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Abstract: 

Displaced supracondylar humerus (SCH) fractures are common in children, typically 

treated by closed reduction percutaneous pinning (CRPP) if displaced.  While the timing 

of pin removal is critical for treatment success, no guideline or recommendation on this is 

available.  This is partially because it is not ethical to randomize patients to removing 

pins at a time that is different from convention.  Three potential “adverse events” are 

associated with the timing of pin removal for SCH fractures in children: Infection, 

Displacement and Stiffness. The risk of having infection and/or stiffness increases with 

longer durations of pin placement while early pin removal may lead to displacement. We 

propose a two-stage Bayesian group sequential design to walk up-and-down based on the 

most up-to-date observations from the study until concluding in the optimal time for pin 

removal. Five candidate time windows (19-21, 22-24, 25-27, 28-30, 31-35 days) are 

considered, and a weighted loss function is used to determine the next stochastic walk 

movement: window escalation (E), de-escalation (D) or staying (S) at the current 

window. The trial is allowed to stop early once “equilibrium” window has been found. 

Simulation study is conducted to find the expected sample size and the operating 

characteristics of the design. 

Introduction 

Displaced supracondylar humerus (SCH) fractures (Gartland types II and III) represent 

one of the most common injuries in children
1
. As such, the American Academy of 

Orthopedic Surgeons (AAOS) has developed a Clinical Practice Guideline (CPG) 

outlining best practices for these injuries based on the available evidence in the medical 

literature.
2
 Timing of pin removal after closed reduction percutaneous pinning was one of 

the critical aspects of the SCH fracture treatment that was evaluated: too early removal 

may lead to subsequent fragment movement and loss of reduction; later removal may 

increase the risk of pin infection and/or elbow stiffness. Several studies have documented 

timing of pin removal. Gaston et al. reported a mean of 26.5 days for pin removal time
3
, 

while the mean time to removal was 30.3 days with a range of 20-46 days in Brauer et al 

study
4
. In another prospective study conducted by Lobst et al., a follow up radiograph 

was obtained 3-4 weeks post op, and if the fracture had healed, the pins were removed
5
. 

Despite these studies, no optimal time for removal was given, nor were there any criteria 

for removal of pins. As pointed out by the CPG, there is no conclusive evidence for the 

optimal timing of pin removal in patients with displaced SCH fractures. 

We propose to conduct a clinical trial to find the optimal timing of pin removal. A 

standard randomized clinical trial (RCT) is neither feasible nor ethical to establish 

appropriate timing for pin removal. For example, consider a RCT that randomizes 

subjects to one of the three treatment groups (early removal time, mid removal time, late 

removal time), it would be difficult to recruit subjects because patients would be reluctant 

to be randomized to the early or late removal time due to potential excessive risks 

associated with early or late pin removal. Such a trial will also be hard to accept for 

clinical investigators from ethical consideration. To solve the problem, we propose a 

Bayesian outcome-adaptive design that starts from the conventional time points, and then 
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“move” patients up or down the time scales adaptively based on the most up-to-date 

observations from the study until concluding in the optimal time points for pin removal. 

This innovative design should help to establish a reasonable time period for pin removal 

within the “conventional” timeframe while allowing for movement to a shorter or longer 

time period as determined by the incoming data points.  

It is worth noting that unlike a traditional clinical trial with only single primary endpoint, 

this study has three primary endpoints (fragment movement, pin infection and elbow 

stiffness) to be considered simultaneously. In addition, the chance of fragment movement 

decreases monotonically with increased time, while the probabilities for pin infection and 

elbow stiffness increase monotonically with time. These constraints should be modeled 

appropriately in the design. The optimal pin removal time should be one with minimal 

joint risk of the three events.  

Methods 

Clinical Trial design 

This is a non-randomized Bayesian two-stage outcome-based adaptive clinical trial to 

find optimal pin removal time for patients with displaced SCH fractures.  We hypothesize 

that the optimal time is in the range of 19-35 days. Due to the scheduling difficulty to 

assign subjects to a particular date for pin removal after injury, we will assess five pin 

removal time windows instead: 18-21 days, 22-24 days, 25-27 days, 28-30 days and 31-

35 days. Patients will be enrolled sequentially once consent is obtained, and be assigned 

to a window that is adaptively determined by most up-to-date observations.   

