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Abstract

Strategy choice strongly distinguishes novice and expert performance; however identi-
fying strategies from data is an open problem. We propose a mixed membership-Markov
chain (MM-MC) model to model how students use strategies. Markov processes can model
the probabilistic sequence of actions that a student using a particular strategy will take,
and a mixed membership framework will allow us to model students switching strategy
from task to task. An earlier model, the simplicial mixture of Markov chains (SM-MC),
was unsuccessful for data sets with N=1500, a fairly large sample size for educational data.
SM-MC includes an exchangeability assumption equivalent to allowing students to switch
strategy between every action. MM-MC simplifies the model by only allowing students to
switch strategies between tasks. Since this assumes that short sequences of actions must
have all come from the same Markov process, this makes it easier to estimate the transition
matrices, and makes the model more tractable. We also include results from preliminary
simulation studies.
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1. Introduction

Currently there are no statistical or psychometric models that can capture student
strategy usage. We seek to develop a statistical model that can be used to discover
the strategies that students use from data, and eventually assess student expertise.
The foundation for this model consists of three claims from cognitive science: 1)
Strategy is a key feature that distinguishes expert and novice performance. 2) In
most settings, people do not use a single strategy for every task, rather they switch
strategy from task to task. 3) Sequences of actions contain information about
strategies.

We use the example of adding numbers when both addends are less than 5 to
illustrate these three claims. There are three basic addition strategies; 1) retrieval
or memorization, 2) count-on, where to add 3+2, the child counts three-four-five,
and 3) count-all, where to add 3+2, the child counts one-two-three-four-five. There
are variations on these strategies such as counting on from the largest number or
counting on from the first number, in addition to a guessing strategy, but for the
purposes of this example will focus on these three strategies.

Simply reaching a correct answer does not distinguish experts from novices, since
all three strategies will yield a correct answer. But we would generally consider the
person who can quickly retrieve 3+2=5 from memory as more of an expert than a
person who has to count. Indeed, 5-year olds are likely to need to start counting at
one, and to have trouble starting at a different number. But 7-year olds are much
more likely to use a mixture of retrieval and count-on [7]. The transition from
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count-all to count-on marks an important change in mathematical understanding.
Thus strategy here is a critical difference between novice and expert.

This leads us to the second claim; Siegler [7] found that 99% of children used a
mixture of strategies for adding 2 numbers less than ten. Campbell, et al.[1] found
that 50% of adults also used a mixture of strategies for adding 2 numbers less than
five. This phenomenon of switching from one strategy to another between tasks has
been documented in a wide variety of domains, including arithmetic [1, 7], spelling
[6], and mental rotation tasks [8].

If students who used one strategy always used that strategy, then there would
be no significant modeling challenge. The strategy profiles would be latent classes,
and we would be able to describe student behavior with a mixture model. However,
since students switch strategies from problem to problem, we need a model that can
capture this switching behavior. Mixed membership models have this capability
[2, 3].

The final claim is that sequences of actions can reveal strategies. This proceeds
directly from the definition of strategy. If a strategy is a plan of action, then
observable behaviors taken to execute that plan should contain information allowing
us to draw conclusions about the strategy.

Once we conceptualize a strategy as a likely sequence of actions, Markov pro-
cesses are strong candidates for modeling this behavior. However, we cannot use a
basic Markov chain or even a mixture of Markov processes, because students switch
strategies. That is, on one problem, they may choose strategy Z which has a par-
ticular likely sequence of actions. On the next problem, they may choose another
strategy W with a different likely sequence of actions.

The mixed membership-Markov chain (MM-MC) model addresses these issues.
Each strategy is represented as a single Markov process, and the mixed membership
structure allows for individuals using a mixture of strategies across different tasks.
An existing model, the simplicial mixture of Markov chains (SM-MC) [5] has a
similar structure. However, SM-MC has been shown to fail to recover parameters
for moderately large data sets [4]. Briefly, SM-MC fails because it is too flexible.
MM-MC makes a small change in the exchangeability assumptions which provides
an estimable model. After formally introducing MM-MC in section 2, we discuss
the relationship between the two models in section 2.1. Section 3 demonstrates
MM-MC on simulated data.

