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Abstract 

Traditional control charts, such as Shewhart, CUSUM, and EWMA charts, typically 
monitor the mean and/or the standard deviation, but in many cases, monitoring the shape 
of the distribution is necessary.   Grimshaw and Alt (1997) proposed a quantile control 
chart to monitor the quantile function of a continuous distribution by monitoring a 
selected set of quantiles. Their method is based on an asymptotic chi-square statistic. The 
main goal of this article is to examine the robustness of the quantile control chart under 
the situations where 1) the underlying distributions are of different shapes, 2) the number 
of chosen quantiles varies, and 3) the positions of the quantiles vary. By summarizing the 
simulation results, we provide recommendations for the implementation of the quantile 
control chart. We also examine an adjustment to the control limit to improve the 
performance of the quantile control chart.   
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1. INTRODUCTION 

The quantile function, QF, of a probability distribution is the inverse of its cumulative 
distribution function (CDF). The CDF describes the distributional shape, hence the QF, 
the inverse of the CDF, does the same: a change in the quantile function indicates a 
change in the shape of the distribution. The median, which is also the 50th percentile, is 
one of the most well-known quantiles because of its resistance to outliers as a measure of 
the location of a distribution. The first and the third quartiles, which are the 25th and 75th 
percentile, respectively, provide a more robust description of the spread, via the 
interquartile range, than the range and the standard deviation. The upper and the lower 5th 
percentiles are useful to describe the upper and the lower tail of the distribution. Thus, 
monitoring the quantiles and the quantile function provides meaningful information about 
the underlying distribution.  

Alt (1985) proposed a chi-square test statistic to monitor the quantiles of an unknown 
distribution. Grimshaw and Alt (1997) further developed this test statistic into a quantile 
control chart (QCC), to better detect distributional (shape) changes of a random variable, 
which cannot be achieved by the traditional control charts for the mean and the standard 
deviation. Moreover, traditional control charts, such as the Shewhart and the CUSUM 
control charts, require the normality assumption for the underlying distribution, however 
many situations exist in practice where this assumption cannot be met. In fact in some 
applications it is more common to have a skewed underlying distribution. To this end, 
Grimshaw and Alt (1997) cite an example from the Brigham Young University (BYU) 
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Creamery. The gross weight for a half pint bottle of milk is being monitored. 
Unreasonable errors for the half pint of milk produced at the BYU creamery are defined 
as 1) minus errors: greater than or equal to ¼ ounce, and 2) plus errors: greater than or 
equal to ½ ounce.  Because the unreasonable errors differ in magnitude, it was natural to 
expect the distribution of weights to be skewed. In fact, the authors stated that “the ideal 
process would have a quickly decaying left tail and a more slowly decaying right tail”, 
and felt that the QCC would be more helpful since it monitors the distributional shape by 
monitoring the quantiles. To emphasize the point that monitoring the mean and variance 
might not be enough to monitor the shape of the distribution, note that for example, a 
normal distribution with mean one and standard deviation one is fundamentally different 
from an exponential distribution with rate 1 but they both have the same mean and 
variance. Thus, traditional control charts, monitoring the mean and the variance, would 
most likely not pick up the difference between the shapes of the two distributions.  The 
QCC, on the other hand, is expected to be useful in detecting such a more drastic, 
distributional change.  

In the second section of this paper, we give a detailed description of the QCC and 
uncover some questions in the implementation of this methodology that need to be 
addressed.  These questions relate to the performance of the QCC with regard to (i) the 
shape of the underlying distribution (ii) the number of the chosen quantiles and (iii) the 
positions of the chosen quantiles (where the quantile function is evaluated).  We follow 
up on these questions in section three to provide some answers based on extensive 
simulation results. We conclude in section four with some conclusions and 
recommendations.  

2 METHODOLOGY 
2.1 QCC: Quantile Control Chart for monitoring an unknown continuous 

distribution 

In reality, it is more common that the normality assumption for the underlying 
distribution cannot be met. Thus Grimshaw and Alt (1997) proposed the QCC to monitor 
some specified quantiles of an unknown distribution. The proposed control chart is based 
on plotting and monitoring a statistic that has an asymptotic chi-square distribution. In 
this section, we give the description of this method.   First we define the quantile 
function. 

