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Abstract 
To combat nonresponse, many surveys repeatedly follow up with nonrespondents, often 

targeting a response rate or a predetermined number of completes. Under a fixed data 

collection protocol, however, returns tend to diminish with each subsequent wave of data 

collected, and (nonresponse-adjusted) estimates eventually stabilize. This is the concept 

of phase capacity, suggesting some sort of design change is warranted (e.g., switch 

modes, increase the incentive, or discontinue follow-up altogether). The only known test 

for phase capacity appearing in the literature is one employing imputation models to 

adjust for nonresponse. This paper describes a test similar in spirit but applicable to 

surveys that conduct weighting adjustments to compensate for nonresponse. The two 

methods are compared via an application using data from a Web-based satisfaction 

survey of United States government employees. The weighting version of the phase 

capacity test proves more conservative in the sense that it tends to conclude more follow-

up attempts are warranted. 
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1. Introduction 

 

1.1 Background 
Few surveys are immune to unit nonresponse, which occurs when sampled individuals 

fail to respond to a survey request. Indeed, response rates have been declining in both the 

United States and abroad (Atrostic et al., 2001; de Leeuw and de Heer, 2002; Curtin et 

al., 2005). Groves (2003) asserts the domestic trend is a confluence of the rise in single-

person households, access impediments such as caller ID and gated communities, and a 

general increase in reluctance to participate in surveys. This, in turn, has led to rising 

costs, as increased effort must be expended merely to maintain a survey’s historical 

response rate mark (Curtin et al., 2000). For instance, Groves (2003) reports that the 

number of interviewer hours required to secure an interview has risen some 30 – 40% 

during the late 1990s for the General Social Survey, the National Comorbidity Study, and 

the National Survey of Family Growth. While these recent trends are alarming, survey 

researchers should take comfort in the fairly widespread, convincing evidence that lower 

response rates do not necessarily imply estimates are systematically less accurate (Merkle 

and Edelman, 2002; Groves and Peytcheva, 2008). 

 

The typical protocol for data collection in surveys involves making a sequence of follow-

ups on those who have yet to respond, which can take on various forms depending on the 

survey’s mode—reminder mailings, additional telephone calls, or revisits to a residence, 

to name a few. Indeed, each follow-up attempt tends to prompt more survey completes. 

We can think of these additional cases acquired as waves of incoming data. On the 
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surface, more follow-ups are desirable, as they serve to reduce the nonresponse rate, but 

they come at a cost and extend the data collection field period, delaying subsequent 

stages of the survey process, such as the reporting and analysis stages. And from a purely 

practical standpoint, empirical evidence (e.g., Table 1 in Potthoff et al., 1993) suggests 

returns diminish with each subsequent wave; that is, fewer and fewer completes are 

attained, impinging smaller and smaller changes upon key estimates. 

 

Descriptive statistics about the nonrespondent follow-up campaign can be subsumed 

under the concept of paradata, a term coined by Couper (1998) to denote process data 

generated as a byproduct of data collection. Paradata analyses have burgeoned over the 

since that time (Kreuter, 2013). The number of follow-up attempts is one example 

paradata measure summarizing the level of effort expended to achieve a response. Given 

the count is known for the entire sample, researchers have evaluated its ability to adjust 

for nonresponse. Potthoff et al. (1993) reweighted survey data in a telephone survey 

based on an assumed relationship between number of callbacks and an outcome variable. 

Rao, Glickman, and Glynn (2004) evaluated the effect of incorporating the number of 

follow-up attempts as a continuous predictor variable in an imputation model. Like any 

candidate variable, its utility hinges on a strong relationship with both the probability of 

responding and the key survey outcome variables (Little and Vartivarian, 2005). 

 

A related class of research has focused on comparing and contrasting the response 

distributions and associated covariate compositions across some distinction of “early” 

versus “late” wave respondents (Curtin et al., 2000; Keeter et al., 2006; Peytchev et al., 

2009; Sigman et al., 2012). In some instances, the objective is to evaluate whether 

estimates derived from early respondents differ notably from estimates derived using the 

ultimate set of respondents, early and late. A natural feature of these types of these 

studies is that they tend to measure relative bias, not absolute bias. Estimates using all 

respondents may not differ much from estimates using only the early wave respondents, 

but the former is still subject to bias. In other instances, the objective is to assess whether 

late respondents can proxy for ultimate nonrespondents in some form of nonresponse 

adjustment. Sometimes the hypothesized relationship holds (Bates and Creighton, 2000), 

but the technique can backfire when the mechanisms of noncontact differ from 

nonresponse (Lin and Schaeffer, 1995). 

