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Abstract
Variable importance estimates that are output from decision trees and random forests are often used
to reduce the dimension of data, especially in the presence of many variables, because decision trees
can process many variables quickly. However, trees typically inflate the importance of correlated
variables and even promote irrelevant correlated variables above predictive independent variables.
Strobl et al. (2008) analyze the cause and propose a remedy. Unfortunately, the remedy is too com-
plex to be practical for a large number of observations. This paper presents a simple method, called
random branch assignments, which conforms to the analysis of Strobl et al. and yet can handle
many observations. Although the method still incorrectly ranks the variables when the signal-to-
noise ratio is less than 1, it is dramatically less sensitive to correlation effects than the measures of
variable importance in the randomForest() function in R.
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1. Introduction

Decision trees and random forests are often used for reducing the number of variables in
a data set. Trees can handle many variables quickly and often find variables that have
interaction effects. However, trees can inflate the importance of correlated variables and
even promote irrelevant variables to a higher importance than variables that are predictive
but independent. This problem exists both for the classical loss reduction (decrease in
impurity) measure of importance introduced by Breiman et al. (1984) and for Breiman’s
(2001) permutation method. Strobl et al. (2008) diagnose the problem, formulate principles
that are required of a solution, and propose a remedy. Their method works well on a
thousand observations, but is too complex to handle hundreds of thousands of observations
in an acceptable amount of time. This paper proposes a simple method that conforms to the
principles set out in Strobl and that can process many observations quickly. When a variable
Z is evaluated, a splitting rule that involvesZ is replaced by a rule that randomly assigns
an observation to a branch whose probability is proportional to the size of the branch. The
method is calledrandom branch assignments(RBA). In simulation studies RBA is more
resistant to correlation effects than other measures.

The next section defines the various measures of importance, presents Strobl’s expla-
nation of the problem, and argues that RBA satisfies Strobl’s requirements of a solution.
Simulations are presented in Section 3. RBA is shown to be resistant to correlations and
stable over a wide range of signal-to-noise ratios in the data.

2. Variable Importance

2.1 Loss reduction

Variable importance for decision trees originates from Breiman et al. (1984) and imple-
mented in the CART software program. It has been called Gini increase, Gini importance,
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and impurity reduction. This papter calls it loss reduction to emphasize its relationship to
the reduction of error from using the model.

A measure of impurity is computed in each node. For an interval response, a common
measure of impurity is the sum of square residuals. If variableZ is used to split the node,
then the reduction in impurity from the parent node to the child nodes is credited toZ. If the
impurity is 600 in a parent node and 100 and 200 in the two child nodes respectively, then
the reduction in impurity is 300. The variable importance for variableZ is proportional to
the sum of the reduction in impurity over all nodes in the forest that split onZ.

2.2 Breiman’s method

Breiman (2001) introduces a different measure of variable importance that uses random
forests. A random forest consists of an ensemble of decision trees. Each tree is trained
from a different sample of the data. The observations that are withheld from training a tree
are called out-of-bag (OOB). In every node in the tree, a random subset of the variables
compete to form the splitting rule. Randomization makes the trees different.

To compute the importance ofZ, first permute the values ofZ in the OOB sample
of each tree, and then compute the OOB predictions of each observation. The OOB pre-
diction of an observation is the average prediction from trees for which the observation is
OOB. Use the predictions to compute a goodness-of-fit measure, such as mean square error
(MSE). The importance ofZ is proportional to the fit that is based on the permuted data
minus the fit that is based on the data without permutations.

2.3 Conditional and marginal importance

To illustrate the difference between loss reduction and Breiman’s method, this paper uses
a simple data set that is constructed as follows. GenerateX andZ from a bivariate normal
distribution with zero means, unit variances, and correlationρ. Let the responseY equal
X. GivenX, Y is known exactly, andZ can provide no additional information aboutY . Z
is said to have zeroconditionalimportance. On the other hand, ifX is not known, thenZ
provides some information aboutY by virtue of the correlation, andZ is said to have some
marginal importance. Different measures of importance can be placed on a spectrum from
conditional to marginal importance (Grömping 2009).

