
Do Preliminary Tests Validate the Main Tests? 
 
 

X. Zhu1, S. Chakraborti1 and Y. H. Dovoedo2 

1Department of Information Systems, Statistics, and Management Science, 
University of Alabama, AL 35487 

2Department of Mathematics, University of North Alabama, AL 35632 
 

 

 
Abstract 
In practice, it is common to precede the main test of interest with one or more 
preliminary tests (pretests).  Depending on the results of the preliminary test, one 
decides what main test to perform. Thus the type I error rate of the main test is 
actually a "conditional type I error" and there arise questions about whether or not 
the main test maintains the specified nominal level.  In this paper, we revisit the 
literature on the methodology that is used to estimate the conditional type I error 
rate.  Results are then extended to estimating and deriving the conditional type I 
error rate in some other situations.  The work uses extensive simulations and some 
exact derivations.  
 
Key Words: Pretest, type I error rate, conditional 
 
 

1. Introduction 
 
Researchers frequently precede analyses of interest with one or more preliminary tests 
(pretests), which are used to determine whether assumptions for the main test are met. 
Based on the results of the preliminary test(s), the main test of interest is performed. The 
type I error rate of the main test becomes a conditional one and is thus called the 
conditional type I error rate of the main test. On the contrary, if the main test of interest is 
performed directly without any pretests, the type I error rate is an unconditional type I 
error rate. 
 
A lot of researchers have found the conditional type I error rate unacceptably inflated and 
recommended using any preliminary testing with great caution. Schucany et al. (2006) 
explored the conditional type I error of the one-sample t-test after a preliminary 
goodness-of-fit test for normality. Rochon et al. (2012) examined the pooled two-sample 
t-test instead, after the same preliminary test. Here, we revisit the case studied by 
Schucany et al. (2006) and apply the methodology to some other problems. 
 

2. Methodology and Example 
 
Schucany et al. (2006) considered testing the hypothesis about the mean  𝐻0:𝜇 = 𝜇0 
against 𝐻𝑎:𝜇 ≠ 𝜇0  based on a random sample𝑥 = {𝑥1,𝑥2,⋯𝑥𝑚}. One approach is to 
directly perform the one-sample t-test without doing any preliminary test for normality. 
The second approach is to use a two-stage procedure, in which we first perform a 
preliminary test (pretest) of normality (such as the Shapiro-Wilk test) followed by the 
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one-sample t-test if normality is not rejected. The one-sample t-test is the main test of 
interest in this case, with two different kinds of type I error rates. The Type I error of the 
one-sample t-test using the second method is  a conditional one, as it depends on the 
outcome of the preliminary test for normality, while that from the first method is an 
unconditional Type I error, as this test is performed without any preliminary testing. 
Schucany et al. (2006) varied the underlying distribution from uniform, exponential, 
Cauchy to normal distribution and estimated both Type I error rates by simulation. They 
found that the pretest degraded the one-sample t-test and inflated the conditional Type I 
error rate more than no pretest. 
 
Now this situation is revisited and we first estimate the unconditional type I error rate by 
generating 10000 random samples of size 𝑛 = 5, 10, 20, 30, 50  from the following 
distributions: 1) standard normal; 2) t distribution with 5 degrees of freedom (labeled as 
t5 in Figure 1); 3) Laplace distribution; 4) Uniform [0, 1]; 5) Beta (3, 2); Gamma (3, 1); 
7) Chi-square with 2 degrees of freedom (labeled as Chi2 in Figure 1); 8) Exponential 
(1).  
 
We perform the one-sample t-test on each sample, check if it is significant or not, and 
find the proportion of significant tests among 10,000 random samples. The unconditional 
type I error rate is estimated by this proportion. Next, the conditional type I error rate is 
estimated by generating random samples from each of the distributions as above until 
10000 samples pass the preliminary test for normality. For these 10000 samples, the one-
sample t-test is performed at the nominal level of 𝛼 = 0.05 and the conditional Type I 
error rate is estimated by the proportion of significant t-tests (𝑝-value smaller than α) 
among them. It is observed from the simulation process that even with highly non-normal 
populations, many samples still pass the screening for normality, which causes more error 
in the second stage.  
 