 

To mitigate the increased costs associated with efforts to stem further declines in 

response rates, Groves and Heeringa (2006) argue for researchers to employ principles of 

responsive survey design, in which paradata is utilized in real-time to alter the course of 

data collection. They define a design phase to be a spell of data collection with a stable 

frame, sample, and recruitment protocol and phase capacity as the point during a design 

phase at which the additional responses cease influencing key statistics. The idea is that 

instead of terminating data collection or transitioning to a new design phase at some 

arbitrary threshold such as a target response rate, one should monitor the accumulating 

data and stop when phase capacity has been reached. As Wagner and Raghunathan 

(2010) point out, however, Groves and Heeringa (2006) offer no specific, calculable rule 

to test for phase capacity. The concept is only illustrated visually in Figure 2 of their 

paper, in which they plot the trend of a key, nonresponse-adjusted estimate over the data 

collection period and comment on how the estimate stabilizes well before the design 

phase ends. This paper aims to fill this research gap by discussing and comparing two 

methods for formally testing for phase capacity. 
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As an aside, the often-utilized “stopping rule” label typically carries the connotation that 

the nonrespondent follow-up should be discontinued altogether once phase capacity has 

been reached. This is not exactly the case. More precisely, phase capacity marks the point 

at which a new design phase is warranted. Stopping the nonrespondent follow-up 

campaign is one form of a design phase change, but alternative interventions include 

switching modes (de Leeuw, 2005) or increasing the incentive offered to the remaining 

nonrespondents (McPhee and Hastedt, 2012). 

 

1.2 Illustrating Phase Capacity in the Federal Employee Viewpoint Survey 

Background 
To further elucidate the concept of phase capacity and introduce a real-world survey data 

set on which two proposed tests will be compared, we next discuss the Federal Employee 

Viewpoint Survey (FEVS). The FEVS, formerly known as the Federal Human Capital 

Survey (FHCS), was first launched in 2002 by the U.S. Office of Personnel Management 

(OPM). Initially administered biennially, the Web-based survey is now conducted yearly 

on a sample of full- or part-time, permanently employed civilian personnel of the U.S. 

federal government. The core survey instrument consists of 84 work environment 

questions followed by 14 demographics. Most questions are attitudinal, capturing 

answers in the form of a five-point Likert scale ranging from Very Satisfied to Very 

Dissatisfied. Tests of statistical significance are typically performed after collapsing these 

categories into the dichotomy of a positive/non-positive response. Responses for which a 

“Do Not Know” or “No Basis to Judge” option is provided are treated as if the 

positive/non-positive indicator was missing. The key estimate from each item thus 

reduces to the proportion (or percentage) of employees who react positively to the 

statement posed. The typical terminology used to describe this statistic is the “percent 

positive” for a particular survey item. 

 

The sample frame for the FEVS is a personnel database maintained by OPM. In FEVS 

2011, a total of 560,084 individuals from 83 agencies were sampled as part of a single-

stage stratified design, where strata were defined by the cross-classification of agency-

subelement and one of three supervisory categories: non-supervisors, supervisors, and 

executives. Agency-subelement is the first organizational component below the agency 

level. For instance, whereas the U.S. Department of Homeland Security is considered an 

agency, two of its agency-subelements are the Transportation Security Administration 

and the U.S. Secret Service. The stratification scheme ensures adequate numbers of 

supervisors and executives appear in the sample, as they constitute a domain of analytic 

interest. 

  

The overall FEVS 2011 field period ran from March 29 to June 1, but the 83 participating 

agencies had staggered survey start and close dates. The agencies’ field period lengths 

varied to some degree, but the median duration was six weeks. The data collection 

protocol fits well into the paradigm of a stable recruitment process with multiple waves 

of nonrespondent follow-up. On the survey start date, an initial email invitation 

containing the website URL and log-in credentials was sent to sampled employees. Upon 

completing the survey, each employee’s unique identification number and response 

vector were time stamped and appended real-time to a database stored on the site’s 

server. Weekly reminders were sent to nonrespondents. Hence, one straightforward 

demarcation of a data collection wave is the set of responses collected between any two 

weekly email invitations. Table 1 shows the wave-specific respondent counts and 
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corresponding relative percent increase for one example agency. It is plain to see how the 

relative increases quickly diminish within a few waves. 