For several values ofρ, generate 25 data sets of 500 observations each. For each data
set, apply a random forest and plot the proportion of total importance that is credited toZ.
Figure 1 shows the proportions plotted against of 11 values ofρ. The upper curve is based
on loss reduction, and the curve below it is based on Breiman’s method. Breiman’s method
is seen to be a more conditional measure of importance. This is desirable for dimension
reduction, in which the goal is to retain few variables to cover the most information about
the response. Note a another curve is below the Breiman curve. This curve is due to Strobl
et al. and is more towards the conditional end of the spectrum than Breiman’s.

2.4 Strobl’s method

Strobl et al. obtain a more conditional measure of importance by analyzing the logic of
Breiman’s method and revealing an omission. The analysis centers around statistical inde-
pendence. IfY andZ are independent, then for setsB andC,

P ((Y ∈ B) ∩ (Z ∈ C)) = P (Y ∈ B)P (Z ∈ C) (1)

A bivariate histogram of the data would be approximately equal to the product of univari-
ate histograms. If the values ofZ are permuted, the univariate histogram of those values
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Figure 1: Proportion of total importance credited toZ for various correlation valuesρ. The
measures of importance are loss reduction (top), Breiman’s method (middle), and Strobl’s
method (bottom).

would remain unchanged and so would the bivariate histogram. On the other hand, if per-
muting the values ofZ does significantly change the bivariate histogram, thenY has some
dependence onZ.

Strobl et al. say that this is the essence of Breiman’s logic and that this logic ignores
the influence of other variables. To incorporate the other variables, the reasoning should
proceed from conditional independence:

P ((Y ∈ B) ∩ (Z ∈ C) | X ∈ A) = P (Y ∈ B | X ∈ A)P (Z ∈ C | X ∈ A) (2)

Probabilities that involveY andZ are computed separately for separate values ofX. When
the values ofZ are permuted, only values from observations that have the same value of
X are permuted. Strobl et al. develop an algorithm around conditional independence. The
resulting variable importance measure is more towards the conditional end of the spectrum
than Breiman’s.

The method of Strobl et al. works well for data that contain a few hundred observations,
but becomes prohibitively slow for hundreds of thousands of observations. LetV denote
the number of variables, and letT denote the number trees. Then Breiman’s method re-
quires approximatelyV T/3 permutations. Strobl’s method multiplies that number by some
proportion ofN .

2.5 Random branch assignments

This paper presents a simple algorithm, called random branch assignments (RBA), that
satisfies the logic of Strobl et al. and that avoids all the permutations. When the trees are
created, the number of observations in each node is saved. If preferred, the number of
observations from a separate hold-out data set can be used. The argument assumes that the
observation sizes that are saved in each node are proportional to the number of observations
tat visit the node from the data set being evaluated. To compute the importance of a variable
Z, randomize the branch assignment rules that involveZ and then apply the randomized
model to the data and compute a goodness-of-fit measure. The randomized rule is one that
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randomly assigns an observation to a branch with probability proportional to the number
of observations in the branch. For example, suppose a node that contains 100 training
observations is split by values ofZ into two nodes: one contains 25 training observations
and the other contains 75. When the importance ofZ is evaluated, an observation that
reaches the node is randomly assigned to the smaller branch with probability 0.25. As in
the Breiman method, the importance ofZ is proportional to the randomized fit minus the fit
without randomization.

This paper claims that RBA satisfies the objectives of the methods of Breiman and of
Strobl et al. First note that the purpose of permuting the values is to break any relationship
between the response variable andZ without changing the univariate distribution ofZ.
The same thing can be accomplished by replacing an observation value with a value that
is randomly chosen from the univariate distribution. Next note that the branch assignment
rule lumps together the values that are assigned to the same branch. To assign a branch to an
observation, all that is needed is the probability thatZ is in a lump, not the probabilities of
the individual values. The RBA method uses the lump probabilities conditioned on arriving
at the node that is being split, which is exactly the conditional requirement of Strobl et al.

