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Abstract
The tyrosine kinase inhibitors Gleevec and Tasigna are highly efficacious therapies for Philadelphia chromosome-
positive chronic myeloid leukemia (Ph+ CML). Monitoring of minimal residual disease of BCRABL tran-
script is standard of care and the BCRABL/ABL ratio (IS) decreases multi-log with chronic treatment.
Therefore highly sensitive BCRABL assays are required which can detect the BCRABL/ABL ratio (IS) to
4.5log10 below the IS baseline (MR4.5). Most BCRABL assays utilize qPCR technology with ABL as con-
trol gene for relative quantification. In the routine BCRABL testing community, when the BCRABL is not
detected (ND), the assay algorithm will substitute ND with 1 copy for calculation and use (1/ABL copy)*IS
Conversion Factor to report the BCRABL/ABL ratio (IS). However, in IVD practice, a more optimal ap-
proach will substituted with an assay specific LOD, which is higher than 1 copy due to sampling error in
these very low copy number samples. This paper will use Poisson modeling to construct the connection
and separation between the qPCR assays and sampling error, which will offer quantifiable tool to evaluate
the difference and appropriateness of substitute 1 BCRABL copy vs LOD of BCRABL copy in the clinical
diagnostics.
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1. Background

Chronic myeloid leukemia (CML) is a subtype of leukemia which is defined by the chromosomal
translocation t(9;22) , also referred to as the ”Philadelphia Chromosome”. The translocation re-
sults in fusion of the BCR gene and the ABL kinase gene, ultimately leading to increased myeloid
cell proliferation. Monitoring of minimal residual disease of BCRABL fusion transcript can easily
be measured in blood by qPCR. Monitoring has become standard of care part of treatment and
the BCRABL/ABL ratio (IS) decreases multi-log with chronic therapy. The disease burden for
BCR-ABL positive chronic myelogenous leukemia (CML) patients is measured by comparing the
expression level of the fusion gene BCR-ABL to a reference gene, such as ABL1. The level of
BCR-ABL expression is typically reported using either a log reduction scale, established by the
IRIS clinical trial laboratories (Hughes, T.P. et al., 2003), or an international scale (IS) designed to
replace the log reduction scale (Branford, S. et al., 2008). Standard nomenclature has been estab-
lished for reporting such that for example a 3-log reduction of transcript from baseline is described
as Molecular Response (MR3.0). As Gleevec and Tasigna are highly efficacious therapies for
CML, treatment will occur over months to years. The BCRABL/ABL ratio (IS) typically decreases
over multi-log level during this time (See Figure (1) from Marin JCO (2014) 32:379); therefore,
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a highly sensitive BCRABL assay that can detect the BCRABL/ABL ratio (IS) to 4.5log10 below
the IS baseline (MR4.5). In addition newer clinical trial designs are exploring molecular endpoints
involving MR3.0, MR4.0, and MR4.5, etc.

Figure 1: Marin JCO (2014) 32:379

The challenge with highly sensitive assays is that, it is difficult to precisely determine the
BCRABL copy near MR4.5 and therefore compute a precise BCRABL/ABL ratio. Even if the
assay is capable of single-molecule detection, BCRABL/ABL copy number cannot be exactly
measured at limiting dilutions due to two sources of variation. One source is the quantitative
polymerase chain reaction (qPCR), a technology that most of BCRABL assays use. A qPCR is a
laboratory technique of molecular biology based on the polymerase chain reaction (PCR), which is
used to amplify and simultaneously quantify a targeted DNA molecule. It is the method of choice
for accurate estimation of gene expression. However, the qPCR test is a complex measurement
system. It is not possible to directly measure the exact copy number in the tested sample. Besides
the measuring error from the qPCR technology, another source of variation is the sampling process.
Consider an experiment performed at limiting dilutions, suppose one creates a large bulk solution at
this average concentration, and then dispenses from this bulk a large number of seemingly identical
replicates. Each replicate contains λ copies of analyte on average. But in fact, the replicates are not
identical, because they will contain varying numbers of analyte molecules. (The copy numbers of
analyte molecules will follow a Poisson distribution with mean equal to the target average λ given
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certain assumptions. More details about the appropriateness of assuming Poisson distribution are
discussed in Section 2.)