 

 

Table 1: Distribution of Responses by Wave for an Example Agency Participating in 

FEVS 2011. 

Wave 
 

Respondents 
Percent 

Increase 

1 
 

2,178 -- 

2 
 

1,516 69.6% 

3 
 

1,304 35.3% 

4 
 

959 19.2% 

5 
 

613 10.3% 

6 
 

510 7.8% 

7 
 

439 6.2% 

8 
 

381 5.1% 

9 
 

408 5.2% 

10   379 4.6% 

  

8,687 

  

The FEVS sample frame contains a plethora of auxiliary variables known for both 

respondents and nonrespondents, a subset of which is utilized in a three-step weighting 

process to compensate for unit nonresponse (Kalton and Flores-Cervantes, 2003) at the 

agency level. In the first step, base weights are computed as the inverse of each sampled 

individual’s selection probability. In the second step, base weights of nonrespondents are 

shifted to respondents within classes formed by the cross-classification of various 

demographic variables. In the last step, weights are raked such that they aggregate to 

certain known frame totals for the agency as a whole. 

  

The survey reminder schedule is generally fixed for each agency prior to the start of the 

survey, yet it can be argued phase capacity occurs before the final reminder email is sent. 

Since data is electronically recorded real-time and all weighting adjustments can be made 

after merging the response indicator back into the sample frame, a series of nonresponse-

adjusted point estimates can be charted across time as additional waves of data are 

incorporated. 

 

Figure 1 illustrates this for an example agency based on item 4, which asks employees 

their level of agreement with the statement “My work gives me a feeling of personal 

accomplishment.”  One can observe how the estimate increases over the course of data 

collection, even after adjusting for unit nonresponse. By about wave 6, however, the 

estimate has more or less stabilized. Consequently, this is a pattern observed for many 

FEVS items, that estimates generated from earlier respondents tend to be lower than 

estimates generated from the ultimate set of respondents (Sigman et al., 2012). 
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Figure 1: Plot of the Nonresponse-Adjusted Percent Positive Statistic for FEVS Item 4 in 

an Example Agency Using Cumulative Data as of the Given Wave of Nonrespondent 

Follow-Up. 

 

In general, the tendency for nonresponse-adjusted estimates to bounce around more in the 

earlier waves than latter waves is not unique to FEVS (cf. Figure 3 in Wagner (2010) and 

Figure 3 in Peytchev et al. (2009)). The hope is that a test for phase capacity detects 

estimate stability at the earliest possible point, preventing inefficacious nonrespondent 

follow-up attempts. 

 

2. A Retrospective Test for Phase Capacity 

 

2.1 Previous Methods 
Rao, Glickman, and Glynn (RGG) (2008) was the first known attempt at quantifying 

estimate stability across waves of nonrespondent follow-up, although their motivation 

was a concurrently progressing literature on sequential decision rules in clinical trials 

(O’Quigley et al., 1990), not the concept of phase capacity as discussed in Groves and 

Heeringa (2006). RGG’s research question was to determine when they could stop 

mailing replacement questionnaires to a sample of women recruited for a large pregnancy 

prevention study. Covariates collected during the recruitment stage served as the 

auxiliary variables X known for the entire sample as these women were followed over 

time. The estimate they considered was a sample mean, the proportion of women using 

birth control. Given the completion of wave k (k ≥ 2), RGG questioned how much 

inferences would have changed had data collection stopped at wave k – 1. To help 

quantify the uncertainty surrounding that question, they derived three rules. 