2. Mixed Membership - Markov Chain Model

First, we assume that there is a single set of metacognitive strategies that is common
across all students, indexed k = 1, . . . ,K. Second, we assume that each student,
i = 1, . . . , N , may use these strategies in different proportions. For example, some
students may be more likely to guess when they don’t know an answer, while other
students may be more likely to ask for a hint. How much each student uses each
strategy is parameterized by the vector θi = (θi1, . . . , θiK), so that θik is the pro-
portion of problems that student i uses strategy k.

When a student begins a task r = 1, . . . , R, they will choose (consciously or
unconsciously) a strategy Zir ∈ {1, . . . ,K} which will determine the likely sequence
of actions.

Pr(Zir = k|θi) = θik (1)

or, equivalently,
Zir|θi ∼Multinomial(θi). (2)
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Note that the strategy Zir depends only on the person i, not the item r. This is
a simplification which seems unlikely to be true; different tasks may tend to elicit
different strategies. Future work will explore the interaction between students and
items in generating the strategy choice Z.

Once the student chooses the strategy Zir, they will take a sequence of actions
Xir = (Xir1, . . . , Xirt, . . . , XirTir) as they try to complete the task. Note that the
length of the sequence, Tir, differs from student to student and item to item.

Each strategy is defined by a discrete time Markov process. The state-space
for the Markov chain is the set of observable student actions. Each Markov chain
k = 1, . . . ,K is parameterized by the initial probability vector πk, and the transition
probability matrix Pk. Thus, the probability of a student’s sequence of actions Xir

given their strategy choice Zir is modeled as:

Pr(Xir = x|Zir = k) = πk,x1

Tir∏
t=2

Pkxt−1xt . (3)

Thus,

Pr(Xir = x|θi) =
K∑
k=1

Pr(Zir = k|θi)Pr(Xir = x|Zir = k) (4)

=
K∑
k=1

θik

[
πk,x1

Tir∏
t=2

Pkxt−1xt

]
, (5)

and finally, if we denote Xi = (Xi1, . . . , Xir, . . . , XiR), we have,

Pr(Xi = x|θi) =
R∏

r=1

[
K∑
k=1

θik

[
πk,xr1

Tir∏
t=2

Pkxr(t−1)xrt

]]
. (6)

Note that these equations are written using a first-order Markov process, but
they are easily extensible to higher order processes.

2.1 Comparison to Simplicial Mixtures of Markov Chains

Simplicial mixtures of Markov chains (SM-MC) [5] may be considered a special case
of MM-MC. In SM-MC, Tir = 1 for all r, so that individuals are modeled as having
an opportunity to switch strategy profiles between each action. This assumption
allows for a mathematical simplification:

Pr(Xit = s|θi, Xi,t−1 = s′) =

K∑
k=1

θikPk,ss′ = Pi,ss′ (7)

In this special case, there is an individual transition matrix Pi which is a convex
combination of the profile transition matrices, Pk. Thus, SM-MC allows us to
interpret individual strategies as a blend of the profiles [3]. Since this simplification
is not possible in MM-MC, only the ‘switching’ interpretation is available: that is,
students switch from using one strategy on one item to another strategy on the next
item. However, this is exactly the cognitive behavior we are trying to capture.

Galyardt & Goldin [4] found that SM-MC could not recover parameters with
N = 1500, Ti = 200, when there are only 3-5 profiles. The posterior distribution
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of each of the transition matrices Pk collapsed to a global mean transition matrix.
The posterior distribution of θ collapsed to a point-mass with θi = 1

K for all i.
We believe that this model is too flexible for the purpose of modeling student

strategies. By assuming that students might switch strategies between each action,
it is difficult to attribute any single transition to a particular profile transition
matrix. MM-MC restricts the model by assuming that short sequences of actions
all came from the same strategy profile.

