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Abstract 

The existing methods for estimating tiered house price indexes are subject to substantial 

biases because a property's tier can only be measured imprecisely. Both academic 

research and industry practice have implemented tiered house price index estimation 

techniques but without a methodological solution to the bias problem. This paper 

proposes bootstrap procedures for correcting this bias in the context of testing for the 

existence of house price tiers. This method is illustrated at the state level for California, 

and it is shown that there are statistically significant tier effects. 
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1. Introduction 

 
There is a need for an econometrically valid approach to for testing for and estimating 

tiered house price paths. Frequently residential real estate markets are segmented into 

distinct sub-markets by property value. House price trends in the market for lower priced 

‘starter homes,’ that are small and lack many amenities, will be influenced by economic 

factors that affect first time home buyers, such as credit availability. Mid-market price 

trends may be influenced by recent house price appreciation as many homeowners 

looking to ‘trade-up’ rely on equity in their existing homes as a down payment. High 

valued properties’ demand may be influenced by factors such as executive bonuses and 

stock market valuations. Economic factors may influence supply and demand 

differentially across these value tiers, resulting in distinct house price tier trajectories.
2
  

 

A number of approaches to estimating tiered house price indexes exist. In each case, a 

rule for classifying observations into tiers is applied and then the repeat sales model is fit 

separately to each subset of data. Leventis (2012) identifies four different classification 

rules used to assign tiers to repeat transactions and shows that all of the approaches lead 

to house price indexes with significant bias. The bias in the index estimators will render 

statistically invalid any investigation of house price tiers using these methods.  

 

The main contribution of this paper is creating a bootstrap bias correction for the bias 

introduced through tiering. The bootstrap has been shown to be an important and 

effective technique in addressing a wide range of econometric problems. The core idea of 

the bootstrap approach is to approximate the true but unknown data generation process by 

the sample, and then evaluate the statistical properties of an estimator or test statistic 

through resampling techniques applied to the sample.
3
  In this paper, the bootstrap is 

utilized to estimate the bias in the tiered index and subtracting this estimated bias from 

                                                 
1
 Any views expressed are solely those of the author and do not necessarily represent the opinions 

of Freddie Mac, or its Board of Directors. 
2
 Motivation for the existence of house price tiers is given in Goodman (1978), Pollakowski, 

Stegman, and Rohe (1991), Delaney et al. (1992), Mayer (1993), and Gatzlaff and Haurin (1997). 
3
 For a discussion of bootstrap methods see Efron (1979), Hall (1992) and Horowitz (2001). 
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the raw tiered estimates then creates a bias-corrected index. This bias correction is 

utilized in the context of the statistical testing of the existence of tiers. 

 

The specific tiering method we investigate was introduced in Porteba (1984, 1991) and 

used by Mayer (1993) to estimate tiered condominium prices in the Boston area. This 

method classifies each transaction pair based on the average of the two transaction 

values, where value is expressed in real terms, adjusting for house price inflation using a 

local house price index. Because this method blends both first and second transactions 

values in assigning a tier, it is expected that the bias will be partially mitigated because 

the biases introduced by tiers based on either the two transactions are expected to have 

opposite signs and hence roughly offset.
4
   

 

This bootstrap bias correction to the repeat sales index estimator is applied to data for 

California. It is shown that tiering induced bias in the index is approximately linear in 

time; after bias correcting, the test of distinct tiers is significant; and bias–correcting 

increases house price growth in the low-value tier and reduces growth in the high-value 

tier. The middle-tier growth estimates exhibit only a very small bias. 

 

2. The Repeat Sales House Price Model with Tiers 

 

2.1 The Repeat Sales Model 

The repeat sales model estimates a house price index based on changes in values of 

homes in a geographic area that have sold at least twice, and this model is typically fit 

using least squares.
5
 The estimation involves two stages. The first-stage regression 

estimates the house price index using paired transaction values, and provides an index 

most consistent with the observed property value changes. The squared residuals from 

this least squares regression capture the house-specific volatility of the property value 

relative to the market.  