 

Rule 1 gauges whether units’ response wave is associated with the outcome. Specifically, 

one uses the respondent data to fit a model relating covariates, wave of response, and 

interaction between the two to the outcome. One then fits a reduced model omitting the 

wave-related terms and forms a likelihood-ratio test—or an F for a linear regression 

when the outcome is continuous—to see if the reduced model holds. If so, phase capacity 

has been reached. 
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Rule 2 compares the change in the survey estimate itself by partitioning the respondent 

set into two mutually exclusive groups, those who responded during waves 1 through k – 

1 and those who responded during wave k. A two-sample t test is conducted to determine 

whether the two cohorts yield significantly different mean outcomes. If not, there is 

evidence phase capacity has occurred. Rules 1 and 2 are intuitive but neither employs the 

known auxiliary variables to adjust for nonresponse. Moreover, the authors found Rule 2 

to be prone to false discoveries in later waves due primarily to the continually decreasing 

respondent counts. RGG’s third rule performed best in simulation and application. 

 

RGG Rule 3 adjusts for nonresponse by multiply imputing (Rubin, 1987) the missing 

birth control usage indicator variable. In contrast to techniques that reweight respondent 

records to better reflect the target population, imputation methods attempt to fill in the 

unobserved values. A survey data set subject to missingness has an outcome vector Y that 

can be partitioned into two components Y = (Y1, Y0), where Y1 is the observed 

component and Y0 the missing component. An imputation model exploits the relationship 

between X and Y1. The model can be either explicit (e.g., linear regression) or implicit 

(e.g., class-based, such as so-called hot-deck imputation). Multiple imputation (MI) is a 

technique whereby missing values are imputed M times (M ≥ 2), thereby rendering M 

completed data sets. RGG (2008) use M = 5, a fairly common value in practice (e.g., 

Schenker et al., 2006). Rubin (1987) advocates this technique over single imputation 

since an augmentation to the variance formula allows one to better reflect the missing 

data uncertainty. 

 

Let mQ̂ denote the m
th
 completed data set estimate for any quantityQ . The MI estimate is 

the arithmetic mean of the M completed data set estimates, or 



M

m

mM Q
M

Q
1

ˆ1ˆ . Let mÛ

denote the m
th
 completed data set estimated variance for mQ̂ . The MI variance is the sum 

of (1) the average of the M completed data set variances 



M

m

mM U
M

U
1

ˆ1ˆ and (2) the 

between-imputation variance of the estimate 
 








 











M

m

Mm

M
M

QQ

M
B

1

2

1

ˆˆ
1

1ˆ . That is, the 

overall multiple imputation variance formula is MMM BUT ˆˆˆ  . The term 









M

1
1

represents a finite imputation correction factor, which converges to 1 as M → ∞. 

 

RGG Rule 3 proceeds as follows. First, one imputes the current nonrespondents using 

data available through wave k. Then responses obtained during wave k, specifically, are 

deleted and imputation is performed using a model fit using data through wave k – 1. The 

result is 2M completed data sets. The two sets of multiply-imputed data are obviously 

dependent, since the underlying models are based on the shared fully observed data 

through wave k – 1. To circumvent the calculation of covariances, RGG cleverly 

construct a sequence of M individual-level difference variables, k
mi

k
mimi yyd  1 , where 

the superscript denotes the maximum wave’s data used in the imputation model and the 

subscript denotes the m
th
 completed data set value (imputed or observed) for the i

th
 

individual. For respondents up to and including wave k – 1, 0mid , but necessarily so for 

respondents during wave k and beyond. 
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Phase capacity is declared whenever 



M

m

mM d
M

d
1

ˆ1ˆ is not significantly different from 

zero. The quantity Md
ˆ

is standardized by dividing through by the square root of its MI 

variance and referenced against a student t distribution with desired level of confidence. 

The MI variance is defined as the sum of the sample variance of the M point estimates of

md
ˆ

times the finite imputation correction factor and the average of the M values of

)
ˆ

var( md . The former is the between-imputation variance component and the latter is the 

within-imputation variance component. Depending upon the degree of overlap, the 

overall MI variance computed in this manner should be much smaller than a method 

assuming independence of the two sets of multiply-imputed data (i.e., ignoring what 

would certainly be a positive covariance). 

 

2.2 New Methods 
One potential downside to RGG’s phase capacity test is that, for the imputation process 

to be truly effective, predictive covariates are needed. Not all surveys have that luxury. 

For example, there may be little known about unresolved sampled telephone numbers in a 

random-digit-dialing (RDD) survey. In these and numerous other settings, respondent 

records might be reweighted to better represent the target population, often by 

benchmarking to external control totals obtained from administrative records or a census. 