Figure 1 and 2 are constructed based on the estimated unconditional and conditional type 
I error rates, respectively. 

 
Figure 1: Unconditional type I error of the one-sample t-test 
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Figure 2: Conditional type I error of the one-sample t-test 
 
We observe from Figure 1 and 2 that for the normal, 𝑡 and Laplace distributions, both the 
unconditional and conditional type I error rates stay around 0.05, whatever the sample 
size.  For symmetric and roughly bell-shaped distributions, the inflation of the type I error 
rates is not a problem of concern.  
 
For the uniform and the beta distributions, when the sample size is 5, both the 
unconditional and conditional type I error rates exceed the nominal level by around 40% 
and is slightly problematic. When the sample size increases to 30 and then to 50, the two 
kinds of type I error rates gradually decrease to the nominal level or even a little below. 
The inflation of the type I error rates is associated with sample size too small. The 
simulation results fluctuate around the nominal level when the sample size is greater than 
10.  
 
For the Gamma (3, 1) distribution, which is slightly right skewed, we start to observe 
more problematic performance on the side of the conditional type I error rate. An 
increase in the sample size to 50 makes the unconditional type I error rate gradually 
converge to the nominal level (Figure 1), while at the same time inflates the conditional 
type I error rate to around 0.08 (Figure 2). If we look at the chi-square and the 
exponential distributions, this effect is more intense. When the sample size is as small as 
5, both the unconditional and conditional type I error rates exceed the nominal level by 
more than 100%. But when the sample size increases to 50, the unconditional type I error 
rates have the trend of convergence and decrease to around 0.07 (Figure 1), while the 
conditional type I error rates have the opposite trend of increase and exceed the nominal 
level by more than 300% when sample size is 50 (Figure 2). 
 
In practice, we do not know the true underlying distribution. If the sample size is around 
10, we should know that both unconditional and conditional type I error rates can be 
problematic (when the distribution is skewed). When the sample size is greater than 30, 
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the conditional type I error rate can be inflated considerably and thus not acceptable. The 
unconditional type I error rate, on the other hand, stays around the nominal level.  
 

3. Contributions 
 
The past work on conditional type I error rate has mainly been done for a preliminary 
goodness-of-fit test. However, other kinds of preliminary tests can also affect the type I 
error of the main test. We extend this idea and use the methodology to study the 
conditional type I error rate in the following problems.  
 
(1). Two-sample pooled t-test after the samples pass a preliminary test for equality of 
variances, assuming normality 
 
Let 𝑥 = {𝑥1,𝑥2,⋯𝑥𝑚}  and  𝑦 = {𝑦1,𝑦2,⋯𝑦𝑛}  be two random samples from two 
normally distributed populations,   𝑁(𝜇1,𝜎12) and 𝑁(𝜇2,𝜎22).We want to test whether the 
two samples have equal means 𝐻0:𝜇1 = 𝜇2  against  𝐻𝑎:𝜇1 ≠ 𝜇2 . The unconditional 
approach is to directly perform the pooled t-test without doing any preliminary test. The 
conditional approach is to use a two-stage procedure, in which one first performs the 
preliminary test (pretest) of equality of variances, and then does the pooled t-test if 
equality of variances is not rejected. The Type I error of the two-sample pooled t-test 
using the second method is  a conditional one, as it depends on the outcome of the 
preliminary test for variance while that from the first method is an unconditional Type I 
error, as this test is performed without any preliminary tests. Albers et al. (2000) 
approximated the conditional type I error rate of the pooled t-test in expectation format  
using the leading term. They found that it was much larger than the nominal level when 
the underlying variances are unequal. Here, we derive the exact expression of the 
conditional type I error rate as well as that of the unconditional one.  
 
A theoretical derivation gives the formula to calculate the unconditional type I error rate 
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𝜎2

. The unconditional type I error rates for 

different values of  𝛿 and sample sizes are computed. The results are reported in Table 1 
and displayed in Figure 3. 
 

