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Abstract
With evaluation systems increasingly reliant upon value added measures of teacher/program
effectiveness, it is imperative to create the most accurate, reliable and valid estimates of
contributions to student achievement. Value Added Models (VAMs) attempt to measure a
teacher’s impact on student achievement beyond what is expected of a student given the
student’s and his or her peers’ prior performance and demographic information. This pa-
per discusses current modeling developments including initial results from the NSF Funded
RealVAMS project that extends traditional VAM estimates by incorporating “real world”
outcomes such as college entry.
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1. Introduction

As a result of the Race to the Top (2011) competition (U.S. Department of Education,
2011), almost all states have implemented teacher evaluation systems that are
highly reliant (50-100%) on some form of value-added model (VAM). All value
added models (VAMS) currently used for accountability measure teacher effective-
ness from standardized assessments with a vertically equated scale. They then use
information from the test manufacturers for scaling, or other item response the-
ory methods (Ballou et al., 2004; Martineau, 2006). Hence, districts and states
are limited to specific standardized tests to measure teacher effectiveness that are
equivalent/comparable year after year.

Recently, there has been a shift in the goals and standards for education in
the United States, namely the development new standards to ensure that our high
school graduates are “College and Career Ready” (U.S. Department of Education,
2014). What does College and Career Readiness look like? How can we measure
a teacher’s impact on a student’s achievement toward the ultimate goal of College
and Career Readiness? Often, the goal of a state, district or science, technology,
engineering and mathematics (STEM) education project is not adequately measured
by a test. Real-world outcomes, such as STEM career-persistence, college entry,
etc..., are likely more relevant outcome measures. The RealVAMS model discussed
here is an innovative approach to assess the impact of a teacher or intervention
program on “real-world outcomes” in addition to traditional standardized test. In
the RealVAMS project, we measure a teacher’s impact directly on whether the
student enters or graduates from college in addition to a student’s achievement
which yields multidimensional estimates of teacher effectivenes.

While a multidimensional VAM cannot capture the full complexity of student
achievement, this methodology can provide a much better picture than relying solely
on univariate test scores. The paper will discuss the RealVAMS model in section (2)
and provide an example of the model using data from a large public school district
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in section (3). The appendix (4) will present the open source package RealVAMS
developed in R Statistical Computing software (R Development Core Team, 2006)
to execute the multidimensional model.

2. Features of RealVAMS model

The RealVAMS model considers real world outcomes and outcomes that are not
vertically equated by using a necessarily more complex mixed model to allow lon-
gitudinal non-equated continuous responses and real-world categorical responses.
This model was initially developed and presented by Jennifer Broatch and Sharon
Lohr (2012). This framework expands on the traditional multivariate value added
model to estimate multidimensional effects. In the multidimensional model, the stu-
dent responses may be different quantities; for example, the multivariate responses
may include scores in different subjects (math and English-Language Arts (ELA)),
scores from different assessment instruments (SAT, ACT), and categorical responses
such as whether or not a student graduated or persisted in a STEM field. The Re-
alVAMS model simultaneously estimates a different effect for each teacher for each
response, rather than one overall estimate for the teacher.

Consistent with the value added modeling general framework, the student and
classroom baseline characteristics, such as ethnicity, free lunch participation, sex,
and measures of prior achievement (previous year’s achievement score), will still
remain as potential covariates in the model. The multivariate model is powerful for
studying relationships among teachers and students in a multi-response (i.e. real)
setting. RealVAMS will use a multivariate mixed model framework for student test
achievement and real-world achievement. Although a multivariate approach can be
computationally complex, it “exploit[s] the availability of tests in multiple subjects
to improve the precision of estimation of teacher effects on any specific subject,”
“reduces confounding of teacher assignment with student background,” and “should
also increase robustness of results to non-ignorable missingness” (Raudenbush, 2004,
pg. 127).

For simplicity, the RealVAMS model will be introduced where the responses for
student i are all continuous, typically test scores. The RealVAMS model for the
vector of t responses of student i presented in a traditional mixed model framework
is:

yi = Xiβ + Siη + εi. (1)

The [t× (p+ 1)] matrix Xi gives the p covariates of student i. These may include
time-invariant covariates such as gender and ethnicity as well as time-varying co-
variates such as participation in free lunch programs. These covariates will vary by
district and state (MET Researchers, 2012; White and Rowan, 2012). The (t× tm)
matrix Si indicates which teacher instructs student i, for each of the t responses. In
the model, S can be expanded to allow for fractional instruction by different teachers
in one time period. Overall, Model (1) considers t potentially different continuous
responses that do not require time ordering or scaling. The latent teacher effect
for teachers j = 1, . . . ,m for responses k = 1, . . . , t is represented by the vector
η. For teacher j, ηj = (ηj1, . . . , ηjt)