 

In the standard repeat sales framework, house prices are presumed to follow the process: 

 

ln(Pit) = I(t) + Hit + Nit,       (1)  

 

where Pit is the price of an individual house i at time t, I(t) is a market price index that is 

a function of time, Hit is taken to be the house-specific shock to property value around the 

index, and Nit represents the house-specific noise associated with the sale of a property at 

a given date. The random shock Nit can be thought of as a house-specific pricing error, 

and Hit as driven by fundamental shocks to housing supply and demand at the property 

level, such as local employment losses or changes in amenities. The variance of Hit and 

                                                 
4
 The other methods discussed by Leventis (2012) are: (1) classifying each pair based on the first 

of the two transaction values, which is expected to bias upwards estimated growth for the low 

price tier properties (and downward bias the growth for the upper tier); (2) classifying each pair 

based on the second transaction value which is expected to induce a downward bias in estimated 

growth for the low price tier properties (and an upwards bias in growth for the upper tier); (3) a 

property based classification rule which classifies each house based on the average of the all 

available transaction values for a property, where each transaction value is expressed in real terms, 

adjusted for house price inflation using a local house price index.    
5
 The original specification of this model was due to Baily, Muth, and Nourse (1963) and Case and 

Shiller (1987, 1989).  See Wang and Zorn (1997) for a review of this model and its estimation. 
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Nit are given by2
N and  

2
H  respectively. The systematic part of house price variation is 

captured by the variability over time in the repeat sales index I(t).  

 

As is standard in this literature, the repeat sales index, I(t), is estimated through 

regression as a step-function with monthly increments. The dependent variable is the 

natural logarithm of the house price appreciation for a pair of transactions at dates s and t 

(assuming s<t), and the independent variables are a series of indicator variables 

representing different months that have a value of -1 and 1 at first and second transaction 

months respectively,  and 0 otherwise. In this specification the model is estimated as: 

 

log(Pt/Ps) = I(t) – I(s) + ,      (2) 

 

An important driver of the bias in tiered estimation is the volatility of the error term, , in 

equation (2). As equation (1) specifies,  can be written as the sum of the following 

components: 

 

 = Ns + Nt + t
j=s+1 Hj,       (3) 

 

and in the absence of house price tiering and homogeneity of the variances across time, 

the error specification is that,  

 

E() = 0 and,        (4) 

 

Var() = 2
N + 2

N  + t
j=s+1 

2
H.     (5) 

 

In this context, a second-stage regression performed on the residual terms from the first-

stage regression provides consistent estimates of the variance of the error term as a 

function of holding period. Specifically, the dependent variable is the squared residuals 

from by the first-stage regression and these are regressed on an intercept and the time 

between transactions, i.e. the holding period. The variance of the Hit and Nit shocks, i.e. 

2
H and 2

N, can be inferred as from the regression coefficients,  

 

  Var() = 22
N  + (t-s) 2

H      (6) 

 

That is, the intercept is equal to twice the house-specific variance and the random walk 

component (i.e., t
j=s+1 Hj) has a variance equal to a linear function of the time between 

the pair of transactions. As is common in this literature, we will also include a quadratic 

term in holding period to better approximate the empirical form of the variance function. 

 

 

2.2 Defining House Price Tiers 

House price tiers are determined by classifying the paired transaction data into a discrete 

set of price tiers. The specific tiering method investigated classifies each transaction pair 

based on the average of the two transaction values, where value is expressed in real 

terms, adjusting for house price inflation using a local house price index. For simplicity, 

this paper will focus on the case of three tiers (high, medium, and low value tiers) and 

will denote the respective indexes by superscripts, (I
h
, I

m
, I

l
). 
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Each observation (a pair of prices) is assigned to a tier by first adjusting each price for 

house price inflation to a specific time period, t*, using a house price index (in this 

implementation, estimated assuming no tiering), and then averaging the two values. 

Specifically, given an initial index I*, the two log prices log(Pt)and log(Ps) are adjusted 

for house price inflation to date t* and averaged resulting in a value pa:   

 

pa = (log(Pt)[I(t*) – I(t)] + log(Ps)[I(t*) – I(s)])/2   (7) 

 

This average for each observation is compared to the distribution of all the averages in 

the sample to determine the tier assignment. In this paper, the sample is partitioned into 

three equally sized sub-samples (h, m, l) by each pair's average pa. Denote the thresholds 

of pa for the high and low tiers by ph and pl, which correspond to the second and first 

terciles of distribution. For example, if a given observation has pa > ph, then that 

observation will be classified as in the high tier.  

