the mean a linear function of the stress and while the scale parameter is constant. 

Reference [9] considers maximum likelihood estimation of the mean of a normal distribution at the 

design stress and assumes the mean to be a linear function of the stress and the standard deviation 

to be independent of stress. Reference [5] considers maximum likelihood estimation of a given 

percentile of a Weibull distribution at a design stress and assumes that the scale parameter is an 

inverse power function of the stress and the shape parameter to be a constant.  Reference [10] 

provides an extensive and comprehensive source for the research work done on accelerated life 

testing prior to 1990.  Reference [11] is an excellent additional reference. A predictive density 

approach to obtaining prediction bounds for Weibull distribution under accelerated life-testing 

scenario in considered in [12]. 

 
 

II. MAXIMUM LIKELIHOOD PREDICTIVE DENSITY 

 
 A brief outline of the MLPD method of deriving the predictive density is given in this 

section.  Consider a set of observations 1X , 2X ,…, nX from a distribution  ;f x   and a set of 

future observations 1Y , 2Y ,…, mY  independent of X =  1 2, ,..., nX X X   from the same 

distribution. Let Z  be some statistic based on Y =  1 2, ,..., mY Y Y  . Suppose one wishes to obtain an 

estimate of the density of Z based on the observed value x  of X . Reference [1] proposed 

       ˆ | sup ; ;f z x k x f x g z    as a "predictive probability density" function for Z , 

where  ;f x   is the joint probability density function (pdf) of the X  s and  ;g z   is the pdf of 

the statistic Z ,   is the parameter space of the unknown parameter  , and  k x  is a normalizing 
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constant. The mechanics of this procedure amounts to computing f̂  by replacing   in likelihood 

equation by its maximum likelihood estimate (MLE),̂ , based on the data  ,x z  and then 

normalizing the resulting function. It is important to note that ̂  is based on both x  and z  rather 

than on the past data x  alone. This procedure of obtaining predictive densities is known as the 

profile predictive likelihood method (see [6]) and the probability density thus obtained is called the 

maximum likelihood predictive density (MLPD) of Z .  

 

III. THE PROPOSED METHOD 

 
 Let D , L , and H  denote the design, low, and high stress levels respectively. We make 

the following model assumptions: 

A. The logarithm of the (component) life has a normal distribution with mean  V  

 and standard deviation  V  at stress V  (possibly transformed).  

B. The mean of the log life is a linear function of the stress V .  That is  

 V  = 0 1 V  .       (1) 

C. The log of the standard deviation of the log life is a linear function of the stress given by  

  0 1ln V V    .       (2) 

D. The lifetimes of the components are independent of each other. 

 

 The high stress is chosen as high as possible but not so high to invalidate the assumed 

physical model. The low stress level is chosen to be between the design stress level and the high 

stress level. It is preferable for it to be close to the design level but one has to make sure that it is 

high enough to ensure the failure of all of the components during the test (see [13]). Let D , L , 

and H  be the mean life at the design, low, and high stress levels respectively. Without loss of 

generality let 0DV  , 0 1LV  , and 1HV  , because otherwise, we can reparameterize so that 

  
1*

D H DV V V V V


   . Therefore, with the added assumption 1 0   the mean life under 

each of the three levels satisfy      D L HV V V     where   0DV  .  Let  

 D DV  ,  L LV  , and  H HV   be the standard deviations at the design, low, 

and high stress levels. Then 0ln D  , 0 1ln L LV    , and 0 1ln H    . We further 

assume that 1 0  . Let Ln  and Hn  be the number of components subjected to the low and high 

stress levels respectively and L HN n n   be the total number of components on test. The 

experiment is continued until all the components fail.  Let 1Lx , 2Lx ,…, 
LLnx and 1Hx , 2Hx ,…, 

HHnx  be the natural log failure times for the low and high stress levels respectively. Let Z  be the 

log of a future observation from the design level of stress and let

 1 2 1 2
, , ..., , , , ...,

L H
L L Ln H H Hn

X X X X X X X


 .  Then the proposed prediction bound can be found in 

the following manner.      