The purpose of this section is to introduce a proposed adaptation of the RGG’s test 

amenable to reweighting the observed portion of the data. 

 

Suppose we are still interested in determining whether ky1
ˆ , the sample mean using data 

from waves 1 through wave k, is no different from 1
1

ˆ ky , the sample mean using data only 

through wave k – 1. Suppose further that the two sample means are weighted by kw1 and

1
1
kw , the nonresponse-adjusted base weights computed to better represent the target 

population as of the conclusion of the two adjacent waves. For sample units that 

responded at or before wave k – 1, both weights would be positive. For sample units 

responding specifically during wave k, k
iw1 would be positive while 1

1
k

iw = 0. For sample 

units that have yet to respond by wave k, both k
iw1 and 1

1
k

iw would be 0. 

 

As before, the objective is to standardize the difference between the two sample means, 

which requires an estimated variance of the difference. Fundamentals of Taylor series 

linearization can be employed after first observing how the difference can be expressed 

as a function of T = 4 estimated totals: 

 

4

3

2

1

1

1

1
1

1
1

1

1

1

1
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1
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ˆˆˆ
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n

i

i
k
i

n

i

k
i

n

i

i
k
i

kkk
k 



























   (1) 

 

When written in this fashion, Wolter (2007, section 6.5) demonstrates how a 

computational algorithm attributable to Woodruff (1971) can greatly simplify the Taylor 

series variance approximation process. Similarly to RGG’s difference variable approach, 
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the technique’s appeal is that it bypasses the need to calculate 








2

T
 covariances. The 

algorithm calls for one to create a primary sampling unit (PSU) level variate ui equaling 

the sum of the function’s partial derivatives multiplied by the corresponding estimated 

total. In the present case,

















 










n

i

ti

T

t t

k
kk

k t
T1

4

1

1
1

ˆvar)ˆvar(


 . After a little algebra, it can be 

shown this equals  

 

   
k
i

k

k

i
k
ik

k
i

k

k

i
k
iki w

N

Y
yw

N
w

N

Y
yw

N
u 12

1

1
1

1

1
121

1

1
11

11
1 ˆ

ˆ

ˆ

1

ˆ

ˆ

ˆ

1
 







   (2) 

 

The estimated variance of the sum of the ui’s with respect to the sample design 

approximates )ˆvar( 1
k
k . Table 2 provides a visualization of this technique using a simple, 

hypothetical survey data set where k = 2. 

 

Table 2: Illustration of the Taylor Series Linearization Method to Approximate the 

Variance of the Difference of Two Adjacent Waves’ Nonresponse-Adjusted Sample 

Means. 

Observed Data 
 

Linearized 

Variate
*
 

Sample 

Case ID 
Wave 1

1iw  2
1iw  yi  

ui 

1 1 10.1 4 1.3 
 

-0.0362 

2 1 10.2 7 1.1 
 

-0.0284 

3 1 9.7 7 2.1 
 

0.0213 

4 1 10.6 5.4 1.8 
 

0.0130 

5 1 8.8 6.3 1.7 
 

0.0030 

6 1 10.6 6.2 2.0 
 

0.0260 

7 2 0 6.4 1.4 
 

0.0300 

8 2 0 5.7 1.8 
 

-0.0113 

9 2 0 5.3 1.6 
 

0.0072 

10 2 0 6.7 1.9 
 

-0.0245 

 

*
Calculated as

   
2
122

1

2
12

12
1

1
121

1

1
11

11
1 ˆ

ˆ

ˆ

1

ˆ

ˆ

ˆ

1
iiiiiii w

N

Y
yw

N
w

N

Y
yw

N
u  , where 60ˆ 1

1 N , and 

96.99ˆ1
1 Y , 60ˆ 2

1 N , and 86.100ˆ 2
1 Y . 
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Using figures from Table 2, we find 666.1
60