 

A central problem with the econometric estimation of tiered estimates is that in the tiered 

regression equation, 

 

E[log(Pt/Ps)] = I(t) – I(s) + E( | tier = j) for tier j,   (8) 

 

it will generally be the case that, E( | tier = j) will no longer be zero and so the 

regression estimates will be biased. Further insight into this bias can be gained by 

analytically expressing the expectation, E( | tier = j) assuming normality of the error 

term. For example, for an observation to be classified as high tier it must be the case that, 

pa > ph, which implies,  

 

(log(Pt)+ [ I(t*) – I(t)] + log(Ps)+ [ I(t*) – I(s)])/2 > ph.     (9) 

 

Since  log(Pt) =  log(Ps)+ [I(t) – I(s)] + , then the condition (9) can be written as  > 

2(ph – (log(Ps)[I(t*) – I(s)]). 

 

And so under normality, the expectation of a given observation’s error term is, 

 

 E( | tier = h)= E( |  > 2(ph – (log(Ps)[ I(t*) – I(s)])) 

 = E( |  > 2(ph – (log(Ps)[ I(t*) – I(s)])) 

  =  [φ(α/)/Φ(α/)] = λ, 

 

where α= 2(ph – (log(Ps)[ I(t*) – I(s)])), φ is the standard normal density function, and Φ 

is the standard normal cumulative probability function. This expectation will non-zero for 

virtually every data point. 

        

The impact of the error terms’ non-zero mean on the index estimate can be seen from the 

vector expression of the model. In vector terminology, the data generating process is 

given by  

 

Y = XI +  +         (10) 

 

where Y is a vector of log price differences, X is the matrix of repeat sales bases 

functions,   represents a vector of expectations of the error terms conditional on tiering, 

''= (λ1,…, λT), one for each observation and N represents the vector of errors terms 
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modified to have zero mean, i.e. where each element equals  - E( | tier = h). Applying 

least squares, the expectation of the resulting index estimate is given by 

 

E(I) = I + (X’X)
–1

 X’        (11) 

 

And so the bias is 

 

b0 = (X’X)
–1

  X’ = (X’X/T)
–1

  X’/T     (12) 

 

This demonstrates there are two components, the inverse of the ‘design’ matrix X’X and 

the product of X and the vector of error expectations, , that characterize the bias. 

 

3. Bootstraping the Repeat Sales Model with House Price Tiers 

The core idea of bootstrapping is that the properties of a statistic can be approximated 

through evaluating the distribution of the statistic calculated on a large number of 

resamples. In a range of applications, resampling has been shown to provide a useful 

approximation to the statistical properties under the true but unknown data generating 

process. There are a variety of ways of implementing the bootstrap. This paper utilizes 

the method referred to as ‘error resampling’ in which replications are created using draws 

of the sample residuals from an estimated model. In testing for the presence of tiers, we 

use a fully parametric bootstrap—where a parametric model is fit to the sample and 

resamples are created using the fitted model. This method is feasible because under the 

null hypothesis of no house price tiers, the residual from the fitted model are reasonably 

approximated by a normal distribution. In contrast, if house price tiers are a given, then 

the tiering methodology induces both a non-zero mean and non-normality for the residual 

distributions in each tier. In this case, the empirical residuals would need to be resampled 

after stratifying by holding period and tier. 

 

To fix notation, define the true but unknown data distribution process (DGP) as F0, the 

sample distribution as F1, and the resampled distribution for replication r as F2r. Similarly, 

the true but unknown house price index is given by I0 = (I
h
0, I

m
0, I

l
0)’ and the hypothesis 

of no price tiers can be represented as the equality restriction, I
h
0 = I

m
0 = I

l
0.

6
 

 

The estimated house price index based on the sample under the null (no price tiers) is 

denoted by I1 = I(F1| Ho) = (I
*
1 I

*
1 I

*
1)’. The house price index estimated under the 

alternative that allows for price tiers can be expressed as I1 = I(F1) = (I
h
1 I

m
1 I

l
1)’ and in 

this context the alternative hypothesis can be represented as  ((I
h
1 -  I

m
1) (I

m
1 - I

l
1))’ ≠ 0 

where the inequality holds strictly for at least one element of the vector. 