 

First we find the maximum likelihood estimates of L  and H  using only the data from 

low and high levels of stress (see equations A19 and A20).  Then we estimate 1  using equation 
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A21.  Using the equations A11, A12 ..., and A17 and replacing 1̂  by 1 , we evaluate quantities 

defined by 1C , 2C , …, and 7C  respectively.  Next using the evaluated values of 1C , 2C , …, 

7C  and equations A23, A24, …, A28, we estimate LjW , Lk , HjW , Hk , DW , and Dk  

respectively.  Then the quantities 0A , 1A , and 2A  are evaluated using the equations A29, A30, 

and A31 respectively.  Since the predictive density given by equation A33 is a t -distribution with 

N  degrees of freedom, we estimate the 100 p th percentile of the predictive density pz by   

 

  
1 2

1 2 2 1
0 2 1 2 ,p p Nz N A A A A t    

1
1 2A A .     (3) 

Then the 100 p th percentile of the lognormal distribution at the nominal stress level is  

 

 logp panti z  .      (4) 

 

IV. MONTE CARLO SIMULATION  

 
 All simulation work was done on an HP9000/735 machine with HP-UX operating system 

in double precision and the simulation programs were written in FORTRAN.  These programs 

called International Mathematical and Statistical Libraries (IMSL) subroutines, whenever 

applicable.  They were run on a FORTRAN 77 compiler.  Each simulation was started by setting 

the initial seed to 123457. 

 

 We investigated the coverage probabilities of the first, fifth, tenth, ninetieth, ninety-fifth, 

and ninety-ninth percentiles of the estimated predictive density for a future observation at the 

design stress level.  Specifically we estimated  ˆ
pE P Z Z 

 
 for the lower percentiles and 

 ˆ
pE P Z Z 

 
 for the upper percentiles where ˆ

pZ  is the 100 p th percentile where of the 

fitted predictive density.  We also estimated  *ˆ
pE Z  where *ˆ

pZ  is the standardized estimated 

percentile given by   * 1ˆ ˆ
p D p DZ Z V   . 

 

 Simulation parameters were motivated by the data given in reference [2] from a life test 

with several levels of acceleration.  Reference [2] fitted the Arrhenius model 

  1
0 1T T      where  T  was the logarithmic (base 10) mean life and T  was the 

absolute temperature in 
0K . The design temperature was 130

0C and the other levels of 

temperature were 150
0C , 170

0C , 190
0C , and 220

0C .   According to our parameterization, let 

  0 1V V     and   0 1ln V V    , where  

 

1
1 1 1 1

273.16 273.16 130 273.16 220 273.16 130
V

T


   

           
. 

The means of the natural log of data after 33 months at 170
0C , 190

0C  and 220
0C  were 8.36, 

7.27, and 6.30 respectively and the standard deviations of the natural log of data after 33 months 

at 170
0C , 190

0C  and 220
0C  were 0.469, 0.729, and 0.189 respectively.  Although we expect 

the standard deviation to decrease as temperature increases, in this data standard deviation has 

JSM 2014 - Quality and Productivity Section

2328



 

 

increased from 170
0C to 190

0C  before it decreases again at 220
0C .  Therefore we use the 

information from 170
0C  and 220

0C  to estimate the following linear relationships for the mean 

and the standard deviation.     

Using the data from levels 170
0C  and 220

0C  after 33 months, a linear relationship between 

 ˆln V  and V  was found to be  ˆln 0.13 1.79V V    and a linear relationship between ̂  

and V  was found to be ˆ 10.43 4.13V   .  Consider the transformation  
1

ln
10.43

y Time .  

Then we get  ˆ | 1.00 0.4y V V   . Since    ln | exp 0.13 1.79Time V V       and 

 
1

|
10.43

y V   ln |Time V     we get        ln | ln ln | ln 10.43y V Time V   = 

0.13 1.79 ln(10.43)V  = 2.21 1.79V  . 

 

For the simulation we chose the following parameter values: 0  = 1, 1  = –0.8 and –0.4, 

0  = –5.0, –3.5, and –2.0, and 1  = –0.30, –0.15, and 0.00. The values of LV  were changed 

according to LV = 0.125 (0.125) 0.5, 0.75.   Since changing 0  and 1  did not change the 

coverage probabilities significantly we report the results only for 0  = 1, 1  =  –0.4, 0  = –3.5, 

and 1  = –0.30, –0.15, and 0.00. Only limited results of the simulation study are reported in this 

paper.     