′ is the t-vector of effects, where ηjk represents

the effect of teacher j on response k. Thus, the vector η = [η
′
1, . . . ,η

′
m]

′
is the

concatenation of the individual teacher vectors for all m teachers.
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We would, however, expect the components of the teacher effects, ηj to be cor-
related. This addresses the concern with the EVAAS model (Wright et al., 2010).
That is, when modeling math and science scores for example, we would expect a
teacher’s effect on a student’s math score and his or her effect on a student’s science
score to be related. Similarly, we would hypothesize that a teacher’s effect on a
student’s achievement on a standardized test would be related to their effect on
a real-world outcome such as college entry. Therefore, we allow for this flexibil-
ity similar to that of Mariano et al. (2010) by setting cov(ηj) = Gj where Gj is
a nonnegative definite matrix. The VAMs in the current literature, with the ex-
ception of Mariano et al. (2010), assume a teacher’s effects are independent across
responses, so cov(ηkl, ηkl′) = 0 for l ̸= l′. Finally, εi is assumed to follow a normal
distribution with mean 0 and variance Ri, where Ri is unrestricted and allows the
student responses to be correlated over the t responses. Additionally, all ηj and εi
are assumed uncorrelated.

The model also assumes teachers are independent so that η is normally dis-
tributed with mean 0 and variance G = blockdiag(G1, . . . ,Gm) where

Gj =

 g11 g12 . . . g1t
...

...
g1t g2t . . . gtt


and all Gj are initially assumed equal.

The model in (1) assumes that all responses are continuous and normally dis-
tributed. In order to include real-world or categorical responses, we employ a gen-
eralized linear mixed model (GLMM) to allow binary responses in addition to the
continuous response. The generalized linear mixed model can be viewed as a simple
extension of the continuous model presented. The critical difference stems from the
calculation of the VAM estimates. The method of estimation is admittedly more
complex and computationally intensive.

Nonetheless, for binary responses, we adopt the continuous response model (1)
for an unobservable latent trait ỹ. The binary response is defined to be yij = 1 if the
latent variable ỹij > 0. For example, suppose STEM field graduation is the binary
response of interest, then the response would equal 1 if the student graduated in a
STEM field and 0 otherwise. A response yij = 1 is then equivalent to the student’s
underlying latent STEM graduation trait exceed some threshold, ỹij > 0. Thus,

ỹi = Xiβ + Siη + ε̃i. (2)

where η ∼ N(0,G) and ε̃ ∼ N(0,R). To maintain the identifiability of the pa-
rameters, we take Ri to be a correlation matrix. The other terms in the model are
defined as in (1).

The GLMM contains the linear mixed model inside the inverse link function:

E[yi | η] = g−1(Xiβ + Siη) (3)

where g(·) is a multivariate probit link function for a binary response, following the
recommendation of McCulloch (1994) and Rabe-Hesketh and Skrondal (2001). We
can include the typical student achievement tests and real-world response by using
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the identity link for the continuous responses (for example, math test score) and the
probit link for the binary responses (for example, STEM field graduation). Thus,
we can simultaneously model teachers’ effects on the likelihood of college entry or
graduation as well as their effects on math standardized test scores.

In summary, the RealVAMS model (also presented in Broatch and Lohr (2012))
is an extension of a standard mixed model with the following key distinctions:

• Unrestricted non-equated responses.

• Multidimensional teacher effects: ηj = [ηj1, . . . , ηjt]
′

• Assumes teachers are independent so that η ∼ N(0,G) withG = diag(G1, . . . ,Gm)
where all Gj are assumed equal:

Gj =

 g11 g12 . . . g1t
...

...
g1t g2t . . . gtt

 . (4)

• Allows all effects of the same teacher to be correlated, even if they are teaching
different subjects or the response is measured on a different scale.

• Dramatically differs from the typical VAMS that estimate one teacher effect,
ηj for each teacher j = 1, . . .m, η ∼ N(0, σ2

η)

Computational Issues Implementing the Model

There are computational issues that arise from the complexity of the model, yet
an important part of this research is making the methodology accessible for use by
educational researchers and practitioners. The primary issue with the RealVAMS
model presented (2) is the computational difficulty in estimating the teacher effects
and correlations, specifically the the teacher effects are allowed to be correlated (the
off-diagonal of G are not assumed to be 0). This is because finding maximum like-
lihood estimators directly using the likelihood is a challenging computational prob-
lem. Similarly, because of the complexity of the structure of the covariance matrix
of the value added estimates, quadrature methods such as Gauss-Hermite integra-
tion are impractical. Broatch and Lohr (2012) use the pseudo-likelihood approach
described to perform computations and obtain approximations to the maximum
likelihood estimators; they then adopt the penalized quasi-likelihood approach used
in SAS PROC GLIMMIX (SAS Institute Inc., 2008) to approximate the maximum
likelihood estimates (Breslow and Clayton, 1993; Wolfinger and O’Connell, 1993)
(Syntax for SAS is presented in Broatch and Lohr (2012)).