A shifted, piecewise linear sample quantile function defined by Parzen (1979) is used to 
estimate the quantiles of a random sample of size 𝑛:  

𝑄�(𝑢) = 𝑛 �
2𝑖 + 1

2𝑛
− 𝑢�  𝑋(𝑖; 𝑛) +  𝑛 �𝑢 −

2𝑖 − 1
2𝑛

�  𝑋(𝑖 + 1; 𝑛) 

for  2𝑖−1
2𝑛

< 𝑢 ≤  2𝑖+1
2𝑛

, 𝑖 = 1,2, … 𝑛 − 1, where 𝑋(1; 𝑛) ≤  𝑋(2; 𝑛) ≤ ⋯ ≤ 𝑋(𝑛; 𝑛) 
denote the order statistics. This function is claimed to behave well when the sample size 
is small. It is also the function that Grimshaw and Alt (1997) used.  However, we use the 
more traditional definition of a sample quantile as an order statistic. Hence we take 
𝑄�(𝑢) = 𝑋([𝑢𝑛]; 𝑛) to be the estimator, where [𝑢𝑛] denotes the largest integer not 
exceeding 𝑢𝑛 and 𝑋([𝑢𝑛]; 𝑛) denotes the order statistic.  

Regardless of the true underlying distribution, the quantile values are estimated from 
historical reference (Phase I) data. Let N subgroups of Phase I data, each of size n, are 
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available. The estimator 𝑄�𝑗(𝑢𝑖),  for a specified 𝑢𝑖, is calculated for each subgroup 
𝑗 = 1,2, … ,𝑁 and then averaged over N.  Let Q0 be a column vector containing k 
elements,  

𝑄0 =  �

𝑄0(𝑢1)
𝑄0(𝑢2)

⋮
𝑄0(𝑢𝑘)

� 

where 𝑄0(𝑢𝑖) =  1
𝑁
∑ 𝑄�𝑗(𝑢𝑖)𝑁
𝑗=1  and 0 < 𝑢1 < ⋯ < 𝑢𝑘 < 1.  Now let  𝑄�  denote a k by 1 

vector of sample quantiles constructed at the same 0 < 𝑢1 < ⋯ < 𝑢𝑘 < 1, from the 
Phase II data that is being monitored.  Let 𝑢 = (𝑢1, … , 𝑢𝑘)′ denote the k by 1 vector of 
positive fractions. A one-sided control chart is constructed to monitor the chi-square 
statistics below.  

𝑊 = (𝑄� − 𝑄0)𝑇Σ0−1(𝑄� − 𝑄0) 

where the asymptotic covariance matrix ∑0 is given by 𝜎𝑖𝑗 =  𝑢𝑖(1−𝑢𝑗)
𝑛𝑓(𝑄0(𝑢𝑖))𝑓(𝑄0�𝑢𝑗�)

, for 

𝑖 ≤ 𝑗.  Note that this covariance matrix is symmetric and 𝑓𝑄0(𝑢𝑖) is the density-quantile 
function of the in-control distribution.  For a sufficiently large sample size n, it can be 
shown that W approximately follows a chi-square distribution with k degrees of freedom 
when the monitored process is in-control. Thus the computed value of W is compared to 
 𝜒𝛼2(𝑘) which is the 100(1-α) percentile of the chi-square distribution with k degrees of 
freedom.  This percentile serves as the upper control limit (UCL) of the QCC.  If W > 
UCL, the process is declared to be out-of-control.  

Next, we examine the approximate (large sample) in-control distribution of the plotting 
statistic W.  How large does the sample size n have to be for this approximation to be 
satisfactory?  In practice, taking large samples in statistical process control is inefficient 
and uneconomical, so there are concerns about the performance of the chi-square critical 
value based chart under a “limited” sample size.  In the following section, we dig into 
these questions via simulations.  