In quantitative and qualitative molecular measurement procedures, the LOD is defined as the
lowest concentration of analyte that can be consistently detected (typically 95% of samples tested
under routine clinical laboratory conditions and in a defined type of sample). (refer to James F.
Pierson-Perry, et. al (2012)) LOD is used in various ways in the result interpretation for BCRABL
tests. When the observed BCRABL copy is less than LOD, it’s not necessarily to conclude that
no detection of BCRABL in the sample and use 0 as the final report value for the BCRABL copy.
Instead, several options are available, as discussed in Section 3. The target of this report is not to
discuss how to set a LOD in the BCRABL assay, but under a given LOD, we want to know which
result interpretation option can minimize the difference or bias between the reported BCRABL
copy and the true target value. Our purpose is to evaluate the bias of these options quantitatively
and derive an overall most appropriate option for clinical use recommendation.

In Section 2, we will build a model which employs Poisson distribution to describe the distri-
bution of analyte copy numbers in the sample replicates, and uses normal distribution or uniform
distribution to approximate the variation from the qPCR assay. With this model, in Section 3 we
will evaluate the bias generated by various result interpretation options. We will also discuss the
suitability of the model assumptions in Section 4.

2. Model and Assumptions

As discussed in Section 1, if the target sample copy number λ is given, the variation of the qPCR
output comes from two sources. One is the sampling error and the other is the qPCR measurement
error. This implies that the observation k∗i can be decomposed to two components, as shown in the
following formula

k∗i = max(ki + ϵi, 0), (1)

where ki corresponds to the varying number of analyte molecules in the tested sample, which
follows a Poisson distribution Poisson(λ), and ϵi corresponds to the qPCR measurement error with
either a normal distribution N(0, σ2) or a uniform distribution U [−d, d]. We further assume ki and
ϵi are all independent. In practice, a negative observation does not exist. So if ki + ϵi < 0, the
result would be simply reported as non-detection and 0 may be assigned as the observed value.

The rationale of assuming that ki is Poisson distributed is as followed: suppose the analyte
molecules are sparse in the container (human body), after proper mixing the material (blood) in
the container, each analyte molecule could be present anywhere in the container (e.g. spot A, B, C
. . . ); we can assume that an analyte molecule is present in any spot A and any spot B with equal
probability. Now one takes a sample (e.g. 2.5 ml blood) from the container (human body). If
this sample’s volume is small enough compared to the container, the number of analyte molecules
in that sample should follow a Poisson distribution. Mathematically we can prove it this way:
suppose we have m molecules in the container in total, and each one can be in any spot (n spots in
total), with equal probability. (λ = m/n is fixed.) We randomly choose a spot to use as a sample
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replicate, the number of the molecules in that spot can be approximated by a Poisson distribution
with mean λ as n → ∞. (It can be mathematically proved and demonstrated by simulation, see
Figure (2) for an example). Another explanation is: the sample replicate’s volume is 1/n of the
container’s, so each molecule has 1/n chance to exist in this sample replicate. The number of
the analyte molecules in the sample have a Poisson distribution as n → ∞ according to Poisson
Approximation Theorem. See Papoulis, A. and Pillai S. U. (2002) p. 112.

In summary, two conditions must be satisfied to approximately assume Poisson distribution:

• An analyte molecule is present in any spot A and any spot B with equal probability;

• The sample taken from the container is small enough compared to the container.

The critical point of assuming model (1) is not to estimate the parameters λ, σ or d from the
observations k∗i to explain the assay, but to use this model to calculate the bias of different options
when k∗i <LOD and compare them to find the best option.
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Figure 2: Simulation result by choosing n = 200 (the sample‘s volume is 1/200 of the con-
tainer‘s), m = 1000, λ = 5. The empirical frequency and the probability from the mass function
of Poisson(5) are almost identical.

JSM 2014 - Biometrics Section

2286



3. Comparison of Options

After obtaining k∗i , some practice is implemented to report BCRABL copy value. Some frequently
used options are listed below:

Our target is to evaluate the clinical impact (bias) of the above options of test result interpre-
tation. We denote the final report BCRABL value as Y ∗, which is obtained from k∗i through the
above options. And the bias is defined as Bias = E(Y ∗) − λ, where λ is the true target level.
Assuming model (1), we can compare the bias from different options under different σ or d and
under different LODs.