Table 1: Unconditional Type I Error Rate of the Pooled t-test at 𝛼 = 0.05 
δ 𝑛 = 𝑚 = 5 𝑛 = 𝑚 = 10 𝑛 = 𝑚 = 20 𝑛 = 𝑚 = 30 𝑛 = 𝑚 = 50 

0.5 0.0585 0.0547 0.0524 0.0516 0.0510 
1.0 0.0500 0.0500 0.0500 0.0500 0.0500 
1.5 0.0532 0.0519 0.0510 0.0507 0.0504 
2.0 0.0585 0.0547 0.0524 0.0516 0.0510 
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Figure 3: Unconditional Type I Error of the Pooled t-test 
 
When the sample size is smaller than 10, the unconditional Type I error rate has an 
inflation rate around 15% for 𝛿 = 0.5,2. It converges to the nominal level 0.05 regardless 
of δ when sample size increases to 50.  
 
The conditional type I error rate is given by the formula  
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Some numerical values for the conditional type I error rate are reported in Table 2 and 
displayed in Figure 4. We compare these numerical values in Table 2 with the 
unconditional type I error rates. 
 

Table 2: Conditional Type I error of the Pooled t-test at 𝛼 = 0.05  
δ 𝑛 = 𝑚 = 5 𝑛 = 𝑚 = 10 𝑛 = 𝑚 = 20 𝑛 = 𝑚 = 30 𝑛 = 𝑚 = 50 

0.5 0.0665 0.0717 0.0793 0.0842 0.0900 
1.0 0.0500 0.0500 0.0500 0.0500 0.0500 
1.5 0.0553 0.0558 0.0570 0.0580 0.0596 
2.0 0.0665 0.0717 0.0793 0.0842 0.0900 
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Figure 4: Conditional Type I Error of the Pooled t-test 
 
Conditional Type I error rate has the trend of increase associated with the growth of 
sample size when δ is extreme. It can exceed the nominal level 0.05 by 80% when the 
sample size is 50 (Figure 4). We observe that increasing the sample size has opposite 
effects on the conditional type I error rates and unconditional type I error rates. It helps 
control the unconditional type I error rates while at the same time inflating the 
conditional type I error rates.  
 
(2). The rejection of the combined test by Perng et al. (1976), assuming normality 
 
Simultaneous testing the equality of means and that of variances of two populations has 
been considered by many researchers. Two random samples 𝑥 = {𝑥1,𝑥2,⋯𝑥𝑚}  and 
𝑦 = {𝑦1,𝑦2,⋯𝑦𝑛}  are independent of each other from 𝑁(𝜇1,𝜎12)  and  𝑁(𝜇2,𝜎22) 
respectively. The practitioner is interested in testing the hypothesis  𝐻1: 𝜇1 =
𝜇2 𝑎𝑛𝑑 𝜎12 = 𝜎22 against 𝐻1𝑎: 𝜇1 ≠ 𝜇2 𝑜𝑟 𝜎12 ≠ 𝜎22. Pearson et al. (1930) considered 
the likelihood ratio test for this problem and Zhang et al. (2012) derived the exact 
distribution of the test statistic. Perng et al. (1976) proposed a combination of the pooled 
t-test statistic and the F-test statistic, which is called the combined test. Zhang et al. 
(2012) found from simulation that the likelihood ratio test and the combined test perform 
very similarly. Thus, we use the combined test by Perng et al. (1976) in the following 
simulations and derivations.    
 
Zhang et al. (2012) suggested a three stage procedure to compare the means and the 
variances of the two populations. The three-stage procedure begins with the likelihood 
ratio test or the combined test to test the null hypothesis 𝐻1.  According to this three- 
stage procedure, if one fails to reject 𝐻1, the conclusion is that there is no evidence that 
the two normal populations have different means or different variances. If, on the other 
hand,  𝐻1  is rejected, one needs to check which caused  𝐻1  to be rejected, unequal 
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variances or unequal means. Then comes the second stage of testing for equal variances: 
𝐻2: 𝜎12 = 𝜎22  against  𝐻2𝑎:  𝜎12 ≠ 𝜎22using the F-test. If the null hypothesis 𝐻2 is not 
rejected, one concludes there is no evidence of unequal variances. One goes to the third 
stage and uses the pooled t-test to check: 𝐻3: 𝜇1 = 𝜇2versus 𝐻3𝑎:  𝜇1 ≠ 𝜇2. A flow chart 
of the procedure is in Figure 5. 