 

The index estimation applied to the true parametric DGP, 0 = (I0, σ0(h)), has a  unknown 

bias, b0, and results in a biased index estimate, I1. The bootstrap estimate of bias, b1, is 

based on the difference in the index used to create the bootstrap resamples, I1, and the 

average index over the R bootstrap replications, {I21,…, I2R}: 

 

b1 = (∑r I2r/R) - I1       (13) 

                                                 
6
 Note that by construction one element across the tiered repeat sales indexes will be exactly equal 

because they share a common normalization date.  Also, note that the transpose of the index within 

parentheses is suppressed to avoid cluttered notation. 
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The bootstrap bias corrected index, Ibc, is then given by: 

 

Ibc = I1 -  b1.        (14)  

 

 
Figure 1: Bootstrap Bias Correction 

Figure 1 illustrates the operation of the bootstrap bias correction. The bias of the tiered 

estimation results in the displacement of the estimated index, I1, from the ‘true’ index, I0, 

by an unknown bias, b0. This unknown bias is approximated through the replications that 

treat I1 as the ‘true’ index and estimate the bias as difference between the average tiered 

estimate, I2 and I1. Note that under the null hypothesis, estimating I1 under the constraint 

that I
h
1 = I

m
1 = I

l
1, results in a consistent estimate of the ‘true’ unknown bias, b0, because 

the constrained estimate is a consistent estimate of I0. 

 

To the extent that the bias corrected index Ibc, is a better estimate of I0, than I1, the 

estimation of the bias could be repeated starting at Ibc and generating a new bias estimate, 

b2 and bias-corrected index, Ibc = I1 - b2. In principle, this algorithm could be iterated until 

the estimated bias function converges to a constant function.  

 

4. Testing for the Existence of House Price Tiers 

There are some differences between the approaches available for a statistical hypothesis 

test and that of estimation. First, under the null hypothesis of no price tiering, the indexes 

for the three possible tiers equal one another:  I
h
 = I

m
 = I

l
. Second, under the null, the data 

generation process is the ‘standard’ repeat sales model and hence it can be estimated 

using a single ‘index’ regression (with heteroskedastic errors). Let I
*
1 denote is this 

consistent estimator of I0 estimated under the null. 

 

The ‘standard’ index estimation applied to the sample is given by I
*
1 = (I

*
1 I

*
1 I

*
1)’ where 

the equality across tiers has been imposed in estimation. This constrained index is used to 

create the bootstrap resamples for each of the replications, but then tiered estimates are 

created using each replicate. For each replication, r, the observations are categorized into 

                          . Ibc = I1-b1 

                      . I0 

                                                                           -b1 
                      

                                                             b0        

                                    . I1 

                                          

                        

                                                                                                     b1 
                                               

 

                                              . I2 
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tiers and an estimate of the tiered index is made, I2r = (I
h

2r, I
m

2r, I
l
2r).’ Note that the 

estimate of each I2r no longer constrains the index to be equal across tiers. The estimate of 

the bias is the difference in the average ‘tiered’ estimate of the index over the R bootstrap 

replications, {I21,…, I2R}, and the index used to create the replications, I
*
1: 

 

 b1 = (∑r I2r/R) – I
*
1.       (15) 

 

Let the tiered estimation based on the original sample be denoted, I1 = (I
h
1, I

m
1, I

l
1). The 

bootstrap bias corrected index, Ibc, is then given by: 

 

 Ibc = (I
h
1, I

m
1, I

l
1) - b1.   (16) 

 

The variance/covariance matrix of the bias corrected tiered index, Ω, is estimated using 

the empirical variance/covariance matrix of the replicates. Specifically, this can be 

estimated by 

 

Ω = ∑r (I2r - ∑r I2r/R) (I2r - ∑r I2r/R)’/R,             (17) 

 

or correcting for degrees of freedom, 

 

Ωalt = ∑r (I2r - ∑r I2r/R) (I2r - ∑r I2r/R)’/(R – length(I) + 3).         (18) 

 

The null hypothesis of no tiering can be expressed as a series of equality constraints on 

the estimated tiered index, namely I
h

1 = I
m

1 and I
m

1 = I
l
1. In vector notation, this constraint 

can be written H’ I = 0 and the corresponding χ
2
   given by (H’ I)’ (H’ Ω H)

-1
(H’ I) with 

degrees of freedom equal to 2/3 length(I) - 2. 

 

Table 1: Summary Statistics 

      

  

Sample 

Size (April 

1999 - Oct 

2010)  

Mean Std Dev Min Max 

First Transaction 

Price (P1) 
66,099 $264,704 $160,017 $18,500 $3,480,000 

Second Transaction 

Price (P2) 
66,099 $327,540 $194,498 $28,000 $3,200,000 

Holding Period 

(months) 
66,099 53 34 6 139 

Annual Growth Rate 66,099 5% 15% -37% 47% 

 

 

5. Data 

The data used to estimate the repeat sales model are based on home purchase loans 

originated between 1999 and 2010 in the state of California and purchased by Freddie 

Mac and Fannie Mae or available from a commercial data provider. Individual loans are 

matched into pairs based on property address. Exclusion filters were applied to the data in 

order to obtain a clean estimation dataset: First, transaction pairs with holding periods 
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less than 6 months were excluded from the sample to avoid "flipped" properties; second, 

only properties with annual house price growth between the 5
th
 and 95

th
 percentiles were 

included to avoid contamination from outliers. The resulting data set includes more than 

66,000 transaction pairs. Table 1 lists a few key statistics for the data.  