It’s easy to mathematically prove that Option d is always inferior to Option c (to prove Bias(option
c)<Bias(option d)); Option f is always inferior to any other option unless the target level λ is very
small. So from now on we are only concerned with the competitive candidates Option a, b, c, e.

When the measurement error is negligible (σ = 0 or d = 0), which means we can exactly
observe the integer ki, the absolute bias curves are in the following plots and the integral of the
absolute bias curve corresponding to each option is summarized in Table (1). From the table, we
can see that when LOD=3 or 4 Option c is the best overall choice under the criterion of cumulative
absolute bias; when LOD=2 Option b and c are the same options and they have the same cumulative
absolute bias as Option a; when LOD=1 level, Option a has the smallest cumulative absolute bias.

Option a Option b Option c Option e
LOD = 1 0 1 1 1
LOD = 2 1 1 1 3
LOD = 3 3 1.17 1 6
LOD = 4 5.96 3.01 1 9.98

Table 1: Cumulative absolute bias when measurement negligible

When the measurement error is not negligible (σ > 0 or d > 0), we further consider two con-
ditions: measurement error is either normal distributed or uniform distributed. First, we consider
normal distribution for ϵi in model (1). Denote k′i = ki + ϵi. The density function of k′i becomes:

fk′i(x) =
∞∑
j=0

f0(x− j)P (ki = j|λ), (2)

where f0 is the density function of N(0, σ2). So the random variable k∗i has a distribution of mixed
type, with P (k∗i = 0) =

∫ 0
−∞ fk′i(x)dx, and fk∗i (x) = fk′i(x) when x > 0. From this distribution

function it’s easy to find the distribution of Y ∗
i , and the calculation of the absolute value of the bias

is straightforward. The absolute value of the bias bears a similar shape as in Figure (3).
When σ is very close to 0, the numerical method for integral when computing E(Y ∗) is not

stable, but we can use theoretical method to obtain an approximation and the conclusion would be
similar to the σ = 0 case. When σ is large enough (e.g. σ > .17), the numerical method is applied
and Figure (4), Figure (5) and Table (2) give a summary of the results.
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Figure 3: Bias curves when the measurement error negligible

σ = 0.3 σ = 2.5
a b c e a b c e

LOD = 1 0.40 1.06 0.59 1.06 1.72 3.58 3.28 3.58
LOD = 2 1.88 0.82 0.59 3.02 1.02 3.19 3.28 5.82
LOD = 3 4.36 1.92 0.59 5.97 2.01 2.24 3.28 8.87
LOD = 4 7.79 4.29 0.59 9.90 4.73 2.67 3.28 12.78

Table 2: Cumulative absolute bias

From Figure (4), Figure (5) and Table (2), we can see that Option a, Option b and Option c are
three competitive candidates for the best option. If σ is small, absolute bias curves are similar to
the curves in σ = 0 case (compare Figure (3) and Figure (4)). When LOD=1, Option a is always
the best option under all true target BCR-ABL level (λ from 0 to 10). If LOD=2, 3, 4, Option a,
Option b and Option c are the best options under different true target BCRABL level. In the low
end of target BCRABL level (0 < λ <a certain level) Option a gives the smallest absolute bias,
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Figure 4: Bias curves when σ = 0.3

while in the high end of target BCRABL level (a certain level< λ < 10) Option c performs best.
Option b is the best in a small range in the middle of the BCRABL level (e.g. 1 < λ < 1.5 when
LOD=3 and σ = 0.3). Also notice that as σ increases, the interaction point of the blue line (Option
b) and the black line (Option a) moves to the right under each LOD level (LOD> 1), which means
Option a’s performance improves under larger measurement error.

If we use the cumulative absolute bias as a criterion, we can obtain Figure (6). When LOD=1,
Option a is the best option no matter how λ changes. When LOD=2, the absolute bias curves of
Option b and Option c bear similar shapes and their cumulative absolute bias are also close. If the
variation of measurement error is not very large (σ < 1.2), Option b and Option c are better than
Option a. If σ > 1.2, Option a is the best one. When LOD=3, Option c is the best if σ < 1.3;
Option b is the best if σ > 1.3. When LOD=4, Option c is the best option (σ < 2.2). Overall
speaking, Option c is the recommended option because LOD in BCR-ABL assay will be from 2 to
3 and the variation from the qPCR is not very large (σ < 1.2).