 
Figure 5: Flow chart of the three-stage procedure by Zhang et al. (2012) 
 
The type I error of the F test in the second stage is a conditional one as  𝐻1 has already 
been rejected. It stays at 0.478 for any sample sizes as long as 𝑚 and 𝑛 are equal. The 
derivation is provided in Appendix A. Compared to the nominal level of 0.05, the 
conditional Type I error rate has inflated by 860%. Furthermore, an increase in sample 
size does not help improve the conditional Type I error rate.  
 
Now despite the fact that there is inflated Type I error rate in stage two, we move to the 
third stage and study the type I error rate of the pooled t-test. If the practitioner rejects 𝐻1 
and fails to reject 𝐻2, he should perform a pooled t-test on the same pair of samples to 
check for equality of means. The type I error of the pooled t-test at the third stage is a 
conditional one based on the fact that 𝐻1 is rejected and 𝐻2 is not rejected.  
 
A theoretical derivation of the conditional type I error rate is provided in Appendix B. It 
stays at 0.821 regardless of the sample size, while the unconditional type I error rate of 
the t-test being 0.05. The conditional Type I error rate had inflated by more than 1500%. 
Furthermore, an increase in sample size does not help control the conditional Type I error 
rate.  
 

4. Discussion 
 
 
In this paper, we approach the conditional type I error of some tests by simulation and 
theoretical derivation. The inflation in the conditional type I error rate is considerably 
large. Increasing the sample size does not help control the conditional type I error and 
sometimes inflate it even more. We do not recommend preliminary tests to the 
practitioners.  
 
If we know that the main test statistic is robust to the violation of the assumption, we can 
perform the test of interest directly. For example, we know that the t-test statistic is 
robust to non-normal underlying distributions. We can directly perform the t-test on the 
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sample(s). When unsure about meeting the underlying assumptions of the main test, the 
practitioner should look for an alternative test (may be a nonparametric test). For 
example, the F-test statistic is very sensitive to non-normality. If we are not sure that the 
data come from normal distributions, we suggest that the practitioner perform a 
nonparametric two-sample Wald test of equality of variances.  
 
Further investigations are underway. 
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Appendix 

Appendix A 
 
We derive the conditional Type I error of the F-test in the second stage theoretically. If 
the nominal level is α, then the conditional Type I error is given by the formula:   

Conditional Type I error of the F − test

=
P(reject the combined test &reject the F − test|H1is true)

α
. 

P(reject the combined test &reject the F − test)

= α −� fX(x)
χ42(α)+2 logα

0
� fY(y)dydx
χ42(α)−x

−2 logα
, 

where X and Y both follow χ22. 
Now if we let α = 0.05, P(reject the combined test &reject the F − test) = 0.026078 
and thus the conditional Type I error is  

Conditional type I error =
0.026078 

0.05
= 0.478. = 0.478. 

 
Appendix B 
 
The conditional Type I error of the pooled t-test in the third stage is given as: 
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Conditional Type I error of the pooled t− test

=
P(reject the combined test &pass the F− test &reject the t − test|H1 is true)

P(reject the combined test &pass the F − test|H1 is true)
. 

 
P(reject combined test &pass F test &reject t test)

= 1 − α −� fY(y)
−2logα

0
� fX(x)dx
χ42(α)−y

0
dy

−� � fX(x)
−2logα

χ42(α)−y

−2logα

χ42(α)+2logα
fY(y)dxdy, 

where X and Y both follow χ22. 
 
Now if we let α = 0.05, the conditional Type I error is 0.821. 
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