3. Simulation

In this preliminary test of the model, we examined our ability to recover parameter
estimates for data generated by the MM-MC model. To make the problem relatively
easy for this preliminary test, we generated profile distributions that were fairly
distinct from each other, and used a distribution of the membership parameters
concentrated in the corners of the simplex. However, we also used a very small
sample, to truly test the utility of this model in educational settings, where N =
1000 is rather large.

We generated 100 datasets using first-order Markov processes for the profiles,
K=4 profiles, N=50 students, and J=15 tasks per student. The number of actions
per task was generated according to Poisson(λ = 4), so that we observed an average
of 60 actions per student.

The number of total states in the Markov process, S = 5, is the number possi-
ble actions a student might take. The profile transition matrices were randomly
generated: each row was drawn independently from a symmetric Dirichlet dis-
tribution, Pk,s· ∼ Dirichlet(0.5), the initial state probabilities πk were generated
from the same distribution. Membership parameters were generated according to
θi ∼ Dirichlet(0.25).

We estimated the model using MCMC. The prior distributions used for θi, Pkss′

and πk, were the generating distributions. For initialization of the MCMC draws,
the initial state probability πk was randomly generated from the prior distribution.
Then the initial profile assignments Zij were drawn based solely on the first state
in the sequence Xij1 and the generated πk. Other parameters were then updated
in turn. In subsequent MCMC iterations, the Zij ’s were updated using the full
sequence, Xij .

In all 100 simulations, we accurately recovered the transition matrices. Gen-
erating and estimated transition matrices from a randomly chosen simulation are
shown in figure 2. To get a sense of how well we succeed in recovering transition
probabilities across all simulations, we use posterior risk, that is, how close is the

posterior distribution on average to the generating parameter. Let P
(b)
kss′ denote an

MCMC draw for Pkss′ . Then an estimate of posterior risk is:

1

B

B∑
b=1

(
P

(b)
kss′ − Pkss′

)2
. (8)

Figure 1 shows that we recovered the majority of transition probabilities with
high accuracy, but that there are a few outliers with higher risk. We note that we
are working with a relatively small sample size, 50 students with an average of 60
actions per student, means that we observe a total of around 3000 transitions in
each simulation. With samples of this size, some states may be rarely observed in
some of the profiles, leading to higher uncertainty in transition probatilities from
those states. Thus, outliers in the distribution of risk are not surprising.
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Figure 1: The distribution of posterior risk for Pkss′ across all simulations.

4. Discussion

These initial results indicate that MM-MC is a feasible model for discovering student
strategies. We are able to accurately capture the differences in strategies with small
data sets, 50 students and 15 tasks per student is a very modest amount of data
that can feasibly be gathered by researchers in education.

The ability to discover student strategies automatically from data is useful for
fundamental research in education and cognitive science. However, we have not
yet demonstrated that MM-MC is useful as an assessment model. More work is
necessary to investigate how many tasks per student are required to accurately
estimate the membership parameters θi. Future work must also address how the
required size of N and J increase as the number of states S increases.

The performance of MM-MC relative to SM-MC is remarkable. SM-MC was
unable to recover any parameters with sample sizes of N = 1500, and 200 actions
per individual, for a total of 300,000 observed actions [4]. With MM-MC we get
accurate estimation with a data set that is 1% of that size, a mere 3,000 total
observed actions. The only difference is a slight change in the exchangeability
assumptions. MM-MC assumes that short sequences of observed actions came from
the same profile. For the purposes of modeling student strategies, this is a very
reasonable assumption.
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Figure 2: Heat maps of profile transition matrices for a randomly chosen simula-
tion. The estimated transition matrices show posterior median probabilities.
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