Value added estimates calculated in GLIMMIX presented in Broatch and Lohr
(2012) are limited. In a simple model that modeled one continuous response and
one binary response, SAS had “insufficient memory” to estimate the teacher effects
for more than 30 teachers. In fact, 24 teacher effect estimates took nearly three days
to compute. Karl, Yang, and Lohr (2013) overcome these computational challenges
by using the EM algorithm as an alternative to the pseudo-likelihood approach for
a VAM with continuous responses similar to model (1) and Gij = 0 for i ̸= j (the
off-diagonal of G are assumed to be 0). The method can be implemented in the
GPvam package (2012) in the open source software R (R Development Core Team,
2006). The RealVAMS package presented in section (4) expand GPvam package
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to fit the RealVAMS model that estimates a multidimensional teacher effect. The
RealVAMS packages utilizes an efficient EM algorithm to effectively estimate the
random teacher effects for teachers in a large public school district. In fact, the
model presented in section (3) for 84 teachers converges in 120 seconds!

3. Application to Large Public School Data

The RealVAMS model and R package were applied to data from a large school dis-
trict. This section will demonstrate the model and the multidimensional estimates
that can result from using this VAM. The goal was to estimate multidimensional
teacher effects on (1) student achievement measured by the state assessment (scale
score on state assessment) and (2) whether or not a student entered college (College
entry (Y/N)). Students in the 11th grade that took the required state assessment
and had information recorded by the Clearinghouse on student college entry infor-
mation were included in this application. This dataset includes 912 students and
86 teachers (students with missing data were excluded in this analysis). The model
controlled for the following covariates:

• Student Gender

• Student Ethnicity

• Math/Reading PLAN scale scores (national assessment - required in district)

• Gifted status (Y/N)

• Special education status (Y/N)

• ELL status (Y/N)

Results

The covariate effects are fairly typical and are not vastly different from the standard
model. Note that the covariates were allowed to vary for each response. The
RealVAM fixed effects estimates are:

Covariate State Test SE College Entry SE

Intercept -0.702 6.123 -0.791 0.3
Male 0.872 1.842 -0.134 0.102
Native American -17.307 13.625 -1.161 0.728
African American -3.496 3.859 -0.046 0.2
Asian American 11.05 4.602 0.566 0.304
Hispanic American -9.849 3.789 -0.433 0.192
Two or more -1.629 4.619 0.021 0.248
White (Reference) – – – –
Special Needs Status -YES -15 4.103 -0.303 0.204
ESL - YES -19.513 13.084 -0.026 0.664
Gifted- YES 6.78 2.473 -0.188 0.139
PLAN- Math 4.972 0.279 0.045 0.015
PLAN - Reading 0.777 0.26 0.03 0.014

Figure (1) displays the relationship between the teacher effect estimate on the state
assessment and the teacher effect estimate on the probability of college entry. This
shows a significant relationship between the two estimates (rG = 0.79).
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Figure 1: Teacher Effectiveness Estimates - Random Effects from model

Similar to other VAM applications the variance component due to the students
is much larger than the variance component due to the teachers with rR = 0.15
(Schochet & Chiang, 2010). The multidimensional teacher effects were also highly
correlated, rG = 0.79. As a result, the g12 (off-diagonal) is significantly different
from 0 (p = 0.007).

Teachers: Ĝj= [
264.75 3.3765
3.3765 0.0691

]
Students: R̂i= [

602.00 3.62
3.62 1.00

]
,

Multidimensional Teacher Effects

There was an outlying teacher that the RealVAMS multidimensional teacher effects
highlights, see figure (2). This teacher is near the bottom for VAM estimates for the
state standardized assessment, yet the highlighted teacher is not near the bottom
for the VAM estimate toward student college entry.

All Teachers Teacher #22

Percentage of College Entry: 70.9% 76.0%
State Assessment: 121.90 55.20

This teacher is an example of where the multidimensional effectiveness mea-
surements provide conflicting information. This teacher highlights a real scenario
where a teacher would be labelled as “highly” ineffective when measured by student
achievement on a standardized test, yet the teacher would not be labelled highly in-
effective on the teacher’s impact towards their students’ college entry. If VAMS are
to used for teacher accountability, it seems prudent to measure multiple dimensions
of teacher effectiveness as teachers may contribute to different aspects of student
“achievement.”