If we assume ϵi has the uniform distribution, we obtain similar figures and similar tables. See
Figure (7), Figure (8), Figure (9) and Table (5) in Appendix B.
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Figure 5: Bias curves when σ = 2.5

4. Goodness of Fit

In this section we will discuss whether the assumption of model (1) is appropriate. Although it is
reasonable to assume this model theoretically and mathematically, it is always better to find more
evidence from the real world assay data to support the model. Under given parameter λ and σ(or
d), we can derive the close form of the distribution of k∗. And we can apply KS-test to a list of
observed k∗i s, to see if the observations give any evidence against the distribution assumption. But
the problem is that we need to estimate the parameters λ and σ(or d) first, which is not realistic
with the limited information only from the observations. The problem is that it seems not possible
to separate ki and ϵi from k∗i without further experiment, if we only have a table of independent
observations k∗i . So it’s not possible to directly test whether ki comes from a Poisson distribution
and whether ϵi has a normal/uniform distribution or further estimate λ and σ(or d).

As discussed above, we need stronger assumption to do the goodness of fit test. Considering
that usually the variation from the sample is more dominant rather than the error from the qPCR
assay, we assume that the error is small enough such that P (|ϵi| > .5) ≈ 0, which means σ < .17
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Figure 6: Cumulative absolute bias

or d < .5. With this assumption, we can directly decompose k∗i into two known components ki
and ϵi and estimate λ and σ separately. Denote κi the largest integer less than ki. If k∗ > 0 we
have ϵi = min(k∗i − κi, κi +1− k∗i ), and ki = k∗i − ϵi. If k∗i = 0, then ki = 0 and ϵi < .5 but still
unknown.

If we have the above assumption, we can try the following data to see if it supports the validity
of model (1). A detailed experiment was conducted at MolecualrMD testing laboratory (Portland,
OR) in Q1 2013, using test materials provided by Novartis. [03-april-2013, CTA LoD data, Julie
Toplin; TY folder # IVDD-3109] Some key results from this experiment are summarized in Table
(3), (4) in the appendix. The study involved the serial dilution of a patient PAXgene blood sample
from Novartis into healthy donor PAXgene blood, to create replicates at each of a series of targeted
dilutions. Each sample was extracted by a PAXgene manual process, and the resultant purified
RNA was assayed in duplicate reactions with the MRDx test.

Since the observations can be decomposed into two components, we can check the goodness
of fit for both Poisson assumption and normal distribution/uniform distribution. We use Chi-
Square goodness of fit test to check Poisson distribution assumption. We use QQ plot/Shapiro-Wilk
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Test/KS Test to check normality assumption or uniform distribution assumption. All of these tests
do not give a significant p-value against the distribution assumptions.

5. Discussion and Conclusion

5.1 Discussion

The construction of model (1) is not natural when ki is close to 0. Model (2.1) implies that a
negative value ki + ϵi may first exist, then be replaced with 0, which may not be very realistic.
Instead, the ϵi may have an asymmetric distribution with a longer right tail and cannot take any
value less than −ki. In fact this implies that the distribution of ϵi is related to ki. But a new
distribution assumption for ϵi will make the model very complicated, so model (1) is still preferred
for comparison for options.

The Poisson distribution and the normality assumption are checked at the target level λ = 1 and
λ = 3 in Section 4. It is better to further check these assumptions at different target levels. We can
also compare the options using the criterion of cumulative MSE but since the main concern is the
bias, we don’t pursue the option choice this way. The suggestion of choosing option b is based on
the condition that the observation k∗ is a single observation. If the assay takes a few observations
and combine them to obtain a final score (e.g. take the average of two observations), then we need
to do further investigation.

5.2 Conclusion

The absolute bias curves and the cumulative absolute bias are similar under normal assumption and
uniform distribution assumption for the measurement ϵi. When LOD=1, Option a always temps to
be the best option, but in the practical BCRABL assays LOD is usually between 2 and 3. When
LOD=2, Option b and Option c are the best if the variation from qPCR is not too large, otherwise
Option a is the best. When LOD=3, Option c is still the best option if the variation from qPCR is
not too large, but as σ or d increases, Option b is becoming to perform better than Option c. When
LOD=4, Option c is the best one.