 

Using the IMSL subroutine DRNNOR two samples of size Ln  and Hn  were generated 

with means  LV  and  HV  and standard deviations L  and H  respectively. Sample sizes 

were selected according to (i) Ln =10 and Hn =10, (ii) Ln =20 and Hn =20, (iii) Ln =30 and Hn

=30, (iv) Ln =40 and Hn =40.  Since our preliminary simulations showed that using unequal 

sample sizes did not work as well as using equal sample sizes, results for only equal sample sizes 

case are reported. The 100 p th percentile of the predictive density pZ  was calculated using the 

equation (3) for p = 0.05, 0.10, 0.90, and 0.95.  Using the theoretical distribution, a normal 

random variable with mean 0  and standard deviation D , we obtained the probability that 
*Z  

will be greater than the estimates of the three lower percentiles and being smaller than the 

estimates of the three upper percentiles using the IMSL subroutine DNORDF.  Percentiles for the 

t -distribution were calculated with 5 significant digits using Statistical Analysis System (SAS) 

and used for simulations.  This procedure was repeated 10,000 times and the coverage 

probabilities were averaged.  Simulation results show that the coverages are slightly liberal.  That 

is the average of the probabilities of a normal random variable from the theoretical distribution 

being greater than the estimated lower prediction limits or being smaller than the estimated upper 

prediction limits is slightly lower than the nominal value.  Therefore an ad-hoc adjustment 

motivated by the preliminary simulation results was made in equation (3).  Replacing N  by 

 2N N   in equation (3) (including the degrees of freedom of the t -distribution) improved 

the coverage. Simulation results show that changes in 1  and 0  do not change the expected 

values of percentile points and the coverages to the third decimal place. As such simulation 

results for only a subset of parameter combinations are given in Tables 3 & 4. 
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     V. EXAMPLE 

 
Zahang et al. [14] provide data from an accelerated life test of white organic light-emitting diodes 

(Table 1).  In this research, stress factor is the current measured in mA, the design level of stress 

is 3.20mA and the three levels of acceleration are 9.64 mA, 17.09 mA, and 22.58 mA 

respectively.  They use the lognormal model to fit the data and assume the standard deviation of 

the corresponding normal distribution to be constant.  Our model assumes that 

0 1ln L LV    .  For this example, we assume that 0ln L  , or 1 0  . 

 

Table 1. Data from Example. 

Failure Times in 

Hours 

Current Stress/ mA 

9.64 mA 17.09 mA 22.58 mA 

1t  1691.50 601.50 406.00 

2t  2084.67 689.67 440.50 

3t  2100.32 697.33 463.50 

4t  2374.50 716.50 532.50 

5t  2421.50 785.50 555.50 

6t  2586.00 854.50 643.67 

7t  2621.50 889.50 651.33 

8t  2680.50 1115.67 716.50 

9t  2868.00 1131.33 762.50 

10t  2879.50 1251.50 - 

 

Using the data and equations A29, A30, and A31 it can be shown that 

0 55.16703A  , 1 5.64066A   , and 2 0.58359A  . Plugging these quantities into 

equation 3 results in  4.13602 9.66533p pt z   .   
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Figure 1. Log(Time) vs. Log(Current) 
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Table 2. Comparison of Percentiles 

Comparison of Percentiles from Our Method to Zhang et al. Method 

Percentile Zhang et al. Our Method Our Method with 

Adjustment 

Fifth 11182.12 10386.49 10290.49 

Tenth 12077.47 11441.17 11385.98 

Fiftieth 15838.04 15781.57 15781.57 

Ninetieth 20769.53 21713.43 21818.68 

Ninety Fifth 22432.55 23918.26 24127.31 

 

Table 3: Approximate coverage probabilities  ˆ
pE P Z Z 

 
 and 

*ˆ
pE Z 

 
 for 

lower percentiles. Standard deviations of the percentile points are given within 

parenthesis.  

________________________________________________________________________ 

Ln  Hn  
*
.1

ˆE Z 
 

  
*
.05

ˆE Z 
 

     .1
ˆE P Z Z 

 
  .05

ˆE P Z Z 
 

 

                        Unadjusted Adjusted   Unadjusted       Adjusted 
_______________________________________________________________________________ 