96.99

ˆ

ˆ
ˆ

1
1

1
1

6

1

1
1

6

1

1
1

1
1 









N

Y

w

yw

y

i

i

i
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,  

681.1
60
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ˆ

ˆ
ˆ

2
1

2
1
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1

2
1

10

1

2
1

2
1 









N

Y

w

yw

y

i

i

i

ii

, and so 015.0ˆ2
1  . The estimate of )ˆvar( 2

1 is 

approximated by 
















10

1

var
i

iu  = 0.00567. The observed t statistic is then 

199.0
075302.0

015.0

)ˆvar(

ˆ

2
1

2
1 







, which is referenced against a student t distribution with 

10 degrees of freedom to obtain a p-value under the two-tailed hypothesis test H0:

02
1

1
1

2
1  yy versus H1: 02

1
1
1

2
1  yy . In this hypothetical setting, it appears the 

nonresponse-adjusted sample mean did not change significantly between waves 1 and 2, 

implying phase capacity has occurred. 

 

While the set-up thus far has pertained only to simple random sampling designs, complex 

survey features can be accommodated. For instance, many surveys involve multiple 

stages of clustering, often within strata. To simplify the variance approximation process, 

the “ultimate cluster” assumption (see p. 67 of Heeringa et al., 2010) is frequently 

adopted in which the ui’s are constructed as illustrated above at the PSU level and 

stratum-specific variances are estimated and summed across all strata. And although the 

present exposition focused only on the sample mean, the Woodruff (1971) technique is 

applicable to any difference that can be expressed as a function of unbiased totals, which 

covers a wide range of statistics. This is a notable advantage over RGG’s rule, whose 

difference variable approach was designed specifically for the comparison of two sample 

means. 

 

Worthy of brief mention is an alternative computational algorithm practitioners may find 

easier to apply than the method outlined above, at least when the key estimate being 

monitored is a sample mean. Drawing upon concepts demonstrated in Example 5.13 of 

Heeringa et al. (2010), the first step is to stack the two fully observed data sets, one as of 

wave k and another as of wave k – 1, with a like-named weight variable and PSU 

identifier. Note that even under a simple random sample design, one would treat the 

unique respondent identifier as the PSU (i.e., a cluster variable). The next step is to assign 

an indicator variable in this stacked data set taking on a value of 0 for cases from the 

wave k data set and a value of 1 for cases from the wave k – 1 data set. One then fits a 

linear regression model with an intercept and this indicator variable serving as the lone 

predictor variable on the outcome variable of interest. So long as the variance-covariance 

matrix of model parameters is estimated properly accounting for the clustering (and 

stratification, if applicable), it can be shown that the t statistic generated from the null 

hypothesis that the slope coefficient in this simple model is zero matches what was 

calculated above using the ui’s. 

 

Another feasible method for approximating )ˆvar( 1
k
k is to employ a replication approach 

(Rust, 1985), one of a class of alternatives to Taylor series linearization. Replication 
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techniques are particularly handy tools for simplifying variance calculations of estimates 

derived from complex sample designs. One example is balanced repeated replication 

(BRR) (Ch. 3 of Wolter, 2007), which was developed for the commonly encountered 

two-PSU-per-stratum design. One creates a series of R replicate weights by doubling the 

weights for one cluster’s observations within a stratum while setting the other cluster’s 

weights to zero. A Hadamard matrix from the field of experimental design is used to 

ensure balance between the number of PSUs maintained or dropped across the replicates. 

The point estimate’s variance is approximated by a straightforward function of the full-

sample point estimate and the like calculated using each of the R replicate weights. A 

nice feature of the technique, as well as other replication techniques, is that there is 

generally a single variance formula, regardless of the underlying quantity being 

estimated. If we let r̂ denote the r
th
 replicate weight estimate (r = 1, …, R) for any 

quantity and denote the full-sample point estimate ̂ , the BRR variance is approximated 

by   
R

rBRR
R

2ˆˆ1
)ˆ(var  . 

 

BRR can be applied to the phase capacity problem by forming a set of R replicate weights 

for (1) respondents through wave k – 1 and (2) respondents through wave k. In sum, 2R 

replicate weights are constructed. One then conducts the full nonresponse adjustment 

routine on all replicate weights independently. After finding both 1
1
ˆ k

r and k
r1̂  using the 

two sets replicate weights, the 2R estimates are consolidated by forming k
r

k
rr 1

1
1

ˆˆˆ    . 