Overall, reporting BCRABL = 1 when BCR-ABL is not detected is the best option under the
criterion of cumulative absolute bias among the several options that are used in different communi-
ties, because the actual LOD is from 2 to 3 and the measurement errors from qPCR are usually not
very large. Since the bias is the most important concern in this area, this option is recommended to
use.
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A. MolecualrMD Data

Extraction Sample Ratio BCR-ABL ABL
Ext1 Q958R1 0.0018 2.585 143897.1
Ext1 Q958R2 0.000779 1.007 129336
Ext1 Q958R3 0.00299 3.745 125314.9
Ext1 Q958R4 0.00349 4.39 125880.5
Ext2 Z531R1 0.00106 1.18 111572.7
Ext2 Z531R2 0.00308 3.27 106239.1
Ext2 Z531R3 0.00294 3 102148.1
Ext2 Z531R4 0.00241 2.43 100759.9
Ext3 U478R1 0.00319 4.93 154374.9
Ext3 U478R2 0.00405 6.36 156962.2
Ext3 U478R3 0.00174 2.92 167349.1
Ext3 U478R4 0.00262 4.18 159756.9
Ext4 N519R1 0.00411 5.55 134959.8
Ext4 N519R2 0.0015 2.03 135028
Ext4 N519R3 0.00331 4.66 140919
Ext4 N519R4 0.00192 2.89 150160.2
Ext5 Z988R1 0.00155 2.33 149879.2
Ext5 Z988R2 0.00242 3.32 136986.2
Ext5 Z988R3 0.00272 4 147159
Ext5 Z988R4 0.00155 2.28 146737.7

Table 3: BCR-ABL copy number/rx targeted to mean value = 3. Observed mean value = 3.4,
observed median value = 3.1 (N=20). Yellow highlight indicates 1 of 2 post-extraction replicate
reactions failed, in which case the reported value is for the other reaction of the pair.

B. Bias under Uniform Measurement Error
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Extraction Sample Ratio BCR-ABL ABL
Ext1 N790R1 0.00186 2.61 140037.8
Ext1 N790R2 0.000713 9.61E-01 134777.8
Ext1 N790R3 0.000719 0.9745 135443.1
Ext1 N790R4 0.000684 1.004 146865.3
Ext2 W396R1 0.00208 2.28 109846.3
Ext2 W396R2 0.000899 9.99E-01 111121
Ext2 W396R3 0.000549 6.22E-01 113345.4
Ext2 W396R4 0.00216 2.49 115301.3
Ext3 F675R1 0.000689 1 145127.6
Ext3 F675R2 0.0021 3.34 159303.8
Ext3 F675R3 0 149454.5
Ext3 F675R4 0.00114 1.67 146786.4
Ext4 L557R1 0.000562 7.68E-01 136649.1
Ext4 L557R2 0.000619 7.34E-01 118608.2
Ext4 L557R3 0.000674 8.72E-01 129338.8
Ext4 L557R4 0.000901 1.24 137598
Ext5 S687R1 0.00117 1.5 128282
Ext5 S687R2 0.00101 1.42 140356.3
Ext5 S687R3 0.00129 1.9 147314.4
Ext5 S687R4 0 139568.2

Table 4: BCR-ABL copy number/rx targeted to mean value 1. Observed mean value = 1.4, ob-
served median value = 1.0 (N=20). Yellow highlight indicates 1 of 2 post-extraction replicate
reactions failed, in which case the reported value is for the other reaction of the pair. Red highlight
indicates that both of the post-extraction replicate reactions failed, in which case the reported value
is 0 (zero).

d = 0.5 d = 4.0
a b c e a b c e

LOD = 1 0.38 1.08 0.59 1.08 1.52 3.35 3.05 3.35
LOD = 2 1.87 0.82 0.59 3.03 1.18 2.99 3.05 5.55
LOD = 3 4.35 1.91 0.59 5.97 2.13 2.28 3.05 8.54
LOD = 4 7.79 4.28 0.59 9.91 4.96 2.65 3.05 12.42

Table 5: Cumulative absolute bias
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Figure 7: Bias curves when d = 0.5
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Figure 8: Bias curves when d = 4.0
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Figure 9: Cumulative absolute bias
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