3. Simulations

3.1 Data and notation

GenerateXi ∼Normal(0,1),i =1, 2, . . . 16, with correlation of 0.9 between pairs ofX1 to
X6, and all other pairs independent. The responseY is generated as

W = 4X1 + 4X2 + 2X3 + 2X4

− 4X7 − 4X8 − 2X9 − 2X10

Y = W + ε

ε ∼ Normal(0, σ2)

ω2 = Variance(W )

ψ = ω2/σ2

ω2 is the variance ofW and equals 90.8.σ varies between data sets.ψ is the signal-to-noise
ratio. The way variable importance measures depend onψ is of interest. Letιm(X) denote
the importance ofX under measurem, and define the ratio,

λm(a, b; c, d) =
average(ιm(Xa) + ιm(Xb))
average(ιm(Xc) + ιm(Xd))

(3)

where the average is taken over the 500 data sets in the simulation.
VariablesX1, X2, X7, andX8 are the most important variables. A perfect conditional

measure of importancem would haveιm(X1) = ιm(X2) = ιm(X7) = ιm(X8) and
λm(1, 2; 7, 8) = 1. However, because the importance of correlated variables are commonly
inflated, it is anticipated thatλm(1, 2; 7, 8) > 1. Similarly, X3, X4, X9, andX10 are
equally important but it is anticipated thatλm(3, 4; 9, 10) > 1. VariablesX5 andX6 have
no conditional importance, but a measure of importance might elevateX5 andX6 above
some variables that defineW , yieldingλm(5, 6; 9, 10) > 1, suggesting that some variables
that do not determineY are more important than some variables that do. This is most
undesirable.
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3.2 Software and importance measures

The high-performance HPFOREST procedure in SASR©Enterprise MinerTM computes loss
reduction and will compute RBA in 2015. The definitive implementation of Breiman’s
method is in the randomForest() function in R (Liaw and Wiener 2002). This function
invokes code that was originally written by Breiman. For an interval response, the random-
Forest() function outputs two measures of importance: Breiman’s method with mean square
error (MSE) and a decrease in MSE impurity which in this paper are calledι Breiman and
ι impurity, respectively. Both are based on the training data.

The HPFOREST procedure outputs several measures of importance. This paper uses
two:RBA and loss reduction, both of which are based on the training data MSE. They are
denoted byι RBA andι loss, respectively.ι impurity andι loss are different implementa-
tions of the same measure.

Both the HPFOREST procedure and the randomForest() function sample without re-
placement 0.6 of the training data to train a single tree. Other software specificiations: 100
trees in a forest, at least 10 observations in each leaf, and 8 randomly selected variables in
each node to compete for splitting. In randomForest(), a splitting rule is found for each of
the 8 variables, and the best split is used in the tree. In PROC HPFOREST, the variables
compete on a measure of association described in Hothorn et al. (2006) and implemented
in the R party package. A split is made with the winning variable.

3.3 Results comparing measures

Figure 2 shows the variable importance averaged over 500 data sets of 1,000 observations
with signal-to-nose ratioψ = 182. The numbers for measurem have been divided by
(ιm(X9) + ιm(X10)/2 to align the measure onX9 andX10.

Figure 2: Average variable importance over 500 data sets of 1,000 observations with
ψ = 182, scaled to 1 for variablesX9 andX10. From top to bottom:ι loss (green dash),
ι Breiman (blue solid),ι impurity (blue dash), andι RBA (green solid)

The inflation of the importance of the first six variables compared to the second six is
apparent.ι loss (represented by the green dash line) is the most inflated.ι Breiman (blue
solid line) andι impurity (blue dash line) are in the middle.ι RBA (green solid line) shows
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Table 1: Ratiosλm(1, 2; 7, 8)

ψ ι RBA ι Breiman ι Loss ι Impurity
0.5 0.78 96.86 0.78 0.74
1 0.97 34.72 0.85 1.00
2 1.00 10.07 0.97 1.31
4 1.07 4.03 1.34 2.02
8 1.30 2.46 2.12 3.35

182 1.61 2.39 3.58 4.71

the least inflation. Perhaps most disturbing is elevation of variablesX5 andX6, which have
no influence on the responseY , up to and above the variablesX9 andX10, which do.