There are three primary endpoints for this study, all reflect potential complications 

associated with timing of pin removal simultaneously. 

 Fragment movement and loss of reduction (X) 

 Pin infection (Y) 

 Elbow stiffness (Z) 

 

We use X, Y and Z to represent the three primary outcome variables. For any subject i, 

we observe (             where (        ) is the outcome for this subject, and j is the time 

window to which patient i is assigned to.       and    are all binary variables, which 

means they can take only one of the two values: 0 (represents NO) or 1 (represents YES). 

For example, if the ith subject had infection and stiffness, but no displacement, then 

     ,      and     .  

The parameters of primary interest are    ,     and    ,  j = 1,…, 5. These correspond to 

the average probabilities of having X, Y and Z, respectively, if pins are removed at 

Window j for a typical patient. 

The trial is composed of two stages. Stage 1 is a rule-based stage where an initial cohort 

of 4 patients will start from Window 2(22-24 days). The outcomes for the first cohort will 

be observed, and the window assignment for the next cohort is determined based on the 

rules below: 

 If ∑       ∑       ∑         for patients in this cohort, then assign the 

next cohort of patients to the current window. 
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 If ∑       ∑       ∑         for patients in this cohort, then assign the 

next cohort of patients to Window     (      . 

 If ∑       ∑       ∑         for patients in this cohort, then assign the 

next cohort of patients to Window     (      . 

 

for all i in the current cohort. The       and    are the weights assigned to events X, Y 

and Z to reflect the corresponding relative seriousness of each events. They can be easily 

elicited from clinical investigators. For the young population in this study, it is expected 

that the seriousness of infection(X) and displacement (Y) are about the same, while the 

stiffness(Z) is less serious. Therefore, we set                   for this study. The 

assignment of the next cohort is completely determined by the observations in the four 

subjects of the current cohort.  

The goal of Stage 1 is to collect necessary information to reliably estimate posterior 

means for   ,   , and    . It also helps to find a nice starting window for Stage 2. Stage 1 

will end after 7 cohorts (e.g., 28 subjects). The trial will then enter Stage 2, the model-

based stage.  

 

In Stage 2, the first cohort will be assigned to the window suggested by the last cohort in 

Stage 1. Afterwards, the posterior probability of having each outcome at different dose 

levels will be estimated upon the observations for the current cohort become available. 

All up-to-date outcomes from subjects enrolled in the trial (including both Stages) will be 

used for estimating the posterior distributions. The window assignment for the 

subsequent cohort is determined based on the loss function.  

For Stage 2, the loss function for time window j is defined as: 

      (       (       (     

where  (     (         (    are the posterior estimates for   ,   , and     based on the 

most up-to-date observations.  

For subjects (except for the 8th cohort, the first cohort in Stage 2) in Stage 2, in principle, 

the cohort of four patients will be assigned to the Window with the minimum expected 

loss based on most up-to-date observations. However, we impose a non-skipping rule for 

assignment to avoid aggressive jumps. The rule prevents any jumping across windows. 

That means if the current cohort of patients was assigned to Window j, then the next 

potential cohort could only be                 for j = 2, 3, 4. For j = 1, the option will 

be limited to            . Similarly, for j = 5, the option will be limited to           . 

Therefore, patients will be assigned to the window with minimum expected loss among 

potential options. 

Stopping rule 

This trial will be stopped if one of the following conditions is satisfied: 

  Four successive cohorts of patients (i.e., 16 patients) were assigned to the same 

window in a row for Stage 2 from the 9th cohort. This suggests that the model-

based optimal window assignment has reached equilibrium state. 
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 The maximum sample size of 100 has been reached. This is the maximum 

resource the study group could afford for this clinical trial.   