2.2 Simulation results and comparison 

As stated in the beginning of this section, the performance of the QCC is examined from 
three practical aspects: (i) the impact of the shape of the underlying distribution (ii) the 
number of chosen quantiles and (iii) the positions of the chosen quantiles, where the 
quantile function is evaluated, with the nominal false alarm rate equal to 0.05 and 0.005.  

The eight figures below show the eight different distributions used in our study. The 
gamma(0.5,3) and gamma(0.25,3) are highly right skewed distributions but gamma (4,3), 
gamma(16,3), gamma(36,3) and gamma(100,3) are only slightly right skewed with 
decreasing amount of skewness. The normal (0,1) and t(3) are symmetric distributions 
with different thickness of tails.  

The number of chosen quantiles was varied from k = 3 to k = 5.  The positions used are as 
follows: for k = 3, u = (0.05, 0.5, 0.95)’, u = (0.1, 0.5, 0.9)’ and u = (0.25, 0.5, 0.75)’.  For 
k = 5, u = (0.05, 0.25, 0.5, 0.75, 0.95)’ and u = (0.25, 0.375, 0.5, 0.625, 0.75)’. 
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As an example consider the simulation from the gamma(0.25, 3) distribution.  With 
10,000 simulations, we got the empirical distribution of the values of the monitored 
statistic.  In the graph below, u = (0.05, 0.5, 0.95)’. If the computed value of the statistic 
is greater than 12.8, which is the upper 0.005 percentiles of 𝜒(3)

2 , we input 12.8 as the 
value of the statistic. The curve shows the true pdf of 𝜒(3)

2 . The height of the bar on the 
right indicates the probability that the values of the monitored statistic fall outside the 
UCL. As the sample size increases, we can see that the height of the bar gets closer to 
0.005, the nominal false alarm rate, which indicates the robustness of the in control ARL 
gets better.  
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The steps of the simulation study are as follows  

1. Choose one of the eight distributions, the number of quantiles k, the positions of 
quantiles (𝑢1 < ⋯ < 𝑢𝑘) and a nominal ARL0.  

2. Calculate 𝑄0 and 𝛴0 from the chosen in control distribution. 

3. Randomly generate a sample of size n from the chosen distribution and compute 
the k by 1 quantile vector 𝑄�  at the same positions ui, i =1, …, k. 

4. Compute the value of the W and compare it to  𝜒𝛼2(𝑘).   

5. Repeat steps 2 and 3 for 10,000 times and each time count if W >  𝜒𝛼2(𝑘). 

6. Calculate the false alarm rate by using the total counts of W>  𝜒𝛼2(𝑘) divided by 
10,000.  

7. Increase n and study its impact on the false alarm rate 

Same simulation experiments are run for all the cases. We provide full results table to 
show the results.  
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From the results table, we can summarize the three conclusions below:  

1. The closer the chosen quantiles, the smaller the required sample size.  

2. More highly skewed distributions need a larger sample size to reach a robust type I 
error.  The optimal number of quantiles is not obvious.  The position plays an important 
role.  

3. Slightly skewed distributions need smaller sample size than symmetric distributions.  

2.3 Improvement and results 

sample sizes Number of positions
Skewness Distributions typr I error u= 0.05,0.5,0.95 u=0.1,0.5,0.9 u=0.25, 0.5, 0.75

0.05 3000+ 3000+ 1500
0.005 3000+ 3000+ 3000+
0.05 2000 1000 400

0.005 2500 3000 1000
0.05 100 50 45

0.005 12 14 11
0.05 200 200 100

0.005 200 200 20
0.05 400 200 100

0.005 200 50 19
0.05 200 200 45

0.005 200 200 40
0.05 200 200 200

0.005 100 100 40
0.05 100 17 13

0.005 1000 200 200

3

4 gamma(0.25,3)

2.828 gamma(0.5,3)

1 gamma(4,3)

0.5 gamma(16,3)

0.33 gamma(36,3)

0.2 gamma(100,3)

0 Normal(0,1)

0 t with df=3

sample sizes
Skewness Distributions type I error u =0.05,0.25,0.5,0.75,0.95 u=0.25,0.375,0.5,0.625,0.75