1 = -0.30, LV = 0.125  

10 10 -1.297 (0.491)  -1.690 (0.570) 0.878 0.923 0.929  0.963  

20 20 -1.296 (0.345) -1.675 (0.513) 0.890 0.917 0.940 0.961 

30 30 -1.290 (0.278) -1.664 (0.320) 0.893 0.913 0.944 0.958 

40 40 -1.290 (0.241) -1.662 (0.277) 0.895 0.911 0.945 0.957  

1 = -0.30, LV = 0.75 

10 10 -3.092 (3.802)  -4.028 (4.028) 0.895 0.932 0.937  0.966  

20 20 -2.176 (1.806) -2.814 (2.219) 0.896 0.918 0.938 0.955 

30 30 -1.860 (1.257) -2.399 (1.516) 0.895 0.911 0.937 0.950 

40 40 -1.722 (1.025) -2.216 (1.226) 0.896 0.909 0.938 0.948 

1 = -0.15, LV = 0.125  

10 10 -1.299 (0.497)  -1.692 (0.576) 0.878 0.923 0.929  0.963  

20 20 -1.297 (0.348) -1.677 (0.401) 0.890 0.917 0.940 0.961 

30 30 -1.291 (0.281) -1.665 (0.322) 0.893 0.913 0.944 0.958 

40 40 -1.292 (0.244) -1.663 (0.279) 0.895 0.911 0.945 0.957  

1 = -0.15, LV = 0.75 

10 10 -3.235 (3.824)  -4.216 (4.844) 0.899 0.935 0.940  0.969  

20 20 -2.270 (1.845) -2.936 (2.240) 0.899 0.921 0.941 0.958 

30 30 -1.932 (1.296) -2.492 (1.540) 0.897 0.914 0.940 0.953 

40 40 -1.780 (1.062) -2.219 (1.250) 0.898 0.912 0.941 0.951 

1 = 0.00, LV = 0.125  

10 10 -1.302 (0.502)  -1.696 (0.581) 0.878 0.923 0.929  0.963  

20 20 -1.299 (0.352) -1.679 (0.404) 0.890 0.917 0.940 0.961 

30 30 -1.292 (0.284) -1.667 (0.325) 0.893 0.913 0.944 0.958 

40 40 -1.292 (0.246) -1.664 (0.282) 0.895 0.912 0.945 0.958  

 

1 = 0.00, LV = 0.75 

10 10 -3.406 (3.858)  -4.438 (4.852) 0.899 0.938 0.943  0.971  

20 20 -2.384 (1.898) -2.083 (2.272) 0.901 0.924 0.944 0.961 

30 30 -2.019 (1.349) -2.604 (1.575) 0.900 0.917 0.943 0.956 

40 40 -1.850 (1.111) -2.382 (1.285) 0.901 0.915 0.944 0.954 

____________________________________________________________________________ 
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Table 4: Approximate coverage probabilities  ˆ
pE P Z Z 

 
 and 

*ˆ
pE Z 

 
 for 

upper percentiles.  Standard deviations of the percentile points are given within 

parenthesis. 

________________________________________________________________________ 

Ln  Hn  
*
.90

ˆE Z 
 

  
*
.95

ˆE Z 
 

     .90
ˆE P Z Z 

 
  .95

ˆE P Z Z 
 

 

                        Unadjusted  Adjusted    Unadjusted  Adjusted  
_______________________________________________________________________________ 

1 = -0.30, LV = 0.125  

10 10 1.305 (0.491)  1.697 (0.571) 0.879 0.924 0.930  0.964  

20 20 1.301 (0.345) 1.681 (0.398) 0.891 0.916 0.941 0.961 

30 30 1.293 (0.284) 1.666 (0.327) 0.893 0.913 0.943 0.958 

40 40 1.291 (0.243) 1.662 (0.279) 0.895 0.911 0.945 0.957  

 

1 = -0.30, LV = 0.75 

10 10 3.124 (3.825)  4.061 (4.869) 0.901 0.937 0.941  0.969  

20 20 2.191 (1.792) 2.829 (2.206) 0.898 0.920 0.939 0.956 

30 30 1.865 (1.275) 2.404 (2.536) 0.893 0.909 0.935 0.948 

40 40 1.714 (1.031) 2.209 (1.233) 0.894 0.908 0.937 0.948 

 

1 = -0.15, LV = 0.125  

10 10 1.308 (0.496)  1.701 (0.576) 0.879 0.925 0.930  0.964  

20 20 1.303 (0.349) 1.683 (0.401) 0.891 0.918 0.941 0.961 

30 30 1.294 (0.287) 1.668 (0.329) 0.893 0.913 0.943 0.958 

40 40 1.291 (0.245) 1.663 (0.281) 0.895 0.911 0.945 0.957  

 