Ultimately, the average squared deviation of these R estimated differences from the full-

sample difference kk
1

1
1

ˆˆˆ     approximates the variance of the two sample means’ 

difference. Other replication approaches, such as the jackknife (Ch. 4 of Wolter, 2007) or 

the bootstrap (Ch. 5 of Wolter, 2007), could be conducted in a similar manner. 

 

3. Application to the Federal Employee Viewpoint Survey 
 

We next discuss an application of these methods using data from three agencies 

participating in FEVS 2011. As before, the estimates under investigation are sample 

means—namely, the seven percent positive estimates for items constituting OPM’s Job 

Satisfaction index. The fundamental objective was to evaluate the performance of the two 

competing phase capacity tests. To promote a balanced comparison, a shared set of 

auxiliary variables were used in both nonresponse adjustment procedures: agency-

subelement; an indicator of whether the employee works at the agency headquarters or in 

a field office; gender; a minority/non-minority indicator variable; and supervisory status 

(non-supervisor, supervisor, and executive). 

 

For RGG’s version of the test, these variables served as main effects in a sequence of 

logistic regression models fitted to impute the missing data, independently fitted for each 

agency. For nonrespondents at the conclusion of any given wave, the seven positive/non-

positive indicators for items comprising the Job Satisfaction index were multiply imputed 

M = 5 times using the %IMPUTE module within IVEware, a free, SAS-callable set of 

macros developed by researchers at the Institute for Social Research at the University of 

Michigan. The macro implements the sequential regression multiple imputation (SRMI) 

algorithm detailed in Raghunathan et al. (2001). 
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For the weighting version of the phase capacity test, base weights for the set of 

respondents at the end of any given wave were raked (Kalton and Flores-Cervantes, 

2003) to marginal, agency-level totals aggregated from the sample frame. The totals were 

derived from the same set of categorical variables serving as main effects in the 

imputation models used in the MI approach. As with the simulation, Taylor series 

linearization was utilized to approximate the variance of the adjacent-wave weighted 

mean difference. 

 

Table 3 summarizes the results from the FEVS application. The wave at which phase 

capacity was declared is given as well as the nonresponse-adjusted estimate at that point 

and the nonresponse error relative to the nonresponse-adjusted estimate calculated using 

the ultimate set of respondents. Note that the interpretation of nonresponse error in this 

application is perhaps more aptly described as relative nonresponse error, because we 

define it here as the difference between the estimate computed once phase capacity has 

been declared and the full-sample estimate computed after the agency’s maximum wave 

undertaken during FEVS 2011. Note, also, that the two nonresponse-adjusted estimates 

are not precisely the same when arrived at via multiple imputation versus weighting, but 

they are close. This is mentioned because the reader may observe how the item-specific 

sums of the “Estimate” and “Relative NR Error” columns are not always equivalent 

across the two methods. It is assumed, however, that as M → ∞, the estimates derived 

using multiple imputation are asymptotically equivalent to those derived from raking, and 

so this moderate amount of random variation reflected by the finite M employed should 

not substantively alter any conclusions made. 

 

The weighting version of the test tends to dictate more wave of nonresponse follow-up 

are needed than does the multiple imputation version proffered by RGG, which surpasses 

the second wave only in a few instances. Due to the proclivity of the nonresponse-

adjusted percent positive estimates to increase with each additional wave (cf., Figure 1), it 

is of little surprise to observe that the nonresponse error is smaller for the weighting 

variant. The differences are relatively small, however. For example, the average 

difference in Agency 1’s nonresponse error for the seven estimates analyzed is -1.4. This 

is the largest of such average differences for any of the three agencies examined. Still, 1 

or 2 percentage points could make a difference when assessing whether a change relative 

to the previous years’ survey results was statistically significant, a popular technique 

human resources managers use to flag items deserving celebration or requiring 

intervention. 

 

Another observation worth mentioning is how phase capacity is concluded earlier for 

Agency 2, which is comprised of a notably smaller sample size (n = 1,057) than Agency 

1 (n = 16,565) and Agency 3 (n = 17,177). There is no evidence that the upward mobility 

exhibited in the nonresponse-adjusted percent positive estimates is any less pronounced 

for Agency 2. As such, we suspect that the decreased precision attributable to the smaller 

sample size relative to the other two agencies is the most probable explanation. 
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Table 3: Results from a 2011 Federal Employee Viewpoint Survey Phase Capacity Test 

Application using Data from Three Agencies to Compare RGG Rule 3 with the 

Weighting Rule Variant. 