Figure 3 shows the result from reducing the signal-to-nose ratioψ from 182 to 8.
ι Breiman (blue solid) is the most inflated here, slightly worse than withψ = 182. Inflation

Figure 3: Average variable importance over 500 data sets of 1,000 observations withψ =
8, scaled to 1 for variablesX9 andX10. From top to bottom:ι Breiman (blue solid),ι loss
(green dash),ι impurity (blue dash), andι RBA (green solid)

from the other measures have decreased slightly.ι RBA now gives the correct ranks, up to
ties.λRBA(5, 6; 9, 10) is about 0.8, which is< 1 as desired.

Table 1 presentsλm(1, 2; 7, 8), the inflation of ιm(X1) and ιm(X2) compared to
ιm(X7) andιm(X8), for different levels of the signal-to-noise ratioψ. λm(1, 2; 7, 8) = 1
for an ideal conditional measure of importance.

ιm(X1) andιm(X2) become more inflated with increasing signal for all measures ex-
ceptι Breiman. However,ι Breiman never falls below 2. Forψ <= 4, ι Breiman is wildly
large.ι RBA varies the least, with a minimum of 0.78 and a maximum of 1.61. Except for
the single case ofι impurity atψ = 1, ι RBA is the closest to 1 at everyψ. This is the
main reason for recommendingι RBA.
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3.4 RBA results for varying N andψ

Now focus onι RBA. For 1,000 observations andψ < 1, ι RBA, ι loss, andι impurity
deflate the importance of correlated variables, which is opposite to the more well-known
tendency of inflation. Figure 4 showsλRBA(1, 2; 7, 8) for N = 1,000, 2,000, 4,000,
6,000, 8,000, and 10,000. The lines represent the ratios of the average over 500 data sets

Figure 4: λRBA(1, 2; 7, 8) for N =1 (lightest green line, bottom), 2, 4, 6, 8, and 10
thousand (black line, top).

of ιRBA(X1) + ιRBA(X2) andιRBA(X7) + ιRBA(X8). The light green line at the bottom
represents data sets that contain 1,000 observations. The top black line represents 10,000
observations. Generally,λRBA(1, 2; 7, 8) falls below 1 rapidly asψ decreases from 1,
causingX1 andX2 to be underrated. The fall is less with more observations. For largerψ,
the opposite prevails: more observations result in more inflation.

Figure 5: λRBA(5, 6; 9, 10) for N =1 (lightest green line, top right), 2, 4, 6, 8, and 10
thousand (black line, bottom right).
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Figure 5 showsλRBA(5, 6; 9, 10) for the same data. Except forψ near 1 or 2,
λRBA(5, 6; 9, 10) < 1. A value< 1 indicates that the irrelevant but correlated variables
X5 andX6 are ranked less thanX9 andX10, which is good. IncreasingN decreases
λRBA(5, 6; 9, 10) whenψ > 1, but not whenψ < 1. This is another reason for not trusting
variable importance measures when there is more noise than signal in the data.

4. Discussion

After the 2001 article, Breiman wrote that the permutation variable importance method for
misclassification was “too volatile” and he dropped it (Breiman 2003). He replaced the
misclassification statistic with a function (margin) of the class probabilities. He does not
discuss what to do with an interval response, and he might not support the MSE measure
in this paper. However, permutation MSE importance is what the randomForest() function
outputs today, and some reliable measure of importance is desired. This paper has shown
that the permutation MSE measure of importance will often not rank variables consistent
with their contribution to the generation of the response variable. That much was known.
This paper presents a simple and practical method that does a much better job in the simu-
lation experiments provided the signal-to-noise ratio is not too small.
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