1 = -0.15, LV = 0.75 

10 10 3.273 (3.850)  4.254 (4.871) 0.903 0.940 0.944  0.972  

20 20 2.287 (1.830) 2.953 (2.225) 0.901 0.923 0.942 0.959 

30 30 1.937 (1.317) 2.497 (1.563) 0.896 0.912 0.938 0.951 

40 40 1.771 (1.069) 2.282 (1.258) 0.897 0.911 0.940 0.951 

 

1 = 0.00, LV = 0.125  

10 10 1.311 (0.502)  1.706 (0.580) 0.879 0.925 0.930  0.964  

20 20 1.305 (0.353) 1.685 (0.405) 0.891 0.918 0.941 0.961 

30 30 1.295 (0.291) 1.669 (0.332) 0.893 0.913 0.943 0.958 

40 40 1.292 (0.248) 1.664 (0.283) 0.895 0.912 0.945 0.958  

 

1 = 0.00, LV = 0.75 

10 10 3.448 (3.887)  4.481 (4.881) 0.906 0.942 0.947  0.974  

20 20 2.402 (1.882) 3.102 (2.254) 0.904 0.926 0.945 0.961 

30 30 2.024 (1.371) 2.609 (1.599) 0.898 0.915 0.941 0.954 

40 40 1.841 (1.119) 2.372 (1.293) 0.899 0.913 0.943 0.953 

________________________________________________________________________ 

 

  

 

 
 

JSM 2014 - Quality and Productivity Section

2332



 

 

REFERENCES 

 

[1] M. Lejeune and G. D. Faulkenberry,  "A Simple Predictive Function", Journal of the 

American Statistical Association, 77, pp 654-657, 1982. 
 

[2] D. E. Crawford, "Analysis of Incomplete Life Test Data on Motorettes", 

 Insulation/Circuits, 16, pp 43-48, 1970. 
 

[3] N. R. Mann,   "Design of Over-Stress Life-Test Experiments When Failure Times 

Have a Two Parameter Weibull Distribution", Technometrics, 14, pp 437-451, 1972.  
 

[4] W. Q. Meeker and W. Nelson, "Optimum Accelerated Life-Tests for the  Weibull 

and Extreme Value Distributions", IEEE Transactions of Reliability, 

  R-24, 5, pp 321-332, 1975. 
 

[5] W. Nelson and W. Q. Meeker, "Theory for Optimum Accelerated Life Tests for 

 Weibull and Extreme Value Distributions, Technometrics, 20, pp 171-177, 1978. 
 

[6] J. F. Bjornstad, "Predictive Likelihood: A Review", Statistical Science, 5,  

 pp 242-265, 1990. 
 

[7] H. Chernoff, "Optimal Accelerated Life Designs for Estimation", Technometrics, 

 4, pp 381-408, 1962.  
 

[8] R. E. Little and E. H. Jebe,  "A Note on the Gain in Precision for Optimal 

 Allocation in Regression as Applied to Extrapolation in S-R Fatigue Testing", 

 Technometrics, 11, pp 389-392, 1969. 
 

[9] W. Nelson and T. J. Keilpinski, "Theory for Optimum Accelerated Life Tests for 

Normal and Lognormal Life Distributions", Technometrics, 18, pp 105-114, 1976. 
 

[10] W. Nelson, Accelerated Testing: Statistical Models, Test Plans, and Data 

 Analysis. New York: John Wiley, 1990. 
 

[11] W. Q. Meeker and L A. Escobar: Statistical Methods for Reliability Data. New  

 York: John Wiley, 1998.   

 

[12] A. A. Jayawardhana and V. A. Samaranayake, "A Prediction Bounds in   

Accelerated Life Testing: Weibull Models with Inverse Power Relationship". 

Journal of Quality Technology, 35, No.1, pp 89-103, 2003.  
  
[13] W. Q. Meeker and G. J. Hahn, "How to Plan Accelerated Life Tests: Some Practical 

Guidelines", Volume 10 of the ASQC Basic References in Quality Control: 

Statistical Techniques. American Society of Quality Control, Milwaukee, 

 Wisconsin, 1985. 
 

[14] J. Zhang, F. Liu, Y. Liu, H. Wu, and A. Zhou, “A Study of Accelerated Life Test of 

White OLED Based on Maximum Likelihood Estimation Using Lognormal 

Distribution”, IEEE Transactions on Electronic Devices, Vol. 59, No. 12, December 

2012.     

 

 

 

JSM 2014 - Quality and Productivity Section

2333



 

 

APPENDIX  

DERIVATION OF THE PREDICTIVE DENSITY 

 
We assume the model formulation given in the section on proposed method.  