 

 

 
 

6. Results 

Figure 2 graphs the bias in the tiered repeat sales indexes for California estimated using 

2000 bootstrap replications. It can be seen that the low tier index understates growth as 

this downward sloping bias function is subtracted from the raw low tier estimates 

(increasing the slope of the bias corrected index). This result matches intuition, as low 

value properties that have atypically large house price appreciation are likely to be re-

classified as middle tier properties and leads to a downwards selection bias for the low 

tier segment. Conversely, the graph of the high tier bias function shows that the raw 

tiered index estimates will overstate the growth in this segment. Intuitively, middle value 

properties that have atypically large house price appreciation are likely to be re-classified 

as high tier properties, and high value properties that have atypically low house price 

appreciation are likely to be re-classified as middle tier properties, both leading the to an 

upwards selection bias in the high tier estimates. Note that the high and low tier bias 

functions are nearly symmetric across the horizontal axis. The middle tier bias function is 

approximately horizontal and so bias correcting has only minor impacts on estimated 

growth. 
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Table 2: Regression Approximation to Bias Correction 

       

 

CA 

Low Medium High 

Intercept 0.33702 0.06787 -0.31587 

Date -0.00255 -0.00044 0.00254 

R
2
 0.99020 0.60680 0.97870 

 
 

A striking feature of Figure 2 is the apparent linearity of the bias function. Table 2 shows 

that the bias correction to the repeat sales index is very well approximated by a linear 

function of time. For each tier, the estimated bias at each date is regressed on the date (in 

months) and the results are reported above. For California, the linear approximation 

explains 99% and 98% of the variation in the bias function for the low and high tiers. The 

linear approximation only explains about 60 percent of the medium tier, but there is very 

little variation in the middle tier to explain, as it is nearly flat. Also, note that the linear 

coefficients for the high and low tiers are a very similar magnitude but of opposite sign, 

indicating a symmetry in the bias.  

 

 
 

Figure 3 plots the aggregate and the bias-adjusted tiered indexes for California and 

displays that the bias correction acts to spread these estimated indexes apart. The 

differences in index across tier displayed in Figure 3 are statistically significant. Table 3 
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shows the chi-squared statistics for the test of equality of bias corrected indexes for the 

hypotheses that I
h
1 = I

m
1 and I

m
1 = I

l
1. A separate test statistic for I

m
1 = I

l
1 is given in the 

column labeled ‘Low-Mid’ and a test statistic for I
h
1 = I

m
1 is given in the column labeled 

‘Hi-Mid’ and for these tests the critical value of the chi-squared statistic is 180. For 

California the chi-squared statistics for both these hypotheses is well above the critical 

value. Similarly, the results for joint test of I
h
1 = I

m
1 and I

m
1 = I

l
1 (which is null hypothesis 

of no price tiering) is strongly rejected at the 1% level having a critical value for the 

statistic of 360 and a chi-squared statistic value of 6068 for California. These chi-squared 

statistics for the test of equality of bias corrected indexes show that for California the null 

hypothesis of no price tiering is strongly rejected at the 1% level. 

 

Table 3: Chi-Square Statistic: Test of Presence of Bias Effect 

    
  Low-Mid Hi-Mid All 

State:  CA 1418 1954 6068 

Critical Value at 1% Level 180 180 360 

# Restriction /Degree of 

freedom  
138 138 276 

 

 

7. Conclusions 

Understanding the forces that guide house price movements is important for 

homeowners, real estate professionals, and the mortgage finance industry. Practitioners 

have long identified price tiers in housing markets as an important factor in 

understanding local housing markets. In the current recovery, for example, there may be 

some markets with uneven appreciation across price tiers, as mortgage credit availability 

continues to be especially restricted in high-value tiers. However, there have not been 

valid methods of testing for and estimating tier effects.  

 

This paper proposes a new methodology to address this gap in the contest of repeat sales 

index estimation. This method is applied to a set of California repeat sales transactions, 

and demonstrates the existence of material tier effects in home sales paths. While this 

tool was implemented in a simple case of three market tiers, it generalizes to any number 

of tiers. 
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