 

Statistical model 

let         (            , where   {   }   {   }   {   }, the likelihood 

function is   (   ∏ ∏ ∏ ∏ ∏ (    
  

   
 
   

 
   

 
   

 
     (  

 
     

 
     

 
       

As we expect the outcomes across the time windows will be low, we choose not to model 

the potential association among outcomes to keep the model simple. 

Letting       (  )     
  ,      (  )     

  and      (  )     
 , we assume    

,    
, 

and    
 each follows normal distribution  (    

 )  (    
 )  (    

  , respectively. 

We further assume that   ,   and    follow  (    
  , and       (        The 

hyperparameters     
  were set to be      and   

    . Order constraints were 

placed onto the posterior estimates of the probability parameters to ensure         

,                     
6
.  

Results 

Sample size consideration and Design assessment 

Due to the adaptive nature of the design, we estimate the expected required sample size 

and assess the performance of the study design through a simulation study.  Five 

Scenarios are considered (shown in Table 1), based on each we simulated 300 trials to 

assess the average performance of the design in various situations. The maximum 

allowed sample size is 100 for all simulated trials.  

The primary interest for the design performance is the probability of concluding in 

optimal and sub-optimal windows by the end of the trial. We are also interested in 

looking at the expected sample size (defined as the 3rd quartile of the total sample size 

among all simulated trials for this study). Given acceptable performance, we would like 

to see more patients be assigned to the optimal or sub-optimal windows within the trial. 

These performances are shown in Table 2.  

The first thing to notice is that the two-stage design reaches its stabilized position fairly 

quickly, and consistently for all five scenarios: the expected total sample size is 48 

subjects, with 28 subjects in Stage 1 and 20 subjects in Stage 2. In all Scenarios, the trial 

stopped early, with the maximum simulated sample size = 80.   

As for the probability of concluding in optimal window, Scenarios 2 and 4 both had 

greater than 80% chances of concluding in the optimal window.  The chances of correctly 

concluding in the optimal windows for Scenarios 1, 5 and 3 are 72%, 61% and 48%, 

respectively. If we take into consideration the chance of concluding in the sub-optimal 

(i.e., second best) window, then Scenarios 1, 2 and 4 had 100%, 99%, and 97% chances 

of concluding in the best two windows. The chances are 87% and 84% for Scenarios 3, 

and 5.   

The difference in performances for Scenarios results primarily from the distance in loss 

between the optimal and suboptimal windows. For Scenarios 2 and 4, the distances are 
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0.16, and 0.14, respectively. The distances are 0.12, 0.09, and 0.05 for Scenarios 1, 5 and 

3, respectively.     

When looking at the proportion of subjects been assigned to the optimal or suboptimal 

windows, the majority of subjects are assigned to the two best windows for all five 

scenarios. In particular, 88%, 94% and 87% of subjects in the trial will be assigned to the 

best two windows for Scenarios 1, 2, and 4, and 55% and 60% of those will be assigned 

to Scenarios 3 and 5.  

We also compared the performance of the proposed design with two other designs: the 

up-and-down rule-based design (i.e., the design with Stage 1 component only), and the 

up-and-down Bayesian model-based design (i.e., the design with Stage 2 component 

only). The performances of these two designs are shown in Tables 3 and 4. 

While imposing the same stopping rules to both designs, the up-and-down rule-based 

design requires a much bigger sample size when compared with either the one-stage 

Bayesian design or our proposed two-stage design. In addition, its overall performance is 

no better (if not worse) than the other two designs. Therefore, it is not our choice. The 

performance of one-Stage up-and-down Bayesian model-based design is closer to the 

two-stage design, but with some issues that make us think it is not as favorable as the 

two-stage design. First, the chance of concluding in the optimal window is much lower 

for the one-stage design except for Scenario 1. Second, the expected sample size is larger 

for the one-stage designs.  Third, the proportion of patients been assigned to the best two 

windows is lower for the one-stage design.  