Then the joint probability density function of X  and Z  is 

 ,f x z  =  
 1

2
N


 

Ln
L  Hn
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 Then the log likelihood function given observations x =  1Lx , 2Lx ,…, 
LLnx , 

1Hx , 2Hx , …, 
HHnx

and z  is  

  0 1 0 1ln , , , | ,f x z    =     1 ln 2N    0 1L Ln V    0 1Hn     
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Taking partial derivatives of   0 1 0 1ln , , , | ,f x z     with respect to 0  and 1 , 

setting them equal to zero we obtain 

1N    =   1

2
ˆ22

0 1

1

ˆ ˆˆ
L

L

n
V

D Lj L

j

e x V
  



    1

2
ˆ22

0 1

1

ˆ ˆˆ
Hn

D Hj

j

e x
  



   

     
2

2
0

ˆˆD z        (A3) 

  and 
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By definition 0 1 12 2 22 2L LV V
L De e

   
   and 0 1 12 2 22 2
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   which implies 

that  
 12 12 2 LV

L H e


 
  .  Then the maximum likelihood estimates of L , H , and 1  

satisfy  
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Substituting this in equation (A3) yields 
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Taking partial derivatives of   0 1 0 1ln , , , | ,f x z    in equation (A2) with respect to 

0  and 1  and setting them to zero we obtain  
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and 1 1
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From equations (A7) and (A8), the maximum likelihood estimates of 0  and 1  based 

on x  and z  are  
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 Using the method proposed in [1] the maximum likelihood predictive density 

function of z given x  is obtained by substituting the maximum likelihood estimates of 

the parameters in equation (A1), yielding 
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where  k x  is a normalizing constant.  Note that 
2ˆL , 

2ˆH , 0̂ , and 1̂  are functions of 

the future observation Z . It is easily seen that f is not in the form of any recognizable 

density and derivation of its percentile points would require numerical methods.  Since 

our goal is to find an easy to use predictive density, we looked for approximations that 

would simplify the above function.  A possible approximation is to replace 
2ˆL  and 

2ˆH  

by the maximum likelihood estimates calculated using only the past observations.  Note 

that  
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are the maximum likelihood estimates of 
2
L  and 

2
H . Now using equation (A5), let 
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Then the predictive density in equation (A18) can be revised as 
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with 
2
L , 

2
H  replacing 

2ˆL , 
2ˆH . Observe that  1k x  is a revised normalizing constant.  

Substituting the maximum likelihood estimates 0̂  and 1̂  from equations (A.9) and 

(A10) into each term in equation (A22) we obtain 
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 Observe that LjW , HjW , DW , Lk , Hk , and Dk  are all functions of 1̂ ; and 1̂ is 

a function of both past and future observations.  To simplify the function  0f z  we 

again replace 1̂  (which satisfies (A5)) by 1 which is implicitly defined in (A21) and is 

based only on the past observations in LjW , HjW , DW , Lk , Hk , and Dk . We denote 

estimates 

using these modifications as LjW , HjW , DW , Lk , Hk , and Dk  respectively.  Then, the 

revised predictive density can be written as 
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  
       (A31) 

and  2k x  is a normalizing constant.  Further simplification yields 

 1f z  =   3k x    
 1 2

1 2
2 2 1

0 2 1 2 1 21
N

A A A A A A z
 


 

  
  

  (A32)  

where  3k x  is a normalizing constant. It can be shown that 
2

0 2 1 0A A A  . 

Using the transformation    
1 2

2 1
0 2 1 2 1 2t N A A A A A A z


   , in equation (A32) we 

obtain    
 1 2

1 2
4

ˆ 1
N

f t k x N t
 

  
 

     (A33) 

as a predictive density of Z . Observe that this is the probability density function of a t -

distribution with N  degrees of freedom.  Furthermore, it can be shown that  

          
11

4 1 2 2k x N N N


    .  

Let ,p Nt  be the 100 p th percentile of the t -distribution with N  degrees of freedom. 

Then the 100 p th percentile pz  of the predictive density can be written as  

  
1 2

1 2 2 1
0 2 1 2 ,p p Nz N A A A A t    

1
1 2A A .     

As a special case, when   is a constant function of the stress (i.e. when 1 0  ), it can 

be shown that the predictive density of Z  is also a t -distribution.  

 

 The 100 p th percentile of the lognormal distribution at the nominal level is  

 logp panti z  .      
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