 

 

RGG MI (M = 5) 

 

Weighting 

Item 
Stopping 

Wave 
Estimate 

Relative 

NR 

Error 
 

Stopping 

Wave 
Estimate 

Relative 

NR 

Error 

Agency 1 
       

4 3 74.0 -2.0 

 

5 75.3 -0.6 

5 2 82.4 -1.7 

 

2 82.6 -1.5 

13 2 86.6 -2.2 

 

5 88.6 -0.3 

63 3 54.5 -1.7 

 

5 55.7 -0.4 

67 2 33.8 -3.3 

 

4 35.8 -1.4 

69 2 68.3 -2.9 

 

5 70.8 -0.4 

70 2 68.6 -1.6 

 

2 69.1 -1.3 

 
       Agency 2 

       4 2 79.0 -1.1 

 

2 78.9 -0.5 

5 2 84.2 -0.8 

 

2 84.2 -1.2 

13 2 86.3 -2.8 

 

2 88.2 -0.9 

63 2 62.8 -1.9 

 

2 63.2 -1.4 

67 2 40.1 -1.9 

 

3 41.1 -1.4 

69 2 73.6 -0.6 

 

3 72.7 -1.1 

70 2 63.1 3.0 

 

2 62.2 1.0 

 
       Agency 3 

       4 2 77.7 -1.7 

 

4 79.1 -0.3 

5 2 84.8 -1.4 

 

4 86.2 -0.1 

13 2 86.4 -1.3 

 

2 86.9 -0.7 

63 2 63.2 -1.5 

 

2 63.4 -1.3 

67 2 46.5 -1.8 

 

2 46.3 -1.7 

69 2 75.2 -1.8 

 

3 75.7 -1.1 

70 2 73.5 -0.4 

 

2 73.8 0.0 

 

4. Discussion 
 

This paper introduced an adaptation of the phase capacity test proposed by Rao, 

Glickman, and Glynn (2008) amenable to scenarios in which weighting adjustments, as 

opposed to multiple imputation, are implemented to compensate for nonresponse. 

Although the discourse and examples focused on the sample mean, the weighting variant 

is more flexible in that it can easily be altered to accommodate other estimators, whereas 

the M difference variable approach outlined in Rao, Glickman, and Glynn (2008) is 

geared specifically towards investigating a sample mean difference. 
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The primary conclusion is that the weighting version is more sensitive to point estimate 

deviations. This is due to the fact that )ˆ,ˆcov(2)ˆvar()ˆvar()ˆvar( 1
1

11
1

11
kkkkk

k yyyy 
  , the 

variance term in the denominator of the t statistic is smaller in the RGG version than in 

the RGG version.  Because the FEVS application was designed such that the wave-

specific sample means would have variances equal in expectation, we must attributed the 

difference to how the covariance term embedded in )ˆvar( 1
k
k is implicitly calculated. We 

leave for further research the task of developing a more formal theoretical understanding 

as to why this is so. Further research could also explore the behavior of the weighting 

version of the phase capacity test when monitoring alternative estimators or employing 

alternative variance approximation methods. Although a cursory analysis suggested the 

jackknife and bootstrap methods approaches mirrored the performance of the Taylor 

Series linearization method presently utilized, a more rigorous study investigating other 

estimators would be useful to rule out potential anomalies. 

 

This work is derived from a more comprehensive treatment on the topic currently being 

undertaken as part of this author’s PhD thesis for the Joint Program in Survey 

Methodology (JPSM) at the University of Maryland, College Park. Still in preparation at 

the time of this writing, the thesis details a simulation study conducted to further evaluate 

these two phase capacity tests. Findings from that simulation study echo many of the 

same findings from the FEVS application presented in this paper. Additional research 

covered in the thesis includes (1) a multivariate extension of the methods proposed in this 

paper, with the aim of providing a single yes-or-no phase capacity determination for two 

or more estimates simultaneously monitored and (2) an extension of a prospective test for 

phase capacity proposed by Wagner and Raghunathan (2010), with the aim of 

determining whether a pending wave of data collection will significantly influence key 

estimates. 
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