Discussion 

We have proposed a two-stage “Up-and-Down” Bayesian adaptive design to find an 

optimal pin removal time for SCH fractures in children. The adaptive design for the study 

can be easily extended to other pediatric orthopedic treatments such as timing of bracing 

in adolescent scoliosis or cat removal in pediatric femur fracture management. Outside of 

pediatric orthopedics, the method could be used to provide evidence for other treatments 

not amenable to RCT such as timing of physical therapy and surgical interventions where 

there is some amount of clinical equipoise and lack of comparative evidence. It is 

conservable that this method could be applied to questions in cardiology, oncology and 

other surgical subspecialties such as trauma and gynecology. 

There are multiple options that could be considered in designing this study. For example, 

we could model the functional forms for     ,    and    differently, and could allow 

correlation among them. We could also consider different size for Stage 1. An 

exploration on the effect for Stage 1 size to the performance of the design and to the 

expected sample size of the design can be interesting. In addition, smaller sized window 

may be considered, and more scenarios could be assessed.  

The conduct of the adaptive design can also be more demanding compared to RCT as it 

assigns patients adaptively to a time window based on observations from previous 

patients. An interactive software is necessary for a timely determination of patient 

assignment.  
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Tables 

Table 1: Five Scenarios considered for design assessment 

Scenarios   W1 W2 W3 W4 W5 

1 

p 0.05 0.08 0.1 0.25 0.3 

q 0.5 0.2 0.05 0.04 0.03 

r 0.05 0.08 0.1 0.2 0.3 

Loss 0.57 0.31 0.19 0.37 0.45 

2 

p 0.05 0.2 0.25 0.27 0.3 

q 0.1 0.09 0.08 0.06 0.05 

r 0.05 0.1 0.15 0.2 0.3 

Loss 0.17 0.33 0.39 0.41 0.47 

3 

p 0.02 0.03 0.04 0.05 0.05 

q 0.35 0.3 0.25 0.15 0.1 

r 0.05 0.1 0.1 0.1 0.1 

Loss 0.39 0.37 0.33 0.24 0.19 

4 

p 0.05 0.05 0.15 0.15 0.2 

q 0.3 0.1 0.1 0.08 0.07 

r 0.04 0.05 0.15 0.2 0.3 

Loss 0.37 0.17 0.31 0.31 0.39 

5 

p 0.05 0.06 0.08 0.09 0.14 

q 0.3 0.25 0.11 0.08 0.07 

r 0.05 0.06 0.08 0.1 0.15 

Loss 0.37 0.33 0.31 0.19 0.28 
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Table 2: Performance of the two-stage Design 

Scenarios 
Assigned to Opt 

(%) 
Assigned to 

Sub-op (%) 
Concluding in 

Opt (%) 
Concluding in 

Sub-opt (%) 
median N 

(range) 
3rd Quartile 

N 

1 47 42 72 28 48(48-80) 48 

2 62 32 86 13 48(48-64) 48 

3 32 23 48 39 48(48-68) 48 

4 63 24 83 14 48(48-76) 48 

5 17 43 61 23 48(48-72) 48 
 

Table 3: Performance of the One-Stage Up-and-down Rule-based Design   

Scenarios 
Assigned to Opt 

(%) 
Assigned to 

Sub-op (%) 
Concluding in 

Opt (%) 
Concluding in 

Sub-opt (%) 
median N 

(range) 3rd Quartile N 
1 37 44 47 39 100(40-100)   100 
2 58 36 89 1 56(40-100) 81 
3 30 33 72 20 72(40-100) 100 
4 51 30 67 20 100(40-100) 100 
5 21 38 25 43 100(40-100) 100 

 

Table 4: Performance of the One-Stage Up-and-down Bayesian Model-based Design   

Scenarios 
Assigned to Opt 

(%) 
Assigned to 

Sub-op (%) 
Concluding in 

Opt (%) 
Concluding in 

Sub-opt (%) 
median N 

(range) 3rd Quartile N 
1 41 31 80 20 44(40-100)   56 
2 37 37 79 18 44(40-100) 56 
3 23 33 44 51 44(40-100) 60 
4 39 44 79 21 48(40-100) 56 
5 25 40 38 48 56(40-100) 72 
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