JSM 2014 - Section on Statistical Education

2181



Figure 2: Outlying Teacher Highlighted

Acknowledgments

I also would like to thank fellow panelists Jennifer Green (Montana State Univer-
sity), Pamela Fellers (University of Nebraska-Lincoln), and Eric Parsons (University
of Missouri) for their valuable prospectives of VAMS. This material is based upon
work supported by the National Science Foundation under Grant No.1336027. Any
opinions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation.

References

Ballou, D., Sanders, W., and Wright, P. (2004). Controlling for student background
in value-added assesment of teachers. Journal of Educational and Behavorial
Statistics, 29:37–65.

Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized
linear mixed models. Journal of the American Statistical Association, 88:9–25.

Broatch, J. E. and Lohr, S. (2012). Multidimensional assessment of value added by
teachers to real-world outcomes. Journal of Educational and Behavioral Statistics,
37:256–277.

Karl, A., Yang, Y., and Lohr, S. (2012). GPvam: Maximum Likeli-
hood Estimation of Multiple Membership Linear Mixed Models Used in
Value Added Modeling. R-Core Development, pages Retrived online:
http://cran.r--project.org/web/packages/GPvam/index.html.

Karl, A., Yang, Y., and Lohr, S. (2013). Efficient maximum likelihood estimation
of multiple memebership linear mixed models, with an application to educational
value-added assessments. Computational Statistics and Data Analysis, 59:13–27.

JSM 2014 - Section on Statistical Education

2182



Mariano, L. T., McCaffrey, D. F., and Lockwood, J. R. (2010). A model for teacher
effects from longitudinal data without assuming vertical scaling. Journal of Ed-
ucational and Behavioral Statistics, 35:253–279.

Martineau, J. A. (2006). Distorting value added: The use of longitudinal, vertically
scaled student achievement data for growth-based, value-added accountability.
Journal of Educational and Behavorial Statistics, 31:35–62.

McCulloch, C. E. (1994). Maximum likelihood variance components estimation for
binary data. Journal of the American Statistical Association, 89:330–335.

MET Researchers (2012). Gathering feedback for teaching: Combin-
ing high quality observations with student surveys and achievement
gains. MET Project Research Paper-Bill and Melinda Gates Founda-
tion, Initial Year 2 Findings from the MET Project:Retrived online:
http://www.metproject.org/downloads/MET_Gathering_Feedback_Research_Paper.pdf.

R Development Core Team (2006). R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria.

Rabe-Hesketh, S. and Skrondal, A. (2001). Parameterization of multivariate random
effects models for categorical data. Biometrics, 57:1256–1264.

Raudenbush, S. W. (2004). What are value-added models estimating and what
does this imply for statistical practice? Journal of Educational and Behavioral
Statistics, 29:121–129.

SAS Institute Inc. (2008). SAS/STAT 9.2 User’s Guide. SAS Institute Inc., Cary,
NC.

U.S. Department of Education (2011). Race to the Top. Retrived Online:
http://www2.ed.gov/programs/racetothetop/index.html.

U.S. Department of Education (2014). College and ca-
reer standards and assessments. Retrived Online:
https://www2.ed.gov/policy/elsec/leg/blueprint/faq/college-career.pdf.

White, M. and Rowan, B. (2012). Measures of effective teaching
(MET) longitudinal database (LDB): A user guide to the “core study”
data files available to met early career grantees. Produced for Inter-
University Consortium for Political and Social Research, page Retrived online:
http://www.naeducation.org/MET_User_Guide_Data_Files.pdf.

Wolfinger, R. and O’Connell, M. (1993). Generalized linear mixed models: A
pseudo-likelihood approach. Journal of Statistical Computation and Simulation,
48:233–243.

Wright, S. P., White, J. T., Sanders, W. L., and Rivers, J. C. (2010). Sas
evaas statistical models. SAS Institute - Cary, N.C., pages Retrived online:
http://www.sas.com/resources/asset/SAS--EVAAS--Statistical--Models.pdf.

JSM 2014 - Section on Statistical Education

2183



4. Appendix: RealVAMS Package

RealVAMS R Package: “RealVAMS” function arguments:

• score.data: data frame that includes - continuous response, unique student
IDs, teacher IDs and time period indicator

• outcome.data: data frame that includes - binary response, unique student
IDs, teacher IDs and time period indicator

• persistence: choices are “CP” or “VP”, for complete and variable persistence
of the teacher score effects. Note that the binary response is limited to “CP”

• score.fixed.effects, outcome.fixed effects - covariates

• max.iter.EM: the maximum number of EM iterations during each pseudo-
likelihood iteration

• tol1: Convergence tolerance for EM algorithm during each interior pseudo-
likelihood iteration.

• pconv: Convergence criterion for outer pseudo-likelihood iterations. Com-
pare to the PCONV option of SAS PROC GLIMMIX.
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