0.05 3000+ 2500
0.005 3000+ 3000+
0.05 1500 500

0.005 3000+ 16
0.05 100 100

0.005 40 16
0.05 300 200

0.005 100 11
0.05 300 100

0.005 100 14
0.05 300 300

0.005 200 13
0.05 300 100

0.005 300 11
0.05 11 13

0.005 1000 2000

Number of Positions

0.2 gamma(100,3)

0 Normal(0,1)

0 t with df=3

1 gamma(4,3)

0.5 gamma(16,3)

0.33 gamma(36,3)

5

4 gamma(0.25,3)

2.828 gamma(0.5,3)
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From the results and graphs above, the empirical distribution of W from the simulations 
usually has a thicker tail than a chi-square distribution when the sample size is small. To 
improve the results, adjustment is made to the asymptotic chi-square critical value by 
multiplying a constant. Former results show that the performance of the asymptotic 
distribution is related to the sample size and the number of chosen quantiles, hence the 
multiplied constant is proposed as 1 + 𝑘2

𝑛
 . In this way, the modified critical value 

(1 + 𝑘2

𝑛
) × 𝜒𝛼2(𝑘) has the intuitive appeal that, for small sample sizes, the original sample 

sizes is increased by some function of the number of quantiles and the sample size. As 
n→ ∞, the proposed values will confirm to the original value. Below is the summary 
table of the modified critical value for different distributions.  

 

 

sample sizes
Skewness Distributions typr I error u= 0.05,0.5,0.95 u=0.1,0.5,0.9 u=0.25,0.5,0.75

0.05 3000+ 3000+ 1500
0.005 3000+ 3000+ 3000+
0.05 2000 400 100

0.005 3000+ 3000+ 1000
0.05 400 400 400

0.005 200 400 200
0.05 500 300 1000

0.005 500 1000 1000
0.05 500 500 300

0.005 1000 400 300
0.05 400 400 400

0.005 2000 500 500
0.05 500 400 300

0.005 300 400 400
0.05 400 400 500

0.005 1500 300 400

0 Normal(0,1)

0 t with df=3

Adjusted CV

0.5 gamma(16,3)

0.33 gamma(36,3)

0.2 gamma(100,3)

3

4 gamma(0.25,3)

2.828 gamma(0.5,3)

1 gamma(4,3)

sample sizes
Skewness Distributions typr I error u =0.05,0.25,0.5,0.75,0.95 u=0.25,0.375,0.5,0.625,0.75

0.05 3000+ 3000+
0.005 3000+ 3000+
0.05 1000 3000+

0.005 3000+ 3000+
0.05 1000 3000+

0.005 1500 500
0.05 1000 1500

0.005 1000 2000
0.05 1500 1500

0.005 1000 1000
0.05 1500 1000

0.005 1500 2000
0.05 1000 1000

0.005 2500 1500
0.05 1000 1000

0.005 500 400

0 Normal(0,1)

0 t with df=3

Adjusted CV 5

0.5 gamma(16,3)

0.33 gamma(36,3)

0.2 gamma(100,3)

4 gamma(0.25,3)

2.828 gamma(0.5,3)

1 gamma(4,3)
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From the two summary tables, we can see that some of the cases require even larger 
sample sizes.  However, some of the cases do show improvement, requiring less sample 
sizes.  This is a problem for further study. 

3 SUMMARY 

The QCC with quantiles chosen to be close to each other requires a relatively smaller 
sample size to reach a robust in control ARL/FAR. Highly skewed distributions need a 
relatively larger sample size to reach a robust in control ARL/FAR. Slightly skewed 
distributions need a relatively smaller sample size than monitoring symmetric 
distributions to reach a robust in control ARL/FAR.  The in control performance of the 
QCC chart, monitoring different number of quantiles, is affected by the positions of 
quantiles. Generally speaking, for highly skewed distribution, more than 1000 
observations (n) is required; for slightly skewed distribution, less than 50 can work; for 
symmetric distribution, more than 100 observations (n) is needed.   

The improvements for the above adjustment were not consistent in different cases. With 
the adjusted UCL, some cases need a smaller sample size (n) to reach a relatively robust 
ARL/FAR, while some need a larger sample size (n). 
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